
On Module-Based Abstraction and Repair of
Behavioral Programs

Guy Katz

Dept. of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

guy.katz@weizmann.ac.il

Abstract. The number of states a program has tends to grow exponen-
tially in the size of the code. This phenomenon, known as state explosion,
hinders the verification and repair of large programs. A key technique for
coping with state explosion is using abstractions, where one substitutes
a program’s state graph with smaller over-approximations thereof. We
show how module-based abstraction-refinement strategies can be applied
to the verification of programs written in the recently proposed frame-
work of Behavioral Programming. Further, we demonstrate how — by
using a sought-after repair as a means of refining existing abstractions
— these techniques can improve the scalability of existing program repair
algorithms. Our findings are supported by a proof-of-concept tool.

Keywords: Abstraction-refinement, program repair, behavioral programming.

1 Introduction

Explicit model-checking algorithms operate by spanning a program’s state graph
and comparing it to a given specification. This method becomes infeasible for
large systems, as the state graphs tend to grow exponentially in the size of the
program (the state explosion problem). Abstraction techniques [11] are among
the most important methods for coping with state explosion and increasing the
scalability of model-checking algorithms.

The key idea underlying abstraction techniques is to replace the concrete
system model (i.e., the program’s state graph) with a smaller abstraction thereof.
Typically, the abstraction constitutes an over-approximation — it includes the
behaviors of the concrete system, and may also include other behaviors. In the
case of model-checking, proving that a given property holds for the abstract
model implies that it holds for the concrete model as well. Since the abstract
model is more succinct, the state explosion problem is hopefully mitigated.

We study the application of abstraction techniques to the recently proposed
programming framework of Behavioral Programming (BP) [17]. In BP, programs
consist of behavioral threads — threads of code that run in parallel, each designed
to affect a specific behavior of the system. In the first part of our work, we present
a formulation of BP’s semantics that supports the notion of modules, which

are logically related threads grouped together, and discuss abstracting these
modules. We then demonstrate how the composition of module abstractions
yields an over-approximation of the entire behavioral program.

In the second part of our work we discuss model-checking abstract behavioral
programs, and propose a counterexample guided abstraction refinement (CE-
GAR) [10] scheme for BP. When model-checking over-approximations, coun-
terexamples found by the model-checker may prove spurious, i.e. nonexistent in
the concrete system. In CEGAR, one validates each counterexample against the
concrete system and, if it is spurious, refines the abstract model in a way that
eliminates it. The process is then repeated iteratively until the property is proven
or a genuine counterexample is found. Based on our module-based abstraction
of behavioral programs, we propose a two layer abstraction-refinement scheme,
similar to that of [9], in which spurious counterexamples of the composed system
are used to refine module abstractions. In our setting, module interdependencies
make it impossible to resolve spurious counterexamples by examining modules
individually; our algorithm compensates by considering these interdependencies
and refining multiple modules simultaneously when needed.

In the third part of the paper, we combine our abstraction techniques with a
program repair algorithm. In [15] we demonstrated how safety violations can be
eliminated from behavioral programs by adding separate, non-intrusive behav-
ioral threads to the program. Since that repair technique included spanning the
program’s concrete state graph, it was susceptible to the state explosion prob-
lem. Here, we modify the technique to work on abstract state graphs instead of
concrete ones, without affecting the algorithm’s correctness and soundness. We
observe that a given abstraction might not allow finding a correct repair even if
one exists, in which case we use the desired repair as a means for refining the
abstraction further. We believe that similar repair-driven refinement techniques
may also be applicable to other frameworks, besides BP.

The rest of this paper is organized as follows. We define behavioral program-
ming and its semantics in Section 2, followed by a discussion on abstracting
behavioral programs in Section 3. We then discuss applying CEGAR to BP in
Section 4, and suggest an abstraction-based repair algorithm in Section 5. Our
experimental results appear in Section 6. Discussion of related and future work
appears in Section 7.

2 Behavioral Programming

2.1 Overview

Behavioral Programming (BP) is a programming approach that extends and
generalizes scenario-based programming. It was introduced with the language of
Live Sequence Charts (LSCs) [12, 16], and is now implemented also in a variety
of programming languages, such as Java, C++, Erlang and others; see [17] and
references therein.

A behavioral program consists of independent threads of behavior that are
interwoven at run time. Each behavior thread (abbr. b-thread) repeatedly per-

forms local computations, and then synchronizes with its counterparts. At every
synchronization point, each b-thread declares sets of events to be considered
for triggering (requested events) and events whose triggering it forbids (blocked
events). The thread then pauses until the synchronization point is resolved.

Events that have been requested by at least one b-thread and blocked by none
are termed enabled. In each synchronization point, an event selection mechanism
triggers one of these events and notifies all b-threads, allowing them to resume.
B-threads may react to triggered events that they did not request, in which case
they are said to be waiting for these events. The model disallows inter b-thread
communication except through the synchronization mechanism.

The motivation behind BP is that it facilitates incremental non-intrusive
development, as demonstrated in the example of Fig. 1, borrowed from [15].
This trait also plays a role in our repair algorithm in Section 5.

wait for
WaterLevelLow

request AddHot

request AddHot

request AddHot

WhenLowAddHot

wait for
WaterLevelLow

request AddCold

request AddCold

request AddCold

WhenLowAddCold

wait for AddHot

while blocking
AddCold

wait for
AddCold while

blocking AddHot

Stability

· · ·
WaterLevelLow

AddHot

AddCold

AddHot

AddCold

AddHot

AddCold

· · ·

Event Log

Fig. 1. (From [15]) An example of the incremental development of a system for controlling wa-
ter level in a tank with hot and cold water sources. At first, b-thread WhenLowAddHot is created; it
repeatedly waits for WaterLevelLow events and requests three times the event AddHot. It is then dis-
covered that adding just three water quantities for every sensor reading is insufficient, and b-thread
WhenLowAddCold is added. It performs a similar action to that of WhenLowAddHot, but with event AddCold.
Then, when WhenLowAddHot and WhenLowAddCold are executed simultaneously, the run may include
three consecutive AddHot events followed by three AddCold events. A new requirement is thus intro-
duced, to the effect that water temperature should be kept stable. We add the b-thread Stability
to enforce the interleaving of AddHot and AddCold events.

2.2 Semantics

Since b-threads communicate strictly through the synchronization mechanism, a
thread is considered “at state” only when at a synchronization point. Thus, local
actions performed between synchronization points can be modeled and verified
locally for each thread, and are omitted from the BP model.

We formally define a b-thread BT over event set Σ and atomic proposition
set AP by a tuple BT = 〈Q, δ, q0, R,B, L〉, where Q is a set of states (one for
each synchronization point), q0 is the initial state, R : Q→ 2Σ and B : Q→ 2Σ

map states to events requested and blocked at these states (respectively), L :
Q → 2AP is a labeling function, and δ : Q × Σ → 2Q is a transition function.
We stipulate that for every q ∈ Q, R(q) ∩ B(q) = ∅. Further, we require that
for every state q ∈ Q, if e ∈ Σ −B(q) then δ(q, e) 6= ∅; i.e., there is a transition
for every event that is not blocked in state q, though it may be a self loop. If
|δ(q, e)| ≤ 1 for every q and e, we say that BT is deterministic.

The construction of a program from b-threads is performed using the com-
position and finalization operators. The parallel composition of threads BT 1 =
〈Q1, δ1, q1

0 , R
1, B1, L1〉 and BT 2 = 〈Q2, δ2, q2

0 , R
2, B2, L2〉, both over the same

Σ and AP , yields the b-thread defined by

BT 1 ‖ BT 2 = 〈Q1 ×Q2, δ, 〈q1
0 , q

2
0〉, (R1 ∪R2)− (B1 ∪B2), B1 ∪B2, L1 ∪ L2〉

where 〈q̃1, q̃2〉 ∈ δ(〈q1, q2〉, e) if and only if q̃1 ∈ δ1(q1, e) and q̃2 ∈ δ2(q2, e).
The union and subtraction of labeling functions are defined in the natural way,
i.e. e ∈ ((R1 ∪ R2) − (B1 ∪ B2))(〈q1, q2〉) if and only if e ∈ R1(q1) ∪ R2(q2)
and e /∈ B1(q1) ∪B2(q2). Observe that if an event is blocked in one thread and
requested in the other, it becomes blocked in the composed thread, in consistence
with the fact that a blocked event cannot be triggered even if requested. It is
straightforward to verify that the requested and blocked events in every state
remain disjoint, and that in every state there exists a transition for every non-
blocked event. Hence, BT 1 ‖ BT 2 is a valid b-thread.

A composition of b-threads is also termed a module, which is of course a
b-thread in its own. Intuitively, a module is a set of threads that have yet to be
plugged into a specific behavioral program, and so it still contains the relevant
request and block data. Only once all the modules in a program are composed
with each other can this data be discarded, through the finalization operator.

The finalization operator, denoted [·], transforms a b-thread into a la-
beled transition system (LTS) over Σ and AP . Formally, [〈Q, δ, q0, R,B, L〉] =
〈Q, δ′, q0, L〉 where Q, q0 and L remain the same, and the transition function
δ′ : Q×Σ → 2Q is given by

q̃ ∈ δ′(q, e) ⇐⇒ q̃ ∈ δ(q, e)
∧
e ∈ R(q)

Observe that R and B are omitted, as they are already taken into considera-
tion through the definition of δ′. The output of the finalization operator thus
represents a general (as opposed to a behavioral) program.

Formally, we define the behavioral program P , comprised of b-threads
BT 1, BT 2, . . . , BTn to be the LTS defined by P = [BT 1 ‖ . . . ‖ BTn]. An
execution of P is an execution of this LTS: it starts from q0, and in each state
q ∈ Q an event is chosen for triggering if such an event exists (i.e., an event e ∈ Σ
for which δ(q, e) 6= ∅). Then, the execution moves to state q̃ ∈ δ(q, e), and so
on. An execution can thus be formally recorded as a (possibly infinite) sequence

of states and triggered events, ε = q0
e1→ q1

e2→ · · · . The matching set of events,
without states, is called a run. The set of all runs of the program is denoted
by L(P). Each execution ε of the system defines a trace Tr(ε) = L(q0)L(q1) . . .,
which is the sequence of sets of atomic propositions associated with the states
visited along the execution. The traces of the system are defined as the traces
of its executions, i.e. Tr(P) = {Tr(ε) | ε is an execution of P}.

The above semantics for BP differ from those used previously (e.g., in [15]),
as they offer better support of the notion of modules. An equivalence between
these two versions is established in Appendix I of the supplementary material [2].

The BP semantics can be extended to better describe open systems. One
variant is obtained by marking some of the threads and events as controlled by
the environment (“external”), as is done in [15]. Another is to use concurrent
game structures and alternating-time temporal logic [3]. While our techniques
can be adapted to these extensions, we leave the details for future work.

3 Abstractions for Behavioral Programming

Given behavioral programs P and P , we say that P is an over-approximation
of P if and only if Tr(P) ⊆ Tr(P). Thus, for any LTL formula Φ over AP ,
Tr(P) � Φ implies Tr(P) � Φ, and so verifying that Tr(P) � Φ shows that the
original program is correct (for an introduction to LTL see, e.g., [6]). In this
section we focus on constructing a suitable program P that is smaller than P ,
so that checking whether Tr(P) � Φ is easier than checking whether Tr(P) � Φ.

3.1 Abstracting a Behavioral Thread

We begin by defining abstractions of b-threads. Let BT = 〈Q, δ, q0, R,B, L〉 be
a thread over events Σ and propositions AP , and let π be a AP -preserving par-
tition of Q, i.e., q1 ≡π q2 =⇒ L(q1) = L(q2). Let ηπ : Q → Q/π, termed the
abstraction function induced by π, be a function that maps each state to its
equivalence class under π. ηπ gives rise to a b-thread BT = 〈Q, δ, q0, R,B, L〉,
called the abstraction thread of BT induced by π, defined in the following man-
ner. The states of BT are the equivalence classes Q = Q/π, and its initial
state is q0 = ηπ(q0). For every state q ∈ Q, the mapping functions are given
by R(q) =

⋃
q∈η−1

π (q)R(q), B(q) =
⋂
q∈η−1

π (q)B(q) and L(q) = L(q) for (every)

q ∈ η−1
π (q). The transitions relation δ is derived from δ by:

q
e→ q̃

ηπ(q)
e→ ηπ(q̃)

Note that for every q, R(q)∩B(q) = ∅, and that q has a transition for every
e /∈ B(q). Hence, BT is a valid b-thread. The definition is designed to make
BT more permissive than BT — that is, to ensure that replacing BT with BT
within a given program results in an over-approximation of that program. In
particular, the abstraction preserves atomic proposition of states, and abstract
states request at least as much and block no more than their matching concrete
states. Formally, we present the following Lemma, proven in Appendix II of the
supplementary material [2]:

Lemma 1. Let P = [BT 1 ‖ . . . ‖ BTn] be a behavioral program. Let π be an AP -
preserving partition of the states of BT 1, and let BT 1 be the abstraction of BT 1

induced by π. Finally, let P = [BT 1 ‖ BT 2 ‖ . . . ‖ BTn]. Then Tr(P) ⊆ Tr(P).

By definition, a thread’s abstraction is determined by the AP -preserving
partition π in use. Clearly, an abstraction of a minimal number of states is

achieved when π is the AP -partition itself, i.e. q1 ≡π q2 ⇐⇒ L(q1) = L(q2).
As our goal is to minimize the number of states of the composed program,
this partition is of special interest. We refer to this abstraction as the coarsest
abstraction of BT , and denote it by B̂T .

3.2 Abstracting a Behavioral Program

Due to BP’s composite nature — where sets of composed threads are threads
themselves — thread abstraction can be applied at various points throughout
the composition process. In choosing when to apply it, our goal is to end up with
an over-approximation that is neither too concrete (to mitigate state explosion),
nor too abstract (so that it is meaningful). In our experiments, the best results
were achieved by first grouping threads that are logically related and composing
them into modules. Intuitively, this entails clustering threads that assign similar
atomic propositions to their states into the same module. Each module is then
abstracted individually, effectively ignoring threads that deal with other atomic
propositions. Finally the abstractions are composed, generating the desired over-
approximation. In this section we provide motivation for this approach, and
propose an automated way for grouping together logically related threads.

To illustrate the benefits of using modules, we first discuss two of the more
natural alternatives. One approach is to apply abstraction at the last step of
the composition process: i.e., to compute BT = BT 1 ‖ . . . ‖ BTn and then

set P = [B̂T]. While this method produces meaningful abstractions, it entails
calculating the very large b-thread BT , which has at least as many states as P .
Hence, this technique suffers from the state explosion problem that we have been
trying to avoid. Another natural approach is to abstract each of the basic threads,

i.e. calculate P = [B̂T 1 ‖ . . . ‖ B̂Tn]. While this method does indeed circumvent
the state explosion problem, our experiments show that the abstractions it tends
to produce are too coarse to be of any practical use. Specifically, behavioral
programming promotes writing threads that are small and specific, and tend to
contain a single atomic proposition. Thus, early abstraction usually collapses
the threads into a couple of states each, abstracting away most implementation
details. Later, during verification tasks, multiple rounds of refinement are needed
until a meaningful model is obtained.

The module based method can be seen as a middle ground between these
two extreme alternatives. On one hand, as abstraction is applied during the
early phases of the composition process, the state explosion problem is averted.
On the other hand, as it is applied to threads that are sufficiently complex, the
resulting over approximation is more likely to be meaningful.

The rationale behind grouping together logically related threads, as opposed
to just using an arbitrary partitioning of the threads, is the desire to generate
small modules: logically related threads tend to share atomic propositions, and
request and block similar events. Consequently, the resulting abstractions tend
to contain fewer states, and the approximation labeling functions R and B tend
to be tighter, reducing the number of edges in the final over-approximation.

We conclude this section by discussing an automated method for grouping
together logically related threads. As the above discussion suggests, such threads
tend to share atomic propositions and requested/blocked events, and indeed this
is how we attempt to group them. Let BT be a thread with states q1, . . . , qm,
and let ap ∈ AP . We define the correlation between BT and ap as:

cor(BT, ap) =
|{i | ap ∈ L(qi)}|

m

A thread’s correlation to an atomic proposition is thus the fraction of states to
which the labeling function assigns the proposition. Intuitively, threads that have
high correlation to the same atomic proposition may be logically related. Setting
a threshold M , say 0.5, induces a partitioning of the threads into modules,
denoted ≡M . At first each thread is considered to reside in a separate module,
and then pairs of modules are iteratively joined by the rule:

cor(BT i, ap) ≥M
∧
cor(BT j , ap) ≥M =⇒ BT i ≡M BT j

Analogous correlation can be defined between threads and events, by considering
the fraction of states in which a thread requires or blocks the event. These
correlations are easy to compute using static analysis of the threads, and are
supported by the BPC framework.

Further information that can be taken into account when looking for related
threads includes various string distance metrics applied to their respective names
and locations in the directory structure — as programmers tend to group similar
threads together and give them similar names. These measures are also straight-
forward to compute using automated methods. Finally, any or all of the above
measures can be combined into a single metric, yielding the desired partition
into logically related modules.

We summarize the resulting module-based abstraction algorithm:

Algorithm 1 Module-Based Abstraction

1: Partition the threads into modules BTM1 , . . . , BTMm

2: For each module BTMi , calculate B̂TMi

3: return P = [B̂TM1 ‖ . . . ‖ B̂TMm]

By iteratively applying Lemma 1, we get the following corollary:

Corollary 1. Let BT 1, . . . , BTn be threads over event set Σ and atomic propo-
sitions AP . Let P = [BT 1 ‖ . . . ‖ BTn], and let P be the program returned by
algorithm 1. Then Tr(P) ⊆ Tr(P).

4 Counterexample Guided Abstraction-Refinement

Given a behavioral program P and an LTL property Φ, we attempt to prove
that P � Φ by calculating an over-approximation P and proving that P � Φ.
However, it may be the case that P � Φ but P 2 Φ, because P is too abstract

(see an illustration in Fig. 2). Model checking P then results in a spurious coun-
terexample, i.e. one that exists in P but not in P . A standard technique for
handling this problem, known as counterexample guided abstraction refinement
(CEGAR) [10], uses such spurious counterexamples in order to refine P in a way
that eliminates them. The process is repeated until a genuine counterexample is
found, or until the property is shown to hold.

In this section, we describe an implementation of CEGAR in the context of
BP. The two main phases of the technique — determining whether a counterex-
ample is spurious or genuine and refining the abstraction in order to eliminate
spurious executions — are discussed in Sections 4.1 and 4.2, respectively.

For simplicity, we limit the discussion to safety properties, for which coun-
terexamples are finite executions. The method can be extended to liveness prop-
erties and the associated loop counterexamples through loop unwinding ; see [10].

ia

b

b

c

i

ba c

e1

e3

e4, e3

e2

e3

e4

e1
e2

e3 e3

e4, e3

e4

Fig. 2. A concrete state graph (on the left), and a matching abstraction (on the right). The atomic
proposition labeling appears inside the states. The two states with identical labeling (b) are ab-
stracted into a single state. The abstract state graph contains fewer states, but it also allows spu-
rious executions. While some properties, such as G(a → X¬a), hold for both graphs, the property
G(a→ G¬c) holds in the concrete case but not in the abstract one, because of the spurious execution

fragment i
e1→ a

e3→ b
e3→ c.

4.1 Determining if an execution is spurious

Suppose that on checking whether P � Φ, the model-checker replies in the neg-
ative, providing a finite counterexample ε. We wish to determine whether ε is a
valid execution of the original system. The idea, based on [10], is to simulate ε
on the concrete program in order to check if it constitutes a genuine execution.
During this simulation, we must take into account the two layer structure of
our abstraction scheme, as well as the role of requested and blocked events, in
determining whether runs are valid.

Let P = [B̂TM1 ‖ . . . ‖ B̂TMm] be an abstract program, composed of m

abstract modules, and let ε = q0
e1→ q1

e2→ . . .
en→ qn be a finite execution of P .

It is tempting to say that ε is a valid execution of the concrete system if and
only if its projections onto the modules form valid executions of the modules;
indeed, a similar technique is used in [9]. However, in our context, this approach
does not suffice. Consider, for instance, the case where the transition labeled
e1 in ε exists in each of the concrete modules, but that none of them requests
event e1. In this case, looking at each module separately, we would have no way
of knowing whether event e1 is indeed enabled on the program level. Thus, our
scheme must take into account the mutual effect modules have on each other.

We begin with some notation. For a set of states S, we denote by R(S, e)
the subset of states of S in which event e is requested. We use Post(S, e) to

denote the set of successors of states in S when event e is triggered. Finally, let
q = 〈q1, q2, . . . , qm〉 denote an abstract state, and let ηj denote the abstraction
function of module BTMj . We use η to denote the global abstraction function,
i.e. η(〈q1, . . . , qm〉) = 〈η1(q1), . . . , ηm(qm)〉. This function and its inverse function
are not stored explicitly, as doing so for every state in P would entail enumerating
all states of P — negating the advantages offered by our two layered approach.
Instead, η is only computed locally for specific states, on demand, by invoking
the module abstraction functions.

Our technique follows the idea of [10], and defines a series of sets {Si},
representing the concrete states the system can actually reach in each step of
ε. These sets are computed by using the concrete module state graphs. The
definition of Si is given by S0 = {〈q1

0 , q
2
0 , . . . , q

m
0 〉} for the concrete initial states

and Si = Post(R(Si−1, ei), ei) ∩ η−1(qi) for 1 ≤ i ≤ n.
The idea behind this definition is to walk on the abstract graph according

to the execution, and for each abstract state identify the concrete states that
are truly reachable along this specific execution, using the Si sets. As we later
prove, a run is genuine if and only if it corresponds to a series of non-empty
sets. Each set is derived from its predecessor by looking only at states in which
the next event is requested, and calculating their successor states. Out of these
successors we only keep those that are abstracted to the next state of the abstract
execution, as expressed by intersecting with η−1(qi).

The actual algorithm for checking whether an execution is spurious is thus:

Algorithm 2 Check If Spurious

1: for i := 0 to n do
2: Calculate Si; if it is empty, return True
3: return False

The algorithm’s correctness is established via Lemma 2, proven in Appendix III
of the supplementary material [2]:

Lemma 2. Let ε be an execution of P . Then ε is spurious, i.e. is not a valid
execution of P , if and only if algorithm 2 returns True.

Observe that computing the Si sets is performed using the concrete state
graphs of the modules, and does not entail constructing the explicit state graph of
P . Every state q ∈ Si is stored as the set of module states to which it corresponds.
The sets R(q, e) and Post(R(q, e), e) can be computed locally from these states.
Further, there is no need to actually compute η−1(qi), which is costly; instead,
for every q ∈ Post(R(Si−1, ei), ei), we check whether η(q) = qi by applying the
module abstraction functions to its components, which is substantially cheaper.

4.2 Refining in order to eliminate a spurious execution

We now discuss refining P in order to eliminate a spurious counterexample, thus
allowing another round of model-checking. The iteration on which algorithm 2
halted indicates where the refinement should occur. Indeed, this is where the

abstract and concrete graphs diverge, and so splitting the previous abstract
state into multiple states could render the spurious execution invalid.

Suppose that the Check If Spurious algorithm stopped because Si+1 = ∅.
This indicates a problem with transition qi

ei+1→ qi+1 of the execution: either the
concrete system can only reach states that are not mapped to abstract state
qi+1, or event ei+1 is not even enabled in the concrete program — although it is
enabled in the abstract one. Each case is characterized and handled differently:

Case 1. For all concrete states in Si, transitions labeled ei+1 do not lead to
abstract state qi+1, i.e. Post(Si, ei+1) ∩ η−1(qi+1) = ∅. In this case, we split qi
into 2 abstract states: state q′i that corresponds to the concrete states Si, and

state q′′i that corresponds to the remaining states, η−1(qi) − Si. By definition,

execution ε would visit abstract state q′i instead of qi, from which there would
be no transitions to qi+1. Thus, ε would no longer be a valid execution of the
abstract program. This case corresponds to the technique used in [10].

Case 2. There exists a state q ∈ Si such that Post(q, ei+1) ∈ η−1(qi+1). How-
ever, ei+1 /∈ R(q); if that were not so, we would get Si+1 6= ∅. In this case, state
q is waiting for event ei+1 without requesting it. The request for ei+1 is made by
a different state in η−1(qi). As both states are mapped into the same abstract

state, the outcome is the edge qi
ei+1→ qi+1.

In this case, performing refinement as in Case 1 might not suffice, as the
state requesting event ei+1 might also be in Si. We thus resort to two rounds
of refinement: first, we split state qi into q′i and q′′i , as before. Then, we further

refine state q′i, in order to separate states requesting event ei+1 from those that

do not. Formally, we split q′i into state qRi corresponding to concrete states q ∈ Si
such that ei+1 ∈ R(q), and state qNRi corresponding to concrete states q ∈ Si
such that ei+1 /∈ R(q). By definition, execution ε would visit abstract state qNRi
instead of qi, from which there would be no transitions to qi+1, making it an
invalid execution of the abstract program.

The following Lemma immediately follows from the above discussion:

Lemma 3. Let ε be a spurious execution of P , and let P ′ be the refined program
obtained by the above refinement step. Then ε is not a valid execution of P ′.

Observe that the iterative verification process entails explicitly computing
η−1(q) once per each refinement step. While this step is expensive, hopefully the
number of iterations is small. Reducing the number of iterations is part of our
motivation for using logically related modules — see discussion in Section 3.2.

We note that the resulting refinement is defined in terms of a global abstract
state that should be split into smaller states. However, as η is not stored explic-
itly, this refinement cannot be applied directly. Constrained by our two layered
setting, we may only perform refinements on the module abstraction functions
η1, . . . , ηm, indirectly refining η. Thus, a set of refinements for the η1, . . . , ηm
functions needs to be derived from the desired η refinement. This can be per-
formed by separating (within the modules) any pair of concrete states that do

not always appear simultaneously in the new global abstract states. However,
as not every refinement of η can be expressed as refinements of η1, . . . , ηm, the
resulting global refinement may be finer (i.e., produce more states) than the
desired one.

5 Repair using Abstractions

In this section, we propose a way of dealing with violated safety properties, using
a program repair algorithm. For completeness, we begin with a brief review of
the work in [15], which the present section extends.

Software maintenance is a difficult and error prone task. As bugs are discov-
ered and requirements are added or changed, developers must modify existing
code. This is tedious work; and as programmers are often constrained by lim-
ited knowledge of module interdependencies, they may wind up introducing new
errors. Research on automated program repair aims to address these challenges.

Our scope includes fixing safety violations in existing programs. Finding these
violations can be reduced to invariant checking [6]. Thus, without loss of gener-
ality, a program is correct if its state graph has no reachable “bad” states. This,
along with the event blocking idiom of BP, enables an elegant method of repair
by trimming: correcting the program by removing edges from its state graph us-
ing the blocking idiom, so that bad states become unreachable. This technique
resembles the Supervisory Control model [23], where one seeks a supervisor that
controls a plant by disabling transitions in the plant’s state graph.

The repair is non-intrusive, i.e. performed strictly by adding new threads
to the program (termed “wait-block patches”), and without modifying existing
code. The patch threads are passive, in the sense that they never request any
events or assign any atomic propositions to states, thus keeping the repaired
program as close to the original as possible. Only when the execution gets dan-
gerously close to a bad state does the patch block events that would cause a
violation, forcing the system to choose a different execution path. In [15] it is
shown that, for programs with deterministic threads, this method does not elim-
inate correct executions, as events are blocked only when they are guaranteed to
lead to a violation. Further, no deadlocks are created as a result of such patching.

This repair technique is adequate for systems that are capable of generating
the desired (“good”) behavior but may, in some scenarios, produce erroneous
output. For instance, patching may be applied to a variety of bugs resulting
from race conditions between parallel components — fixing them by temporarily
blocking one of the components, forcing it to yield to its counterpart. However,
not all systems can be repaired in this way, and the repair algorithm fails grace-
fully in this case. A soundness result shows that if a correct patch exists, it will
indeed be found by the repair algorithm.

The algorithm operates by analyzing a program’s state graph and looking
for the smallest fixpoint set of states that can be removed from the graph in
order to render qb, the single bad state, unreachable. Specifically, the algorithm
backtracks from qb, attempting to isolate it by trimming edges without creating

deadlocks. Whenever all the successors of a state are bad, it is marked as bad
itself; see Fig. 3. Below is the repair algorithm’s pseudo-code; Pre denotes the
predecessor states of a given set of states.

Algorithm 3 Concrete Safety Patching

1: BAD ← {qb}, PRE ← Pre(BAD)
2: while ∃q ∈ PRE such that ∀e,Post(q, e) ∈ BAD do
3: Move q from PRE to BAD
4: if q is the initial state then return Failure
5: PRE ← Pre(BAD)
6: return a patch that blocks edges from PRE to BAD

q1

q2 q3

q4 q5

qb

I q1

q2 q3

q4 q5

qb

II q1

q2 q3

q4 q5

qb

III q1

q2 q3

q4 q5

qb

IV

Fig. 3. The algorithm for trimming the concrete state graph of a program in order to correct a
safety violation. Graph I depicts the initial configuration, with the only bad state, qb, marked in
red. The edges from states in PRE to states in BAD cross the dotted red line, and are candidates
for blocking. In the first iteration, blocking these edges would cause a deadlocked in state q4. Thus,
in graph II state q4 is also marked as bad, and q2 joins PRE. Unfortunately, now a deadlock would
be caused in state q2, and the algorithm iterates again, putting q2 in BAD. The next iteration puts
q5 in BAD. Only then, in graph IV, can edges crossing the dotted line be safely removed without
causing deadlocks. The states in BAD are thus rendered unreachable, fixing the safety violation.

As this algorithm uses the program’s concrete state graph, it does not scale
to large programs. We thus seek to adjust it so it can use an over-approximation
instead. Unfortunately, directly applying the concrete patching algorithm to an
abstract graph yields erroneous results. In particular, the algorithm might fail
when a correct answer exists, or the resulting patches might also eliminate good
executions — traits that did not exist in the concrete version. See Fig. 4.

Intuitively, the reason for these failures is the fact that patch-incompatible
concrete states are abstracted into the same abstract states. By patch-
incompatible, we mean that the concrete algorithm would block a different set
of events in each of the concrete states. In the abstract graph, however, such
blocking becomes impossible, resulting in the algorithm’s undesired behavior.
In order to overcome this difficulty, we incorporate a refinement phase into the
repair algorithm; however, instead of using counterexamples as means of guid-
ing the refinement, the driving force is the need to create abstract states that
correspond only to patch-compatible concrete states.

ia

b

a

c

i a

b c

e1

e3

e4

e2

e3

e4

e1, e2

e3 e3

e4 e4

Fig. 4. A concrete state graph on the left, and its abstraction on the right. The atomic propositions
appear inside the states. The safety property in question is the invariant G¬b, which is violated when
the states in red are reached. In the concrete graph, a simple patch can fix the problem: by blocking e1
in the initial state, the red state is made unreachable, and no deadlocks are caused. On the abstract
graph, however, no repair is possible without causing a deadlock somewhere in the program. As
a result of the nondeterminism in state a, where two edges correspond to the same event, we are
unable to block one edge while leaving the other enabled.

The algorithm uses an over-approximation of the state graph, in which qb is
the single abstract bad state, corresponding to qb. As in the concrete case, we
assume the concrete b-threads are deterministic. Here is the pseudo-code:

Algorithm 4 Abstract Safety Patching

1: BAD ← {qb}
2: while True do
3: PRE ← Pre(BAD)
4: if ∃q ∈ PRE such that NeedToRefine(q) then
5: Refine(q)
6: else if ∃q ∈ PRE such that ∀e,Post(q, e) ⊆ BAD then
7: Move q from PRE to BAD
8: if q is the initial state then return Failure
9: else

10: return a patch that blocks edges from PRE to BAD

The core of the algorithm remains the same as in the concrete case: we start at
the bad state qb, backtracking and marking states that only lead to bad states
as bad themselves. Once we reach a setting in which all states in PRE also have
edges leading to good states (as to not create deadlocks), we return a patch
trimming the edges from PRE to the bad states. The refinement phase prevents
good executions from being likewise trimmed:

Algorithm 5 NeedToRefine(q)

1: E ← {e ∈ Σ | Post(q, e) ∩BAD 6= ∅}
2: if exists q ∈ η−1(q), e ∈ E such that e ∈ R(q) and η(Post(q, e)) /∈ BAD then
3: return True
4: if exists q ∈ η−1(q) such that R(q) ⊆ E then
5: return True
6: return False

In order to determine if an abstract state q needs to be refined, we look at the
events that we would like to block in it (set E). If there exists a concrete state
in η−1(q) for which e ∈ E is requested and leads to a good state, refinement is
needed to prevent good executions from being eliminated. Similarly if there exists

a state in η−1(q) that has no requested events that would remain unblocked,
refinement is needed in order to avoid causing a deadlock. The actual refinement
is performed as follows:

Algorithm 6 Refine(q)

1: For every q ∈ η−1(q) calculate B(q) = {e ∈ R(q) | η(Post(q, e)) ∈ BAD}
2: Form a partition η−1(q) = C1 ·∪C2 ·∪ . . . ·∪Ck ·∪Cdeadlock such that if B(q) = R(q),

then q ∈ Cdeadlock; else, q1, q2 ∈ Ci ⇐⇒ B(q1) = B(q2).
3: Split abstract state q into k+ 1 new states q1, . . . , qk+1 such that η−1(qi) = Ci for

1 ≤ i ≤ k, and η−1(qk+1) = Cdeadlock.

Set B(q) contains the events to be blocked in q. The refinement splits the prob-
lematic abstract state into multiple abstract states, each representing concrete
states in which the same events need to be blocked. Observe that state qk+1, in
which the necessary blocking will introduce a deadlock, will be put in BAD in
one of the following iterations of the main algorithm.

For correctness and soundness, we present the following theorem, proven in
Appendix IV of the supplementary material [2]. This result is analogous to the
one for the concrete algorithm presented in [15]; hence, it demonstrates that
the improved scalability does not come at the expense of the concrete version’s
desirable qualities.

Theorem 1. For a behavioral program P and a violated safety property Φ,

1. A patch returned by algorithm 4 eliminates all bad executions of the program,
does not eliminate good executions, and does not create deadlocks.

2. If there exists a wait-block patch that corrects P with respect to Φ, such a
patch will be found by algorithm 4. Otherwise, the algorithm will issue a
Failure notice.

In this algorithm, the inverse global abstraction η−1(q) is computed multiple
times; indeed, this is an expensive step. However, for programs that are “close to
being correct”, the repair algorithm may only need to perform a few refinements,
hopefully terminating in reasonable time. As discussed in Section 4.2, not every
refinement is obtainable in our two layered structure; see discussion therein.

6 Experimental Results

For our experiments we used the BPC framework for BP in C++, available
online [1]. We implemented the algorithms presented in the previous sections,
namely thread abstraction, partitioning into modules, CEGAR verification and
abstraction based patching, as a proof-of-concept tool on top of BPC. Since our
goal was to show the improved scalability offered by the abstraction techniques,
we also implemented concrete versions of the same algorithms in BPC. All im-
plementations are explicit; symbolic implementation is left for future work.

We tested our algorithms on a BP based web-server application. The server,
a work in progress, implements basic TCP and HTTP protocol stacks and is

compatible with the Firefox browser. Due to the server’s size of several million
states, BPC ran out of memory when attempting to verify it concretely.

In contrast, the abstraction based methods were able to produce an initial
abstraction of the system within 22 seconds. The automated module partitioning
algorithm successfully divided the threads into logically related modules along
the lines of the TCP and HTTP layers, grouping the HTTP threads into a single
module and dividing the TCP threads between a few modules. The resulting
over-approximation contained 800 states and some 12500 transitions.

We then used this over-approximation to identify and repair a bug where
the TCP stack would, under certain conditions, acknowledge a FIN message
for already closed connections. Identifying this bug using the CEGAR-based
verification algorithm took 9.5 minutes, and included 3 refinement phases, at
the end of which a genuine counterexample was produced. Producing a patch
that fixes the bug using algorithm 4 then took 38 minutes.

Our experiments were run on a 2.66 GHz T500 laptop. The model and some
of the properties used for our tests are available from [2].

7 Related Work and Conclusion

The main contribution of our work is in applying abstraction techniques to
behavioral programming. In particular, we propose a technique for efficiently
generating over-approximations of programs, which can later be used in analysis
algorithms. We demonstrate two such algorithms: a CEGAR based method for
model-checking behavioral programs, and an abstraction based algorithm for the
repair of safety violations. We regard this research as a step in the direction of
developing more scalable methodologies and tools for formal analysis of BP.

Another contribution of our work is in the field of program repair, where we
show an abstraction based algorithm that uses repair-guided refinement. Pro-
gram repair is closely related to the synthesis problem, where various abstraction-
refinement schemes have been proposed (e.g., [13, 18]); thus, we feel that this is
a useful concept that could potentially improve the scalability of existing repair
methods, not necessarily restricted to BP.

The use of abstraction-refinement based techniques to expedite model-
checking has been extensively studied (e.g., [4, 10, 11, 22]) and has been imple-
mented in several frameworks, such as SLAM [7] and BLAST [19]. Among these,
the work most closely related to ours is the MAGIC framework [8,9]. There, the
authors similarly propose a two layer CEGAR approach, in which modules are
abstracted separately and their abstractions then composed. However, the set-
ting of [8,9] allows spurious counterexamples to be checked against each module
separately — whereas in the setting of BP, checking involves all modules simul-
taneously. Analogously, refinements may not be confined to a single module.

In the area of program repair, recent work has focused on locating faulty
components and then using synthesis to alter or replace them. In [20, 24], the
authors seek corrections in the form of strategies that may be implemented with-
out introducing new states (memoryless strategies), in order to alter the original

program as little as possible. We address the same need by only adding code,
leaving the original program unmodified. The work of [14] discusses repairing
boolean programs by using abstractions of these programs. This approach is
similar to ours, but does not include a refinement phase in case spurious execu-
tions in the abstract program prevent finding a repair. In [21], the authors tackle
state explosion by maintaining an under-approximation of a repair candidate,
at each iteration adding more constraints that it must fulfill. New constraints
are produced by checking the candidate against the concrete faulty system. This
technique appears orthogonal to our own, in which the program is abstracted
and the repair candidate is calculated explicitly. Attempting to combine the two
methods seems promising, and is left for future work.

A different repair approach includes using genetic and co-evolutionary pro-
gramming [5, 25], where a set of candidate programs is iteratively evaluated
against the specification. Programs with high fitness survive, and are mutated
to produce the next iteration’s candidates, until a correct program is obtained.
This approach handles more general bugs than ours (as it is not limited to trim-
ming), but may extensively alter the original program’s code.

In the future, we plan to extend our abstraction-based repair algorithm to
handle violated liveness properties, as well safety ones. Indeed, some preliminary
work we have done shows promising results. Another direction we hope to pursue
is improving the performance of BPC by enhancing it with symbolic capabilities.
Finally, another interesting line of work is strengthening our module-partitioning
algorithm: we feel the programmer-created b-threads contain currently untapped
meta data about the structure of the system, which could be utilized in making
“smarter” partitions. We hope that tapping this meta data will also prove useful
in the context of automated compositional verification.

Acknowledgments. We thank D. Harel for his guidance and support, O.
Kupferman for her insightful remarks on this work, and the anonymous reviewers
for their valuable and thorough comments. This work was supported by an Ad-
vanced Research Grant to D. Harel from the European Research Council (ERC)
under the European Community’s 7th Framework Programme (FP7/2007-2013),
and by an Israel Science Foundation grant.

References

1. BPC: Behavioral Programming in C++. http://www.wisdom.weizmann.ac.il/

~bprogram/bpc/.
2. Supplementary material. http://www.wisdom.weizmann.ac.il/~bprogram/bpc/

module_based_abstraction/.
3. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic.

Journal of the ACM, 49(5):672–713, 2002.
4. N. Amla and K. L. McMillan. Combining Abstraction Refinement and SAT-Based

Model Checking. In Proc. 13th Int. Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 405–419, 2007.

5. A. Arcuri and X. Yao. A Novel Co-evolutionary Approach to Automatic Software
Bug Fixing. In Proc. 10th IEEE Congress on Evolutionary Computation (CEC),
pages 162–168, 2008.

6. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
7. T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety Properties

of Interfaces. In Proc. 8th Int. Workshop on Model Checking of Software (SPIN),
pages 103–122, 2001.

8. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular Verification of
Software Components in C. IEEE Transactions on Software Engineering, pages
385–395, 2004.

9. E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient Verifica-
tion of Sequential and Concurrent C Programs. Formal Methods in System Design,
25(2-3):129–166, 2004.

10. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
Abstraction Refinement. In Proc. 12th Int. Conf. on Computer Aided Verification
(CAV), pages 154–169, 2000.

11. E. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstraction. In
Proc. 19th. Symposium on Principles of Programming Languages (POPL), pages
343–354, 1992.

12. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. J.
on Formal Methods in System Design, 19(1):45–80, 2001.

13. L. de Alfaro and P. Roy. Solving Games via Three-Valued Abstraction Refinement.
In Proc. 18th Int. Conf. on Concurrency Theory (CONCUR), pages 74–89, 2007.

14. A. Griesmayer, S. Staber, and R. Bloem. Automated fault localization for c pro-
grams. In Proc. 18th Int. Conf. on Computer Aided Verification (CAV), pages
82–99, 2006.

15. D. Harel, G. Katz, A. Marron, and G. Weiss. Non-Intrusive Repair of Reactive
Programs. In Proc. 17th IEEE Int. Conf. on Engineering of Complex Computer
Systems (ICECCS), pages 3–12, 2012.

16. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, 2003.

17. D. Harel, A. Marron, and G. Weiss. Behavioral Programming. Communications
of the ACM, 55(7):90–100, 2012.

18. T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided Control. In
Proc. 30th Int. Conf. on Automata, Languages and Programming (ICALP), pages
886–902, 2003.

19. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification with
BLAST. In Proc. 10th Int. Workshop on Model Checking of Software (SPIN),
pages 235–339, 2003.

20. B. Jobstmann, A. Griesmayer, and R. Bloem. Program Repair as a Game. In Proc.
17th Int. Conf. on Computer Aided Verification (CAV), pages 226–238, 2005.

21. R. Könighofer and R. Bloem. Repair with On-The-Fly Program Analysis. In Proc.
8th Haifa Verification Conference (HVC), pages 56–71, 2012.

22. K. L. McMillan and L. D. Zuck. Abstract Counterexamples for Non-disjunctive
Abstractions. In Proc. 3rd Int. Workshop on Reachability Problems (RP), pages
176–188, 2009.

23. P. Ramadge and W. Wonham. Supervisory Control of a Class of Discrete Event
Processes. SIAM J. on Control and Optimization, 25(1):206–230, 1987.

24. S. Staber, B. Jobstmann, and R. Bloem. Diagnosis is Repair. In Proc. 16th Int.
Workshop on Principles of Diagnosis (DX), pages 169–174, 2005.

25. W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen. Automatic Program Repair
with Evolutionary Computation. Communications of the ACM, 53:109–116, 2010.

