
Relaxing Synchronization Constraints in
Behavioral Programs

David Harel, Amir Kantor, and Guy Katz

Dept. of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

{dharel,amir.kantor,guy.katz}@weizmann.ac.il

Abstract. In behavioral programming, a program consists of separate
modules called behavior threads, each representing a part of the system’s
allowed, necessary or forbidden behavior. An execution of the program
is a series of synchronizations between these threads, where at each
synchronization point an event is selected to be carried out. As a result,
the execution speed is dictated by the slowest thread. We propose an eager
execution mechanism for such programs, which builds upon the realization
that it is often possible to predict the outcome of a synchronization point
even without waiting for slower threads to synchronize. This allows faster
threads to continue running uninterrupted, whereas slower ones catch
up at a later time. Consequently, eager execution brings about increased
system performance, better support for the modular design of programs,
and the ability to distribute programs across several machines. It also
allows to apply behavioral programming to a variety of problems that
were previously outside its scope. We illustrate the method by concrete
examples, implemented in a behavioral programming framework in C++.

Keywords: behavioral programming; synchronization; eager execution; modular
design; distributed design.

1 Introduction

This work is carried out within the framework of behavioral programming (BP) [10]
— a recently proposed approach for the development of reactive systems, which
originated from the language of live sequence charts [5, 8]. The basis of the
approach is the construction of systems from special threads, called behavior
threads (b-threads), each of which represents an aspect of the system’s behavior
which is specified as being allowed, necessary or forbidden. A simultaneous
execution of these threads constitutes the combined system behavior.

An execution of the program is comprised of a series of synchronization points
between the threads, each of which results in an event being triggered. The
choice of the triggered event is performed by a global coordinator, which, at
every synchronization point, receives input from all the threads before making
the choice. This high amount of coordination grants behavioral programs many

of their qualities: it eliminates race conditions between the threads, allows for
multi-modal, modular and incremental development, and, in general, promotes
the development of comprehensible and maintainable code. See [10].

However, extensive synchronization has implications on system performance
(see [11]). Since all threads must synchronize before the system can continue to
the next synchronization point, the step from one point to another is constrained
by the slowest b-thread. In parallel architectures (e.g., multi-core processors),
execution resources may stand idle while the system waits for a slow b-thread to
finish performing nontrivial computations or time-consuming actions and reach
the next synchronization point. Similar situations can also occur in programs
that run on a single processor — for instance, if a b-thread is performing
lengthy input/output actions that require no processing power, but delay its
synchronization.

We introduce a new execution mechanism for behavioral programs, which we
term eager execution. It allows relaxing the synchronization constraints between b-
threads, resulting in a higher level of concurrency when executing the program. At
the same time, eager execution maintains all information necessary for triggering
events, and thus adheres to BP’s semantics and supports its idioms.

Eager execution is made possible by automatically analyzing a thread prior to
its execution, resulting in an approximation of the thread’s behavior. With this
information at hand, the eager execution mechanism can sometimes choose events
for triggering without waiting for all of the threads to synchronize, thus improving
the efficiency of the system’s run and avoiding excessive synchronization. We
present two analysis methods that lead to more eager execution: one is static
and considers the thread as a whole, whereas the other is dynamic and takes into
account the thread’s state during the run. Both methods have been implemented
and tested in BPC, a framework for behavioral programming in C++. The
framework itself, along with the examples described in this paper, is available
online [1].

Relaxing synchronization is helpful in several contexts. First, it improves
system performance and reduces processor idle time. Moreover, it gives rise to
better modular design of the system, by grouping together related threads into
components, which we call behavioral modules, and allowing these to operate
independently on different time scales. Finally, the techniques presented in this
paper can be leveraged to support a decentralized assimilation of the modules
on different machines by distributing BP’s execution mechanism. Distributed
execution has been implemented and tested in BPC. It is not included in this
paper due to space limitations; it is discussed in Appendix I of [2].

The paper is organized as follows. A short description of behavioral program-
ming and the BPC tool appears in Section 2. We define the eager execution
mechanism and present the two analysis methods in Section 3. In Section 4, we
show how eager execution allows for a modular design of programs. Related work
is discussed in Section 5, and we conclude in Section 6. Proofs are included in
the appendices to this paper.

2 Behavioral Programming

A behavioral program consists of a set of behavior threads (b-threads), each of
which is an independent code module, which implements a certain part of the
system’s behavior. The threads are interwoven at run time through a series of
synchronization points, and together produce a cohesive system.

The b-threads are driven by events, which are managed by a global coordinator
that is implemented at the core of the behavioral programming framework. At
every synchronization point, each thread BT passes to the coordinator three
disjoint sets of events: those requested by BT , those for which BT waits, and
those blocked by BT . BT then halts until the coordinator wakes it up.

Once all b-threads have reached a synchronization point, the coordinator
calculates the set of enabled events — events that are requested by at least one
b-thread and blocked by none. It then selects one of these events for triggering,
say e, and passes it to some of the b-threads, and those then continue their
execution until the next synchronization point. More specifically, e is passed to a
thread BT if it is either requested or waited-upon by BT ; other threads remain
at the synchronization point, and their declared event sets are re-considered when
the coordinator selects the next event. The model assumes that all inter-b-thread
communication is performed through the synchronization mechanism.

Various implementations of reactive systems as behavioral programs have
been carried out, using frameworks built on top of high-level programming
languages such as Java, Erlang and Blockly; see [10] and references therein. These
frameworks allow the user to use the full flexibility offered by the underlying
programming language in writing threads. In this paper, we demonstrate our
techniques using a BP framework in C++, termed BPC [1].

For illustration, we provide an example of a vending machine programmed in
BPC. The example is extended in later sections to demonstrate various aspects
of our techniques. In this section, we only implement the basic functionality of
the machine — collecting coins and dispensing products. The code consists of
three b-threads, called Dispenser, KeyPad and ProductSlot ; they are depicted in
Fig. 1, 2, and 3, respectively. Observe that coin insertions and product selections
are inputs from the environment. In the actual application they are implemented
using a simple user interface, which is omitted from the code snippets. The same
applies to the actual dispensing of the product in the ProductSlot thread.

We stress the key fact that the threads’ transition from one synchronization
point to the next may not be immediate. Since all the threads are required to
synchronize in order for the coordinator to trigger an event, the thread that
takes the longest to move from one synchronization point to the next dictates
the speed of the entire system. This is the issue we address in the paper.

2.1 Behavioral Programming Formalized

While behavioral programming is geared toward natural and intuitive development
using programming languages, its underlying infrastructure can be conveniently

class Dispenser : public BThread {
void entryPoint () {

while (true) {
bSync(none, {CoinInserted}, none);
bSync(none, {ProductChosen}, {CoinInserted});
bSync({ProvideProduct}, none, {CoinInserted});

}}};

Fig. 1: The Dispenser thread. This thread is responsible for dispensing wares, after the user inserts a
coin and selects a desired product. The programmer writes behavioral code by overriding the method
entryPoint of class BThread. The thread runs in an infinite loop, invoking the synchronization API
bSync three times in each iteration; each invocation corresponds to a synchronization point, and
includes three sets of events: requested (blue), waited-upon (green) and blocked (red). In the first
synchronization point, the thread waits for a coin insertion, signified by a CoinInserted event. In the
second, it waits for product selection, signified by a ProdcutChosen event. Finally, in the third, it
dispenses the product, by requesting a ProvideProduct event. Since each call suspends the thread
until an event that was requested or waited-for is triggered, one product is dispensed per coin; also,
it is impossible to obtain the product without inserting a coin. Observe that the thread also blocks
CoinInserted events during its last two synchronization points; otherwise, extra coins inserted before
a product is provided could be swallowed by the machine.

while (true) {
waitForCoinInsertion ();
bSync({CoinInserted}, none, none);
waitForProductSelection ();
bSync({ProductChosen}, none, none);

}

Fig. 2: The main method of the KeyPad thread. This thread is an input “sensor” — a thread
responsible for receiving inputs from the environment and translating them into BP events. It waits
for the user to insert a coin and then requests a CoinInserted event. Then, it waits for the user to
select a product, and requests a ProductChosen event. Coin insertions and product selections are inputs
coming from the environment, and are abstracted away inside the functions waitForCoinInsertion
and waitForProductSelection. The thread translates these inputs into events that are to be processed
by other threads.

described and analyzed in terms of transition systems. We present an abstract
formalization of behavioral programs and their semantics, similarly to [9, 11].

In the following definitions we implicitly assume a given set Σ of events.
A behavior thread (b-thread) BT is abstractly defined to be a tuple BT =
〈Q, q0, δ, R,B〉, where Q is a set of states, q0 ∈ Q is an initial state, δ : Q×Σ → Q
is a transition function, R : Q→ P(Σ) assigns for each state a set of requested
events, and B : Q → P(Σ) assigns for each state a set of blocked events. A
behavioral program P is defined to be a finite set of b-threads.

Note that in the definitions above, a b-thread’s transition rules are given as
a deterministic, single valued, function δ, assigning the next state given a state
and an event trigger in that state. A natural variant in which the transitions are
nondeterministic is analogously defined; see Appendix II of the supplementary
material [2]. The latter is useful for reactive systems, where the next state might
also depend on external input. Also note that in the formal definition of a b-
thread, there is no need to distinguish between events that are waited-upon by
the thread, and those that are not. In any of the thread’s states, an event that is
not waited-upon can be captured by a transition that forms a self-loop; i.e., a
transition that does not leave the state.

while (true) {
bSync(none, {ProvideProduct}, none);
provideActualProduct ();

}

Fig. 3: The main method of the ProductSlot thread. This thread is an output “actuator”; it is
responsible for translating ProvideProduct events into the dispensing of actual products. Thus, it
waits for a ProvideProduct event, and then provides the product by invoking provideActualProduct.

Semantics Let P = {BT 1, . . . , BTn} be a behavioral program, where n ∈ N
and each BT i = 〈Qi, qi0, δ

i, Ri, Bi〉 is a distinct b-thread. In order to define the
semantics of P , we construct a deterministic labeled transition system (LTS) [12]
denoted by LTS(P), which is defined as follows. LTS(P) = 〈Q, q0, δ〉, where
Q := Q1 × · · · × Qn is the set of states, q0 := 〈q1

0 , . . . , q
n
0 〉 ∈ Q is the initial

state, δ : Q × Σ → 2Q is a deterministic1 transition function, defined for all
q = 〈q1, . . . , qn〉 ∈ Q and a ∈ Σ, by

δ(〈q1, . . . , qn〉, a) :=

{{
〈δ1(q1, a), . . . , δn(qn, a)〉

}
; if a ∈ E(q)

∅ ; otherwise .

where E(q) =
⋃n

i=1R
i(qi) \

⋃n
i=1B

i(qi) is the set of enabled events at state q.
An execution of P is an execution of the induced LTS(P). The latter is

executed starting from the initial state q0. In each state q ∈ Q, an enabled
event a ∈ Σ is selected for triggering if such exists (i.e., an event a ∈ Σ for
which δ(q, a) 6= ∅). Then, the system moves to the next state q′ ∈ δ(q, a), and the
execution continues. Such an execution can be formally recorded as a possibly
infinite sequence of triggered events, called a run. The set of all complete runs is
denoted by L(P) := L(LTS(P)). It contains either infinite runs, or finite ones
that terminate in a state in which no event is enabled, called a terminal state.

3 The Eager Execution Mechanism

We begin with a general description of our proposed execution mechanism for BP,
termed eager execution. Let P = {BT 1, . . . , BTn} be a behavioral program
consisting of b-threads BT 1, . . . , BTn. Assume that at some point in the execution
of P , a subset Psync ⊆ P of the threads has reached a synchronization point, while
the rest are still executing. Further, assume that the coordinator has additional
information about the events that the threads in P \Psync will request and block
at the next synchronization point. If, combining the information from threads
in Psync with the information about threads in P \ Psync, the coordinator can
find an event e that will be enabled at the next synchronization point, then e
can immediately be chosen for triggering.

The coordinator may then pass e to the threads in Psync to let them continue
their execution immediately, without waiting for the remaining threads to syn-
chronize. Once any of these other threads reaches its synchronization point, the

1 I.e., its range includes only singletons and the empty set.

coordinator immediately passes it event e, as this event was selected for that
particular synchronization point. This is accomplished by having a designated
queue for each of the b-threads, of events that are waiting to be passed, and
putting e in the queues corresponding to the not-yet synchronized threads. The
execution mechanism described is eager, in the sense that it uses predetermined
information to choose the next event as early as possible.

When a thread BT reaches a synchronization point, if the corresponding
queue is nonempty, the coordinator dequeues the next pending event e′. If BT
requests or waits for e′, it is passed to the thread, which then continues to
execute. Otherwise, e′ is ignored, and the coordinator continues with the next
event pending in the queue. In order to reflect the semantics of BP, from the
coordinator’s global perspective BT is not considered synchronized as long as
it has events pending in the queue. Particularly, the events that are requested
or blocked by BT at this point are not considered for the selection of the next
event; the coordinator considers only threads that have synchronized and for
which there are no pending events (so that they are halted).

Observe that the eager execution mechanism strictly adheres to the semantics
of BP, as described in Section 2; at every synchronization point, the triggered
event is indeed enabled. Consequently, we get the following result:

Proposition 1. Given a behavioral program P , the sequence of events triggered
by the eager execution mechanism is a valid run (under BP’s semantics).

The key point, however, is that the eager mechanism makes its decisions more
quickly, and thus often produces more efficient runs. The eager execution mecha-
nism is formalized in Section 3.3, and Proposition 1 is proved in Appendix A.

It remains to show how the execution mechanism knows which events could
be requested and blocked by threads that are yet to synchronize. We propose
two approaches: static analysis and dynamic analysis.

3.1 Static Analysis

In this approach, the coordinator is given in advance a static over-approximation
of the events that a thread might block when synchronizing. Explicitly, if a thread
has states s1, . . . , sn, this over-approximation is

⋃
1≤i≤nB(si), where B(si) is

the set of events blocked in state si. The over-approximation is static in the sense
that it does not change throughout the run.

When a thread synchronizes, the coordinator checks if there are events that
are enabled based on the data gathered so far — namely, events that are requested
and not blocked by threads in Psync, and that are never blocked by the other
threads, based on their over-approximations. If such an event exists, it can
be triggered immediately. Otherwise, the coordinator waits for more threads
to synchronize. This generally results in more events becoming enabled, since
the actual set of events that are blocked by a thread is always a subset of the
over-approximation, and since additional requested events are revealed. As soon
as enough information is gathered to deduce that an event is enabled, it is
immediately triggered and passed to all synchronized threads. For threads that

are yet to synchronize, the event is stored in a designated queue, to be passed to
them upon reaching their synchronization point.

Observe that we only discuss over-approximating blocked events but not the
approximation of requested events. The reason is that the analogous version would
entail using an under-approximation of requested events; and, since threads do
not generally request an event in each of their states, these under-approximations
are typically empty.

Example: Using Static Analysis We further evolve the example from Sec-
tion 2. Suppose that the vending machine’s developer wishes to introduce a
maintenance mechanism. Once every fixed period of time, the machine is to go
into maintenance mode and measure its inner temperature and humidity.

This type of requirement poses a challenge, in the form of integrating different
time scales into a behavioral program. If maintenance is to occur every t seconds,
a natural approach is adding a thread with the following structure, wrapped
in a loop: (a) sleep for t seconds; (b) request an InitiateMaintenance event.
Unfortunately, under a traditional BP execution mechanism, this results in the
entire system pausing for t seconds at a time; since the thread does not reach
the next synchronization point while asleep, the coordinator is unable to trigger
an event, and any coin insertions or product requests by the user go unanswered
between maintenance phases.

One solution is to have the event which initiates the periodic maintenance
be triggered by some external entity — similarly to coin insertions and product
selections. This approach, though feasible, means that the system would depend
on these external events in order to operate properly; the BP framework does
not offer a way to enforce their proper generation.

Instead, we adopt a solution that combines in-line waiting and eager execution.
We use the method described above, and declare (or, as we later discuss, find
automatically) that the new thread does not block any events; in effect, this tells
the coordinator that it should not wait for it at any synchronization point. The
system can then progress, and go along serving clients, while the thread is asleep.
When the thread awakes and synchronizes, it is informed, one at a time, of the
events that have occurred so far, and it can then synchronize and request that
maintenance be triggered. The new thread is depicted in Fig. 4.

while (true) {
sleep(TimeBetweenMaintenancePeriods);
bSync({InitiateMaintenance}, none, none);

}

Fig. 4: The main method of the MaintenanceTimer thread. TimeBetweenMaintenancePeriods is a
constant, indicating the desired time between consecutive maintenance cycles. Whenever the thread
wakes up it requests an InitiateMaintenance event, and then goes back to sleep. Observe that since
the thread neither requests nor waits for any other events, any events that were triggered while it
was asleep — such as coin insertions or user selections — are not passed on to it when it awakes.
Therefore, it immediately catches up with the execution upon waking up.
In order to tell the coordinator that the MaintenanceTimer thread blocks no events, the following
line of code is provided as well: bProgram.addThreadBlockingData("MaintenanceTimer", none);
This allows the coordinator to trigger an event even if this thread has not synchronized yet.

3.2 Dynamic Analysis

In this approach, the coordinator is given complete state graphs of the threads,
which are automatically calculated before the program is executed. The labeled
vertices of a state graph correspond to the thread’s synchronization points and
requested/blocked events, while the labeled edges correspond to the program’s
events (that are not blocked at that state). The graph thus provides a complete
description of the thread from the coordinator’s point of view — that is, a
complete description of the events requested and blocked by the thread, but
without any calculations or input/output actions performed by the thread when
not synchronized. For more details on these state graphs, see [6].

During runtime, the coordinator keeps track of the threads’ positions in the
graphs, allowing it to approximate the events they will request and block at the
next synchronization point — even before they actually synchronize. This method
is dynamic, in the sense that the approximations for a given thread can change
during the run, as different states are visited. The fundamental difference between
running a thread and simulating its run using its state graph is that in the latter,
no additional computations are performed, and consequently transitions can be
considered immediate.

Recall that our definition of threads dictates that a thread’s transitions be
deterministic. Therefore, simulating a thread through its state graph yields
precise predictions of its requested and blocked events at each synchronization
point. In the nondeterministic model, where threads may depend on coin tosses
or inputs from the environment, it may be impossible for the coordinator to
determine a thread’s exact state until it synchronizes; however, the coordinator
can approximate the thread’s requested and blocked events by considering all the
states to which the nondeterministic transitions might send the thread. If, due
to a previous transition, the thread is known to be in one of states s1, . . . , sn,
then the blocked events may be over-approximated by

⋃
1≤i≤nB(si) — similarly

to what is done in static analysis. Analogously, the requested events may be
under-approximated by

⋂
1≤i≤nR(si). For more details see Appendix II of the

supplementary material [2]. As before, if these approximations leave no enabled
events, the coordinator waits for more threads to synchronize.

The other details are as they were in the static analysis scheme. Once an event
is triggered, it is immediately sent to all synchronized threads, and is placed in
queues for threads that are yet to synchronize.

Example: Using Dynamic Analysis In Section 3.1, we added a thread that
periodically initiates a maintenance process in the vending machine. We now
describe this process in greater detail. Suppose that the goal of the maintenance
process is to keep the machine’s temperature and humidity at a certain level.
Maintenance thus includes two phases: measurement and correction, applied once
for temperature and once for humidity. For simplicity, assume that both values
are always out of the safe range; i.e., that they always require adjusting.

To handle these requirements, we add two new threads to the program — one
to do the measurements, and one to do the corrections. The first, the Measurer,

reads information from the environment through sensors, while the second, the
Corrector, affects the environment, through air conditioning and humidity control
systems. These threads are triggered by the periodic InitiateMaintenance event,
as described earlier. Code snippets appear in Fig. 5 and Fig. 6.

while (true) {
bSync(none, {InitiateMaintenance}, none);

if (temperatureTooHigh ())
bSync({DecreaseTemperature}, none, {ProvideProduct});

else bSync({IncreaseTemperature}, none, {ProvideProduct});
bSync(none, {TemperatureCorrected}, {ProvideProduct});

if (humidityTooHigh ()) bSync({DecreaseHumidity}, none, none);
else bSync({IncreaseHumidity}, none, none);
bSync(none, {HumidityCorrected}, none);

}

Fig. 5: The main method of the Measurer thread. Upon triggering of the InitiateMaintenance event,
this thread wakes up, asks for the appropriate temperature correction, and waits for confirmation.
Afterwards, an analogous process is performed for the humidity level. Observe that the ProvideProduct
event is blocked during the temperature phase, but not during the humidity phase.

while (true) {
bSync(none, allEvents(), none);
if (lastEvent () == IncreaseTemperature) {

increaseTemperature (); bSync({TemperatureCorrected}, none, none);
}
else if (lastEvent () == DecreaseTemperature) {

decreaseTemperature (); bSync({TemperatureCorrected}, none, none);
}
else if (lastEvent () == IncreaseHumidity) {

increaseHumidity (); bSync({HumidityCorrected}, none, none);
}
else if (lastEvent () == DecreaseHumidity) {

decreaseHumidity (); bSync({HumidityCorrected}, none, none);
}

}

Fig. 6: The main method of the Corrector thread. The thread waits for events IncreaseTemperature,
DecreaseTemperature, IncreaseHumidity or DecreaseHumidity; if they are triggered, it responds by adjust-
ing the temperature or humidity (this part is abstracted away in the subroutines). Then, the thread
requests an event notifying that the request has been handled, and goes back to waiting for new
requests. Accessing the last event triggered is performed via the lastEvent method.

Another requirement is that, due to constraints in the machine, it is forbidden
to dispense products between temperature measurement and correction, otherwise
the correction might be interrupted. Therefore, the Measurer thread blocks events
of type ProvideProduct during temperature measurement and correction. During
humidity measurement, however, this limitation does not apply. As measurement
and correction operations take a non-zero amount of time, there is a time window
during maintenance in which the dispensing of products is forbidden.

We seek a solution that would prevent dispensing products during the temper-
ature phase, but would permit it during the humidity phase. Static analysis does
not suffice: as the Measurer thread blocks the ProvideProduct event at some of its
states, the over-approximation includes this event — and so ProvideProduct events

would not be triggered during humidity measurement and correction. Dynamic
analysis, on the other hand, resolves this issue, as it is able to distinguish between
the two phases; see Table 1 for performance comparison.

Table 1: Performance of the vending machine program using the different execution mechanisms.
The measurements were performed using a customer simulator, purchasing 250 products in random
intervals. The table depicts the time the experiment took, the number of maintenance rounds per-
formed during the experiment, and the average delay — the time between making an order and
receiving the product. The improvement column measures the reduction in delay compared to the
traditional execution mechanism.

Execution #Servings Time (min) #Maintenance Delay (sec) Improvement

Traditional 250 15:40 59 1.68 —

Static 250 12:30 50 0.85 50%

Dynamic 250 9:20 37 0.18 90%

We point out that the Measurer thread’s transitions are not deterministic —
as they depend on input from the temperatureTooHigh and humidityTooHigh

subroutines. As previously explained, this does not pose a problem, as the
coordinator calculates an over-approximation based on all the successor states of
the thread’s last known state.

Remark: Recall that dynamic analysis includes spanning the state graphs of
threads and integrating these graphs into the program. Manual spanning of state
graphs is prone to error, and is rather tedious in large systems with many events.
Consequently, BPC includes an automated tool for performing this spanning
without any overhead on the programmer’s side.

The spanning is performed by separating the thread under inspection from
its siblings, and then iteratively exploring its state graph until all its states and
transitions have been found. Starting at the initial state, we check the thread’s
behavior in response to the triggering of each event that is not blocked by the
thread in that state. After the triggering of each event, the thread arrives at a
new state (synchronization point) — and, with proper book keeping, it is simple
to check if the state was previously visited or not. New states are then added to
a queue to be explored themselves, in an iterative BFS-like manner.

Isolating threads is performed using the CxxTest [15] tool, which is able
capture and redirect function calls within programs. The thread’s calls to the
synchronization method bSync are captured, and used to determine the thread’s
current state; similarly, calls to the lastEvent method are captured and used to
fool the thread into believing that a certain event was just triggered. The strength
of this method is that the entire process takes place using the original, unmodified
program code. Other methods, such as the one used in BPJ [7], include adding
dedicated threads for this purpose — a process that might in itself introduce
additional errors. Once the state graph has been spanned, it is automatically
transformed into a C++ code module and integrated into the program.

3.3 Eager Execution Formalized

We now formally define the the eager execution mechanism. All definitions in this
section exclusively consider deterministic b-threads; handling nondeterministic
ones is similar (see Appendix II of the supplementary material [2]).

Let P = {BT 1, . . . , BTn} be a behavioral program, where n ∈ N and each
BT i is a distinct b-thread. In order to define the eager execution mechanism,
we construct a labeled transition system (LTS) denoted by L̂TS(P) = 〈Q̂, q̂0, δ̂〉,
which is defined next. We use some of the notation introduced in Section 2.1.

The set of states is given by Q̂ := (Q1 ×Σ∗)× · · · × (Qn ×Σ∗). Each state is
thus a tuple consisting for each thread of its state and the contents of its event
queue. Let q = 〈qi, ui〉ni=1 ∈ Q̂ be a state. We use the standard notation δi(qi, ui)
to denote the state in Qi after applying the transition function δi of thread BT i

starting from state qi for each event in the queue ui. Given q, we denote the tuple
comprised of these states by q := 〈δi(qi, ui)〉ni=1; we refer to it as the indication
of q. Note that q naturally corresponds to a state in Q, which is the set of states
of LTS(P) = 〈Q, q0, δ〉 defined in Section 2.1. We slightly abuse notation and

write that q ∈ Q. Naturally, the initial state is q̂0 := 〈(q1
0 , ε), . . . , (q

n
0 , ε)〉 ∈ Q̂.

In each state q = 〈qi, ui〉ni=1 ∈ Q̂, eager execution approximates the requested
and blocked events of each thread. This is indicated by the following sets of
events: Ri(q) ⊆ Σ, for the requested events of thread BT i, and Bi(q) ⊆ Σ, for the
its blocked events. As previously mentioned, eager execution has various forms
(depending on the analysis technique that is used); each form is characterized
by its specific choice for these approximations. The requirements imposed on
them are the following. We require that Ri(q) is a subset of the events that are
requested by thread BT i at state δi(qi, ui), and that Bi(q) is a superset of the
blocked events at that state. That is,

Ri(q) ⊆ Ri(δi(qi, ui)) Bi(δi(qi, ui)) ⊆ Bi(q) . (1)

Moreover, we require that in case a thread is synchronized, the two approximations
are precise. More formally, if ui = ε for some i ∈ [n] (where [n] denotes the set of
indices {1, . . . , n}), so that in particular δi(qi, ui) = qi, then we require

Ri(q) = Ri(qi) Bi(q) = Bi(qi) . (2)

These two requirements are sufficient for our purposes. One may easily verify
that the eager execution with either static or dynamic analysis technique complies
with the requirements. From these, we obtain that the approximated enabled
events, defined in the following, are contained in the enabled events at the
indication state q ∈ Q; i.e.,

E(q) :=

n⋃
i=1

Ri(q) \
n⋃

i=1

Bi(q) ⊆ E(q) . (3)

In case all threads are synchronized, i.e., ui = ε for all i ∈ [n], we obtain

E(q) = E(q) . (4)

The nondeterministic transition function δ̂ : Q̂× (Σ∪̇{ε})→ 2Q̂ includes also
silent ε-labeled transitions; these ε transitions are not considered part of the runs
of the system. δ̂ is defined for each state q = 〈qi, ui〉ni=1 ∈ Q̂, and σ ∈ Σ ∪{ε}, as:

– If σ = ε, then δ̂(q, ε) is defined to be those states 〈ri, vi〉ni=1 ∈ Q̂ for which
there is i0 ∈ [n] and a ∈ Σ such that ui0 = a vi0 and ri0 = δi0(qi0 , a), and
for all other i ∈ [n] \ {i0} it holds that ri = qi and vi = ui. These transitions
correspond to threads with queued events processing these events — they
change states, while the other threads do not move.

– If σ ∈ Σ, and moreover σ ∈ E(q), then δ̂(q, σ) is defined to be the singleton

δ̂(q, σ) =
{
〈qi, ui σ〉ni=1

}
. These transitions correspond to new events being

triggered.
– If σ ∈ Σ and σ 6∈ E(q), we define δ̂(q, σ) = ∅. This reflects the fact that

events that are not enabled cannot be triggered.

For a rigorous proof of Proposition 1 using these definitions, see Appendix A.

4 Modularity by Eager Execution

Complex systems can generally benefit from being partitioned into several compo-
nents, each assigned its own execution resources (e.g., a dedicated computer) [13].
An intelligent partitioning of the system into components makes it possible to
execute different facets of system behavior independently, and thus improve
response time to different tasks. This is particularly crucial when system behavior
involves multiple time scales.

The fact that a behavioral program consists of a collection of threads, each
addressing part of the system’s behavior, suggests a natural way to design program
components. We call a collection of b-threads that collectively addresses a certain
facet of the system a behavioral module. Each such module can be assigned
distinct computational resources (e.g., a computer) so as to form an independent
component. However, BP’s complete stepwise synchronization between the b-
threads undermines the benefits expected from such a design. In particular, it
would not result in alleviating run-time dependencies between the components.

In order to understand how eager execution affects behavioral modules, we
make the following definitions. Consider a behavioral program P consisting of a
set behavioral modules M1, . . . ,Mk; thus, the threads in the program are

⋃k
i=1Mi.

Denote by Ei the set of events that are controlled — i.e., requested or blocked —
at some synchronization point of a thread of module Mi. Typically, these events
are part of the ‘vocabulary’ corresponding to that facet of the system addressed
in module Mi. The modular design of the program is termed strict if E1, . . . , Ek

are pairwise disjoint; i.e., Ei ∩ Ej = ∅ for i 6= j. However, any thread can wait
for any event. A strict modular design essentially means that while modules may
signal one another (by waiting for each other’s events), they do not control each
other’s events; i.e., they are assigned sufficiently independent duties.

For a strict modular design, the eager execution mechanism results in an
implementation in which the threads in each module never need to wait for a

thread in another module to synchronize. Here, static analysis, as described in
Section 3.1, is enough. The modules are thus effectively independent and may
involve different time scales. This is formalized by the following proposition:

Proposition 2. Let P be a behavioral program having a strict modular design
and executed with the eager execution mechanism. If all b-threads of module Mi

are synchronized, then an event e ∈ Ei is enabled if and only if it will also be
enabled upon the arrival of any other thread at its synchronization point.

The proposition implies that, in a strict design, as soon as a module’s threads
have synchronized any enabled event that they control may immediately be
triggered, without waiting for threads from other modules. See Appendix III of
the supplementary material [2] for a rigorous definition of a modular program
design and a proof of the proposition.

4.1 Example: A Modular Design

We implement the traveling vehicles example from [11, Section 7]. The example
includes several vehicles, each operating as an autonomous component traveling
on pre-given cyclic route along an (x, y) grid; in each given time unit during
the run, each vehicle can travel north, east, south or west. We assume that all
vehicles travel at identical speeds, i.e., cover one unit of distance per time unit.

Using eager execution, this multi-component system can be programmed en-
tirely within the behavioral programming framework, without relying on external
means of communication. The threads of each vehicle, vi, form an independent
behavioral module Mi that involves a designated set of events. This results in a
strict modular design allowing each vehicle to operate independently of others. A
code snippet for the main thread of vehicle vi is depicted in Fig. 7. If each module
has a dedicated processor and event selection is fair, all vehicles are constantly
moving — as the coordinator does not wait for vehicle vi to finish moving and
synchronize again before triggering the movement requested by another vehicle.

while (true) {
Vector <Event > requestedEvents;
if (destinationIsNorth ()) requestedEvents.append(#iMoveNorth);
if (destinationIsSouth ()) requestedEvents.append(#iMoveSouth);
if (destinationIsEast ()) requestedEvents.append(#iMoveEast);
if (destinationIsWest ()) requestedEvents.append(#iMoveWest);
bSync(requestedEvents, none, none);
adjustPositionByLastEvent ();

}

Fig. 7: The main method of each vehicle thread. The placeholder ‘#i’ is replaced by the number
of the vehicle; for instance, for vehicle v5, the events are 5MoveNorth, 5MoveWest, etc. The thread
requests moves in all directions that bring it closer to the destination. When the call to bSync returns,
one of these moves was selected by the behavioral execution mechanism. The thread then updates
its position (by invoking adjustPositionByLastEvent), and proceeds.

Eager execution allows a light-weight solution if communication between
the vehicles is required — e.g., for collision prevention. Each vehicle can be
accompanied by an adviser thread that keeps track of other vehicles. Whenever

its vehicle is dangerously close to another, the adviser blocks movement in the
dangerous direction (for simplicity, deadlocks are ignored). As the modular design
remains strict, adding the adviser threads does not impede the vehicles’ ability
to move independently.

5 Related Work

Within the scope of BP, an alternative approach for supporting modular designs
and multiple time scales in behavioral programs is suggested in [11], where a
program consists of sub-programs, called behavior nodes (b-nodes), each with its
own pool of (internal) events. Coordination between the b-nodes is carried out
by sending external events from one to another. Thus, internal events have to be
translated into external events and vice versa. The feasibility of this approach is
exhibited in [11] by using several examples.

Observing that the b-node approach naturally induces a strict modular
design, our approach offers similar benefits but without the need to go beyond
the behavioral programming idioms; indeed, no additional layer of external events
is needed. Relaxed synchronization also supports more general, non-strict designs,
in which behavioral programming idioms are used more liberally. In the case of
non-strict designs, eager execution does not ensure that the modules are executed
independently. Nevertheless, it avoids unnecessary synchronization between the
modules (especially when using dynamic analysis of the threads), which may be
sufficient in many situations.

Outside the scope of BP, performance optimization and communication mini-
mization in parallel and distributed settings have been studied extensively. The
trade-off between these two goals is discussed in [4, 16]. In [14], the author suggests
imposing certain limitations on the communication between the components,
which allows for execution-time optimization to be performed during compilation.

A method similar to our static analysis appears in [3], where invariants about
system components are used for conflict resolution within the BIP framework.

6 Conclusion and Future Work

The contribution of this paper is in the proposed eager execution mechanism,
which allows relaxing synchronization in behavioral programs. This scheme
generally improves system performance, and allows behavioral programs to be
written using a modular design that supports multiple time scales. Our approach
is made possible by the realization that, by analyzing a b-thread prior to its
execution, it is sometimes possible to accurately predict a valid outcome of a
synchronization point without actually waiting for the thread to synchronize.

In this paper we made no assumptions on how the coordinator chooses the
next event to be triggered from among the enabled events. In practice, however,
such assumptions can sometimes simplify system development. One example is
the prioritized event selection used in [9]. We believe that our methods can be
naturally adapted to such mechanisms too.

The technique discussed in this paper requires that each b-thread communicate
with a global coordinator at every synchronization point. While this constraint
is significantly weaker than stepwise synchronization with all other b-threads,
it may limit the applicability of the approach for designing multi-component
applications in distributed architectures, in which communication is costly and
time-consuming. In Appendix I of [2], we show how a variant of eager execution,
called distributed execution, can be utilized to reduce these costs. This is done at
the expense of not completely refraining from synchronization between threads
of different modules, even in a strict modular design, so that Proposition 2 does
not hold in that context. Finding ways to reduce communication costs while still
upholding Proposition 2 is left for future work.

Acknowledgements We thank Assaf Marron, Gera Weiss and Guy Wiener for
their helpful comments on this work. This work was supported by an Advanced
Research Grant to DH from the European Research Council (ERC) under the
European Community’s 7th Framework Programme (FP7/2007-2013), and by an
Israel Science Foundation grant.

References

1. BPC: Behavioral Programming in C++. http://www.wisdom.weizmann.ac.il/

~bprogram/bpc/.

2. Supplementary material. http://www.wisdom.weizmann.ac.il/~bprogram/bpc/

relaxedSync/.

3. S. Bensalem, M. Bozga, J. Quilbeuf, and J. Sifakis. Knowledge-Based Distributed
Conflict Resolution for Multiparty Interactions and Priorities. Formal Techniques
for Distributed Systems, Giese, H. & Rosu, G. (eds.), Lecture Notes in Computer
Science, 7273:118–134, 2012.

4. Y. Cheng and T. Robertazii. Distributed Computation with Communication Delay
[Distributed Intelligent Sensor Networks]. IEEE Transactions on Aerospace and
Electronic Systems, 24(6):700–712, 1988.

5. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. J.
on Formal Methods in System Design, 19(1):45–80, 2001.

6. D. Harel, G. Katz, A. Marron, and G. Weiss. Non-Intrusive Repair of Reactive
Programs. In Proc. 17th IEEE Int. Conf. on Engineering of Complex Computer
Systems (ICECCS), pages 3–12, 2012.

7. D. Harel, R. Lampert, A. Marron, and G. Weiss. Model-Checking Behavioral
Programs. In Proc. 11th Int. Conf. on Embedded Software (EMSOFT), pages
279–288, 2011.

8. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag, 2003.

9. D. Harel, A. Marron, and G. Weiss. Programming Coordinated Scenarios in Java.
In Proc. 24th European Conf. on Object-Oriented Programming (ECOOP), pages
250–274, 2010.

10. D. Harel, A. Marron, and G. Weiss. Behavioral Programming. Comm. Assoc.
Comput. Mach., 55(7):90–100, 2012.

11. D. Harel, A. Marron, G. Weiss, and G. Wiener. Behavioral Programming, Decen-
tralized Control, and Multiple Time Scales. In Proc. 1st SPLASH Workshop on
Programming Systems, Languages, and Applications based on Agents, Actors, and
Decentralized Control (AGERE!), pages 171–182, 2011.

12. R. Keller. Formal verification of parallel programs. Comm. Assoc. Comput. Mach.,
19(7):371–384, 1976.

13. D. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Comm. Assoc. Comput. Mach., 15(12):1053–1058, 1972.

14. A. J. van Gemund. The Importance of Synchronization Structure in Parallel
Program Optimization. In Proc. 11th ACM Int. Conf. on Supercomputing (ICS),
pages 164–171, 1997.

15. E. Volk. CxxTest: A Unit Testing Framework for C++. http://cxxtest.com/.
16. J. K. Yook, D. M. Tilbury, and N. R. Soparkar. Trading Computation for Bandwidth:

Reducing Communication in Distributed Control Systems Using State Estimators.
IEEE Transactions on Control Systems Technology, 10(4):503–518, 2002.

A Proof of Proposition 1

In this section we formally prove Proposition 1, stating that the runs produced
by the eager execution mechanism are valid runs according to BP’s original
semantics. We consider L̂TS(P) from Section 3.3, which captures the execution of
program P using the eager execution mechanism, and LTS(P) from Section 2.1,
which captures the original semantics. Technically, we claim that each complete
run of L̂TS(P) is a complete run of LTS(P); i.e., L(L̂TS(P)) ⊆ L(LTS(P)). This
is a consequence of the following lemmata.

When considering L̂TS(P), q
σ→ q′ stands for q′ ∈ δ̂(q, σ), as customary

when discussing transition systems (for any states q, q′ ∈ Q̂ and a possibly silent

event σ ∈ Σ∪{ε}). Also, recall that q ∈ Q̂ is a terminal state if for all σ ∈ Σ∪{ε}
it holds that δ̂(q, σ) = ∅. Similar notations and terminology apply to LTS(P).

Lemma 1. Let q, q′ ∈ Q̂ and σ ∈ Σ ∪ {ε} such that q
σ→ q′ in L̂TS(P).

1. If σ = ε, then q′ = q.

2. If σ ∈ Σ, then q
σ→ q′ in LTS(P).

Proof. 1: Denote q = 〈qi, ui〉ni=1 ∈ Q̂, and suppose that σ = ε. By the definition

of δ̂, we obtain that q′ = 〈ri, vi〉ni=1, where all the coordinates are the same as
in q, except for the one corresponding to i0 ∈ [n]. In the latter coordinate we
get δi0(ri0 , vi0) = δi0(δi0(qi0 , a), vi0) = δi0(qi0 , a vi0) = δi0(qi0 , ui0), as needed.

2: Now, suppose σ ∈ Σ. According to the definition of δ̂, σ ∈ E(q) and q′ =
〈qi, ui σ〉ni=1. By (3) (see Section 3.3) and by the definition of δ, we get that in

LTS(P) it holds that q
σ→ 〈 δi(δi(qi, ui), σ) 〉ni=1 = 〈 δi(qi, ui σ) 〉ni=1 = q′. ut

Corollary 1.

1. Let r0
σ1→ r1

σ2→ · · · σk→ rk be a finite execution of L̂TS(P) (k ≥ 0). There

exists a finite execution s0
a1→ s1

a2→ · · · at→ st of LTS(P) (t ≥ 0) such that
rk = st and σ1 σ2 · · ·σk = a1 a2 · · · at.

2. Let r0
σ1→ r1

σ2→ · · · be an infinite execution of L̂TS(P). There exists an

execution s0
a1→ s1

a2→ · · · of LTS(P) such that σ1 σ2 · · · = a1 a2 · · · .

Proof (sketch). 1: By induction on k. For k = 0 the claim follows from the fact
that q̂0 = q0 ∈ Q; the induction step follows from Lemma 1.

2: By an inductive construction of the execution, which similarly follows from
Lemma 1. ut

Lemma 2.

1. If q ∈ Q̂ is a terminal state in L̂TS(P), then q is a terminal state in LTS(P).

2. There is no infinite sequence q
ε→ q′

ε→ q′′
ε→ · · · in L̂TS(P).

Proof. 1: As q is terminal, by the definition of δ̂ it holds that all the queues in q
are empty (otherwise, δ̂(q, ε) 6= ∅); i.e., q = 〈qi, ε〉ni=1. Let a ∈ Σ. Because q is
terminal, a 6∈ E(q). Thus, by (4) (see Section 3.3), a 6∈ E(q), and therefore by the
definition of δ, δ(q, a) = ∅.

2: For each state q = 〈qi, ui〉ni=1 ∈ Q̂, consider the total size of the queues,
denoted by ϕ(q) := Σn

i=1|ui| ∈ N. Given such an infinite sequence of states, ϕ is

strictly decreasing (by the definition of δ̂), which contradicts the well-foundness
of the natural numbers. ut

Corollary 2. Let r0
σ1→ r1

σ2→ · · · be a complete (finite or infinite) execution

of L̂TS(P). There exists a complete (finite or infinite, respectively) execution

s0
a1→ s1

a2→ · · · of LTS(P) such that σ1 σ2 · · · = a1 a2 · · · .

The corollary follows from Corollary 1 and Lemma 2. It is equivalent to L(L̂TS(P)) ⊆
L(LTS(P)), which is the technical formulation of Proposition 1.

