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Abstract
Deep neural networks have emerged as a widely used and effective means for tackling com-
plex, real-world problems. However, a major obstacle in applying them to safety-critical
systems is the great difficulty in providing formal guarantees about their behavior.We present
a novel, scalable, and efficient technique for verifying properties of deep neural networks (or
providing counter-examples). The technique is based on the simplex method, extended to
handle the non-convex Rectified Linear Unit (ReLU) activation function, which is a crucial
ingredient in many modern neural networks. The verification procedure tackles neural net-
works as a whole, without making any simplifying assumptions. We evaluated our technique
on a prototype deep neural network implementation of the next-generation airborne colli-
sion avoidance system for unmanned aircraft (ACAS Xu). Results show that our technique
can successfully prove properties of networks that are an order of magnitude larger than the
largest networks that could be verified previously.
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1 Introduction

Artificial neural networks [22,62] have emerged as a promising approach for creating scalable
and robust systems. Applications include speech recognition [26], image classification [46],
game playing [64], and many others. It is now clear that software that may be extremely
difficult for humans to implement can instead be created by training deep neural networks
(DNNs), and that the performance of these DNNs is often comparable to, or even surpasses,
the performance of manually crafted software. DNNs are becoming widespread, and this
trend is likely to continue and intensify.

Great effort is now being put into using DNNs as controllers for safety-critical systems
such as autonomous vehicles [6] and airborne collision avoidance systems for unmanned
aircraft (ACAS Xu) [32]. DNNs are trained over a finite set of inputs and outputs and are
expected to generalize, i.e. to behave correctly for previously-unseen inputs. However, it
has been observed that DNNs can react in unexpected and incorrect ways to even slight
perturbations of their inputs [69]. This unexpected behavior of DNNs is likely to result in
unsafe systems, or restrict the usage of DNNs in safety-critical applications. Hence, there
is an urgent need for methods that can provide formal guarantees about DNN behavior.
Unfortunately, manual reasoning about large DNNs is impossible, as their structure renders
them incomprehensible to humans. Automatic verification techniques are thus sorely needed,
but here, the state of the art is a severely limiting factor.

Verifying DNNs is a difficult problem. DNNs are large, non-linear, and non-convex,
and verifying even simple properties about them is an NP-complete problem (see “Verifying
properties in DNNswith ReLUs is NP-complete” section of the Appendix). DNNverification
is experimentally beyond the reach of general-purpose tools such as linear programming (LP)
solvers or existing satisfiability modulo theories (SMT ) solvers [4,27,60], and, prior to this
work, dedicated tools have only been able to handle very small networks (e.g. a single hidden
layer with only 10 to 20 hidden nodes [59,60]).

The difficulty in proving properties about DNNs is caused by the presence of activation
functions. A DNN is comprised of a set of layers of nodes, and the value of each node is
determined by computing a linear combination of values from nodes in the preceding layer
and then applying an activation function to the result. These activation functions are non-
linear and render the problem non-convex. We focus here on DNNs with a specific kind of
activation function, called a Rectified Linear Unit (ReLU) [56]. When the ReLU function is
applied to a node with a positive value, it returns the value unchanged (the active case), but
when the value is negative, the ReLU function returns 0 (the inactive case). ReLUs are very
widely used [46,52], and it has been suggested that their piecewise linearity allows DNNs to
generalize well to previously unseen inputs [19,22,30,56]. Past efforts at verifying properties
of DNNs with ReLUs have had to make significant simplifying assumptions [4,27]—for
instance, by considering only small input regions in which all ReLUs are fixed at either the
active or inactive state [4], hence making the problem convex but at the cost of being able to
verify only an approximation of the desired property.

Wepropose a novel, scalable, and efficient algorithm for verifying properties ofDNNswith
ReLUs. We address the issue of the activation functions head-on, by extending the simplex
algorithm—astandard algorithm for solvingLP instances—to supportReLUconstraints. This
is achieved by leveraging the piecewise linear nature of ReLUs and attempting to gradually
satisfy the constraints that they impose as the algorithm searches for a feasible solution. We
call the algorithm Reluplex, for “ReLU with Simplex”.
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The problem’s NP-completeness means that we must expect the worst-case performance
of the algorithm to be poor. However, as is often the case with SAT and SMT solvers, the per-
formance in practice can be quite reasonable; in particular, our experiments show that during
the search for a solution, many of the ReLUs can be ignored or even discarded altogether,
reducing the search space by an order of magnitude or more. Occasionally, Reluplex will
still need to split on a specific ReLU constraint—i.e., guess that it is either active or inactive,
and possibly backtrack later if the choice leads to a contradiction.

We evaluated Reluplex on a family of 45 real-world DNNs, developed as an early pro-
totype for the next-generation airborne collision avoidance system for unmanned aircraft
ACAS Xu [32]. These fully connected DNNs have 8 layers and 300 ReLU nodes each, and
are intended to be run onboard aircraft. They take in sensor data indicating the speed and
present course of the aircraft (the ownship) and that of any nearby intruder aircraft, and issue
appropriate navigation advisories. These advisories indicate whether the aircraft is clear-
of-conflict, in which case the present course can be maintained, or whether it should turn
to avoid collision. We successfully proved several properties of these networks, e.g. that a
clear-of-conflict advisory will always be issued if the intruder is sufficiently far away or that
it will never be issued if the intruder is sufficiently close and on a collision course with the
ownship. Additionally, we were able to prove certain robustness properties [4] of the net-
works, meaning that small adversarial perturbations do not change the advisories produced
for certain inputs.

Our contributions can be summarized as follows. We (1) present Reluplex, an SMT solver
for a theory of linear real arithmetic with ReLU constraints; (2) show howDNNs and proper-
ties of interest can be encoded as inputs toReluplex; (3) discuss several implementation details
that are crucial to performance and scalability, such as the use of floating-point arithmetic,
bound derivation for ReLU variables, conflict analysis, and under-approximation techniques;
and (4) conduct a thorough evaluation on the DNN implementation of the prototype ACAS
Xu system, demonstrating the ability of Reluplex to scale to DNNs that are an order of
magnitude larger than those that can be analyzed using previously proposed techniques.

The rest of the paper is organized as follows. We begin with some background on DNNs,
SMT, and simplex in Sect. 2. The abstract Reluplex algorithm is described in Sect. 3, with
key implementation details highlighted in Sect. 4. We then describe the ACAS Xu system
and its prototype DNN implementation that we used as a case-study in Sect. 5, followed by
experimental results in Sect. 6. Related work is discussed in Sect. 7, and we conclude in
Sect. 8.

2 Background

2.1 Neural networks

Deep neural networks (DNNs) are comprised of an input layer, an output layer, and multiple
hidden layers in between. A layer is comprised of multiple nodes, each connected to nodes
from the preceding layer using a predetermined set of weights (see Fig. 1). Weight selection
is crucial, and is performed during a training phase (see, e.g., [22] for an overview). By
assigning values to inputs and then feeding them forward through the network, values for
each layer can be computed from the values of the previous layer, finally resulting in values
for the outputs.
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Fig. 1 A fully connected DNN with 5 input nodes (in green), 5 output nodes (in red), and 4 hidden layers
containing a total of 36 hidden nodes (in blue)

Fig. 2 A small neural network
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The value of each hidden node in the network is determined by calculating a linear com-
bination of node values from the previous layer, and then applying a non-linear activation
function [22]. Here, we focus on the Rectified Linear Unit (ReLU) activation function [56].
When a ReLU activation function is applied to a node, that node’s value is calculated as the
maximum of the linear combination of nodes from the previous layer and 0. We can thus
regard ReLUs as the function ReLU(x) = max (0, x).

Formally, for a DNN N , we use n to denote the number of layers and si to denote the size
of layer i (i.e., the number of its nodes). Layer 1 is the input layer, layer n is the output layer,
and layers 2, . . . , n−1 are the hidden layers. The value of the j-th node of layer i is denoted
vi, j and the column vector [vi,1, . . . , vi,si ]T is denoted Vi . Evaluating N entails calculating
Vn for a given assignment V1 of the input layer. This is performed by propagating the input
values through the network using predefined weights and biases, and applying the activation
functions—ReLUs, in our case. Each layer 2 ≤ i ≤ n has a weight matrixWi of size si ×si−1

and a bias vector Bi of size si . For 2 ≤ i < n, Vi is given by Vi = ReLU(WiVi−1 + Bi ),
with the ReLU function being applied element-wise. The last layer’s values are computed in
a similar way, but without applying ReLUs: Vn = WnVn−1 + Bn . These rules are applied
repeatedly for each layer, until Vn is calculated. When the weight matricesW1, . . .Wn do not
have any zero entries, the network is said to be fully connected (see Fig. 1 for an illustration).

Figure 2 depicts a small network that we will use as a running example. The network has
one input node, one output node and a single hidden layer with two nodes. The bias vectors
are set to 0 and are ignored, and the weights are shown for each edge. The ReLU function
is applied to each of the hidden nodes. It is possible to show that, due to the effect of the
ReLUs, for non-negative input values the network’s output is always identical to its input:
v31 ≡ v11.
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2.2 Satisfiability modulo theories

We present our algorithm as a theory solver in the context of satisfiability modulo theories
(SMT).1 A theory is a pair T = (�, I) where � is a signature and I is a class of �-
interpretations, the models of T , that is closed under variable reassignment. A �-formula ϕ

is T -satisfiable (resp., T -unsatisfiable) if it is satisfied by some (resp., no) interpretation in
I. In this paper, we consider only quantifier-free formulas. The SMT problem is the problem
of determining the T -satisfiability of a formula for a given theory T .

Given a theory T with signature �, the DPLL(T ) architecture [57] provides a generic
approach for determining the T -satisfiability of �-formulas. In DPLL(T ), a Boolean satisfi-
ability (SAT) engine operates on a Boolean abstraction of the formula, performing Boolean
propagation, case-splitting, and Boolean conflict resolution. The SAT engine is coupled with
a dedicated theory solver, which checks the T -satisfiability of the decisions made by the SAT
engine. Splitting-on-demand [2] extends DPLL(T ) by allowing theory solvers to delegate
case-splitting to the SAT engine in a generic and modular way. In Sect. 3, we present our
algorithm as a deductive calculus (with splitting rules) operating on conjunctions of literals.
TheDPLL(T ) and splitting-on-demandmechanisms can then be used to obtain a full decision
procedure for arbitrary formulas.

2.3 Linear real arithmetic and simplex

In the context of DNNs, a particularly relevant theory is that of real arithmetic, which we
denote as TR. TR consists of the signature containing all rational number constants and
the symbols {+,−, ·,≤,≥}, paired with the standard model of the real numbers. We focus
on linear formulas: formulas over TR with the additional restriction that the multiplication
symbol · can only appear if at least one of its operands is a rational constant. Linear atoms
can always be rewritten into the form

∑
xi∈X ci xi �� d , for �� ∈ {=,≤,≥}, where X is a set

of variables and ci , d are rational constants.
The simplex method [10] is a standard and highly efficient decision procedure for deter-

mining the TR-satisfiability of conjunctions of linear atoms.2 Our algorithm extends simplex,
and so we begin with an abstract calculus for the original algorithm (for a more thorough
description see, e.g., [71]). The rules of the calculus operate over data structures we call con-
figurations. For a given set of variables X = {x1, . . . , xn}, a simplex configuration is either
one of the distinguished symbols {SAT,UNSAT} or a tuple 〈B, T , l, u, α〉, where: B ⊆ X is a
set of basic variables; T , the tableau, contains for each xi ∈ B an equation xi = ∑

x j /∈B c j x j ;
l, u are mappings that assign each variable x ∈ X a lower and an upper bound, respectively;
and α, the assignment, maps each variable x ∈ X to a real value. The initial configuration
(and in particular the initial tableau T0) is derived from a conjunction of input atoms as
follows: for each atom

∑
xi∈X ci xi �� d , a new basic variable b is introduced, the equation

b = ∑
xi∈X ci xi is added to the tableau, and d is added as a bound for b (either upper, lower,

or both, depending on ��). The initial assignment is set to 0 for all variables, ensuring that
all tableau equations hold (though variable bounds may be violated).

1 Consistent with most treatments of SMT, we assume many-sorted first-order logic with equality as our
underlying formalism (see, e.g., [3] for details).
2 There exist SMT-friendly extensions of simplex (see e.g. [39]) which can handleTR-satisfiability of arbitrary
literals, including strict inequalities and disequalities, but we omit these extensions here for simplicity (and
without loss of generality).
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Pivot1
xi ∈ B, α(xi) < l(xi), xj ∈ slack+(xi)
T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Pivot2
xi ∈ B, α(xi) > u(xi), xj ∈ slack−(xi)
T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Update
xj /∈ B, α(xj) < l(xj) ∨ α(xj) > u(xj), l(xj) ≤ α(xj) + δ ≤ u(xj)

α := update(α, xj , δ)

Failure1
xi ∈ B, (α(xi) < l(xi) ∧ slack+(xi) = ∅) ∨ (α(xi) > u(xi) ∧ slack−(xi) = ∅)

UNSAT

Failure2
l(xi) > u(xi)

UNSAT

Success
∀xi ∈ X . l(xi) ≤ α(xi) ≤ u(xi)

SAT

Fig. 3 Derivation rules for the abstract simplex algorithm

The tableau T can be regarded as a matrix expressing each of the basic variables (variables
in B) as a linear combination of non-basic variables (variables in X \ B). The rows of T
correspond to the variables in B and its columns to those of X \ B. For xi ∈ B and x j /∈ B
we denote by Ti, j the coefficient c j of x j in the equation xi = ∑

x j /∈B c j x j . The tableau is
changed via pivoting: the switching of a basic variable xi (the leaving variable) with a non-
basic variable x j (the entering variable) for which Ti, j �= 0. A pivot(T , i, j) operation returns
a new tableau in which the equation xi = ∑

xk /∈B ckxk has been replaced by the equation
x j = xi

c j
−∑

xk /∈B,k �= j
ck
c j
xk , and inwhich every occurrence of x j in each of the other equations

has been replaced by the right-hand side of the new equation (the resulting expressions are
also normalized to retain the tableau form). The variable assignment α is changed via update
operations that are applied to non-basic variables: for x j /∈ B, an update(α, x j , δ) operation
returns an updated assignment α′ identical to α, except that α′(x j ) = α(x j )+δ and for every
xi ∈ B, we have α′(xi ) = α(xi ) + δ · Ti, j . To simplify later presentation we also denote:

slack+(xi ) = {x j /∈ B | (Ti, j > 0 ∧ α(x j ) < u(x j )) ∨ (Ti, j < 0 ∧ α(x j ) > l(x j ))}
slack−(xi ) = {x j /∈ B | (Ti, j < 0 ∧ α(x j ) < u(x j )) ∨ (Ti, j > 0 ∧ α(x j ) > l(x j ))}
The rules of the simplex calculus are provided in Fig. 3 in guarded assignment form. A

rule applies to a configuration S if all of the rule’s premises hold for S. A rule’s conclusion
describes how each component of S is changed, if at all. When S′ is the result of applying
a rule to S, we say that S derives S′. A sequence of configurations Si where each Si derives
Si+1 is called a derivation.

The Update rule (with appropriate values of δ) is used to enforce that non-basic variables
satisfy their bounds. Basic variables cannot be directly updated. Instead, if a basic variable
xi is too small or too great, either the Pivot1 or the Pivot2 rule is applied, respectively, to
pivot it with a non-basic variable x j . This makes xi non-basic so that its assignment can
be adjusted using the Update rule. Pivoting is only allowed when x j affords slack, that is,
the assignment for x j can be adjusted to bring xi closer to its bound without violating its
own bound. Of course, once pivoting occurs and the Update rule is used to bring xi within
its bounds, other variables (such as the now basic x j ) may be sent outside their bounds, in
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which case they must be corrected in a later iteration. If a basic variable is out of bounds,
but none of the non-basic variables affords it any slack, then the Failure1rule applies and the
problem is unsatisfiable. The problem can also be determined to be unsatisfiable (using the
Failure2rule) if there exists a variable whose lower bound is strictly greater than its upper
bound. Because the tableau is only changed by scaling and adding rows, the set of variable
assignments that satisfy its equations is always kept identical to that of T0. Also, the update
operation guarantees that α continues to satisfy the equations of T . Thus, if all variables are
within bounds then the Success rule can be applied, indicating that α constitutes a satisfying
assignment for the original problem.

It is well-known that the simplex calculus is sound [71] (i.e. if a derivation ends in
SAT or UNSAT, then the original problem is satisfiable or unsatisfiable, respectively) and
complete (there always exists a derivation ending in either SAT or UNSAT from any starting
configuration). Termination can be guaranteed if certain strategies are used in applying the
transition rules—in particular in picking the leaving and entering variables when multiple
options exist [71]. Variable selection strategies are also known to have a dramatic effect on
performance [71]. We note that the version of simplex described above is usually referred
to as phase one simplex, and is usually followed by a phase two in which the solution is
optimized according to a cost function. However, as we are only considering satisfiability,
phase two is not required.

3 From simplex to Reluplex

The simplex algorithm described in Sect. 2 is an efficient means for solving problems that can
be encoded as a conjunction of atoms. Unfortunately, while the weights, biases, and certain
properties of DNNs can be encoded this way, the non-linear ReLU functions cannot.

When a theory solver operates within an SMT solver, input atoms can be embedded in
arbitrary Boolean structure. A naïve approach is then to encode ReLUs using disjunctions,
which is possible because ReLUs are piecewise linear. However, this encoding requires the
SAT engine within the SMT solver to enumerate the different cases. In the worst case, for
a DNN with n ReLU nodes, the solver ends up splitting the problem into 2n sub-problems,
each of which is a conjunction of atoms. As observed by us and others [4,27], this theoretical
worst-case behavior is also seen in practice, and hence this approach is practical only for
very small networks. A similar phenomenon occurs when encoding DNNs as mixed integer
problems (see Sect. 6).

We take a different route and extend the theory TR to a theory TRR of reals andReLUs. TRR

is almost identical to TR, except that its signature additionally includes the binary predicate
ReLU with the interpretation: ReLU(x, y) iff y = max (0, x). Formulas are then assumed
to contain atoms that are either linear inequalities or applications of the ReLU predicate to
linear terms.

DNNs and their (linear) properties can be directly encoded as conjunctions of TRR-atoms.
The main idea is to encode a single ReLU node v as a pair of variables, vb and v f , and then
assert ReLU(vb, v f ). vb, the backward-facing variable, is used to express the connection of
v to nodes from the preceding layer; whereas v f , the forward-facing variable, is used for
the connections of v to the following layer (see Fig. 4). The rest of this section is devoted to
presenting an efficient algorithm, Reluplex, for deciding the satisfiability of a conjunction of
such atoms.
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Fig. 4 The network from Fig. 2,
with ReLU nodes split into
backward- and forward-facing
variables
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3.1 The Reluplex procedure

Aswith simplex, Reluplex allows variables to temporarily violate their bounds as it iteratively
looks for a feasible variable assignment. However, Reluplex also allows variables that are
members of ReLU pairs to temporarily violate the ReLU semantics. Then, as it iterates,
Reluplex repeatedly picks variables that are either out of bounds or that violate a ReLU, and
corrects them using Pivot and Update operations.

For a given set of variables X = {x1, . . . , xn}, a Reluplex configuration is either one of
the distinguished symbols {SAT,UNSAT} or a tuple 〈B, T , l, u, α, R〉, where B, T , l, u and
α are as before, and R ⊂ X × X is the set of ReLU connections. The initial configuration
for a conjunction of atoms is also obtained as before except that 〈x, y〉 ∈ R iff ReLU(x, y)
is an atom. The simplex transition rules Pivot1, Pivot2, Update, Failure1, and Failure2 are
included also in Reluplex. We replace the Success rule with the ReluSuccess rule and add
rules for handling ReLU violations, as depicted in Fig. 5. The Updateb and Update f rules
allow a broken ReLU connection to be corrected by updating the backward- or forward-
facing variables, respectively, provided that these variables are non-basic. The PivotForRelu
rule allows a basic variable appearing in a ReLU to be pivoted so that either Updateb or
Update f can be applied (this is needed to make progress when both variables in a ReLU
are basic and their assignments do not satisfy the ReLU semantics). The ReluSplit rule is
used for splitting on ReLU connections, guessing whether they are inactive (by enforcing
that u(xi ) ≤ 0, l(x j ) ≥ 0 and u(x j ) ≤ 0), or active (by enforcing that l(xi ) ≥ 0). When we
guess that a ReLU is active, we also apply the addEq operation, which adds to the tableau a
new equation, x j = xi , in order to enforce that the ReLU is satisfied in the active phase. This
operation uses a fresh variable, b, as the basic variable for the equation, i.e. b = x j − xi ,
and b is then added to B. We assume, without loss of generality, that these fresh variables,
one for each ReLU, exist in X , have 0 for lower and upper bounds, and are not used in any
other equation. Further, the assignment of b is set to α(x j )−α(xi ), to make sure that the new
equation is satisfied by the current assignment. (In case x j is basic, i.e. x j = ∑

xk /∈B ckxk ,
we substitute x j with x j = ∑

xk /∈B ckxk in the new equation; and likewise for xi ).
Introducing splitting means that derivations are no longer linear. Using the notion of

derivation trees,we can show thatReluplex is sound and complete (see “TheReluplex calculus
is sound and complete” section of the Appendix). In practice, splitting can be managed by
a SAT engine with splitting-on-demand [2]. The naïve approach mentioned at the beginning
of this section can be simulated by applying the ReluSplit rule eagerly, once for each ReLU
pair, and then solving each derived sub-problem separately (this reduction trivially guarantees
termination just as do branch-and-cut techniques in mixed integer solvers [58]). However, a
more scalable strategy is to try to fix broken ReLU pairs using the Updateb and Update f
rules first, and split only when the number of updates to a specific ReLU pair exceeds some
threshold. Intuitively, this is likely to limit splits to “problematic” ReLU pairs, while still
guaranteeing termination. Specifically, there exist well-known strategies for applying the
simplex rules in a way that guarantees that within a finite number of steps, either all variables
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Updateb
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) �= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj) − α(xi))

Updatef
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) �= max (0, α(xi))

α := update(α, xj ,max (0, α(xi)) − α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j �= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit

〈xi, xj〉 ∈ R

u(xi) := min(u(xi), 0),
l(xj) := max(l(xj), 0),
u(xj) := min(u(xj), 0)

l(xi) := max(l(xi), 0),
〈B, T, α〉 := addEq(xj = xi)

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xb, xf 〉 ∈ R. α(xf ) = max (0, α(xb))

SAT

Fig. 5 Additional derivation rules for the abstract Reluplex algorithm

become assigned to values within their bounds, or the Failure1 or Failure2 rules are applicable
(and are applied) [71]. By repeatedly using such a strategy for fixing out-of-bounds violations,
and by splitting on a ReLU pair whenever the Updateb, Update f or PivotForRelu rules are
applied to it more than some fixed number of times, termination is guaranteed.

3.2 Example

To illustrate the use of the derivation rules, we use Reluplex to solve a simple example.
Consider the network in Fig. 4, and suppose we wish to check whether it is possible to
satisfy v11 ∈ [0, 1] and v31 ∈ [0.5, 1]. As we know that for non-negative inputs the network
outputs its input unchanged (v31 ≡ v11), we expect Reluplex to be able to derive SAT. The
initial Reluplex configuration is obtained by introducing new basic variables a1, a2, a3, and
encoding the network with the equations:

a1 = −v11 + vb21 a2 = v11 + vb22 a3 = −v
f
21 − v

f
22 + v31

The equations above form the initial tableau T0, and the initial set of basic variables is
B = {a1, a2, a3}. The set of ReLU connections is R = {〈vb21, v f

21〉, 〈vb22, v f
22〉}. The initial

assignment of all variables is set to 0. The lower and upper bounds of the basic variables
are set to 0, in order to enforce the equalities that they represent. The bounds for the input
and output variables are set according to the problem at hand; and the hidden variables are
unbounded, except that forward-facing variables are, by definition, non-negative:

v11 vb21 v
f
21 vb22 v

f
22 v31 a1 a2 a3

Lower bound 0 −∞ 0 −∞ 0 0.5 0 0 0
Assignment 0 0 0 0 0 0 0 0 0
Upper bound 1 ∞ ∞ ∞ ∞ 1 0 0 0
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Starting from this initial configuration, our search strategy is to first fix any out-of-bounds
variables. Variable v31 is non-basic and is out of bounds, so we perform an Update step and
set it to 0.5. As a result, a3, which depends on v31, is also set to 0.5. a3 is now basic and out
of bounds, so we pivot it with v

f
21, and then update a3 back to 0. The tableau now consists of

the equations:

a1 = −v11 + vb21 a2 = v11 + vb22 v
f
21 = −v

f
22 + v31 − a3

And the assignment is α(v
f
21) = 0.5, α(v31) = 0.5, and α(v) = 0 for all other variables v.

At this point, all variables are within their bounds, but the ReluSuccess rule does not apply
because α(v

f
21) = 0.5 �= 0 = max (0, α(vb21)).

The next step is to fix the broken ReLU pair 〈vb21, v f
21〉. Since vb21 is non-basic, we use

Updateb to increase its value by 0.5. The assignment becomes α(vb21) = 0.5, α(v
f
21) = 0.5,

α(v31) = 0.5, α(a1) = 0.5, and α(v) = 0 for all other variables v. All ReLU constraints
hold, but a1 is now out of bounds. This is fixed by pivoting a1 with v11 and then updating it.
The resulting tableau is:

v11 = vb21 − a1 a2 = vb21 + vb22 − a1 v
f
21 = −v

f
22 + v31 − a3

Observe that because v11 is now basic, it was eliminated from the equation for a2 and replaced
with vb21−a1. The non-zero assignments are now α(v11) = 0.5, α(vb21) = 0.5, α(v

f
21) = 0.5,

α(v31) = 0.5, α(a2) = 0.5. Variable a2 is now too large, and so we have a final round of
pivot-and-update: a2 is pivoted with vb22 and then updated back to 0. The final tableau and
assignments are:

v11 = vb21 − a1 vb22 = −vb21 + a1 + a2 v
f
21 = −v

f
22 + v31 − a3

v11 vb21 v
f
21 vb22 v

f
22 v31 a1 a2 a3

Lower bound 0 −∞ 0 −∞ 0 0.5 0 0 0
Assignment 0.5 0.5 0.5 −0.5 0 0.5 0 0 0
Upper bound 1 ∞ ∞ ∞ ∞ 1 0 0 0

and the algorithm halts with the feasible solution it has found. A key observation is that we
did not ever split on any of the ReLU connections. Instead, it was sufficient to simply use
updates to adjust the ReLU variables as needed.

4 Efficiently implementing Reluplex

We next discuss four techniques that significantly boost the performance of Reluplex:
use of tighter bound derivation, conflict analysis, floating point arithmetic, and under-
approximations.

4.1 Tighter bound derivation

The simplex and Reluplex procedures naturally lend themselves to deriving tighter variable
bounds as the search progresses [39].Consider a basic variable xi ∈ B and let pos(xi ) = {x j /∈
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B | Ti, j > 0} and neg(xi ) = {x j /∈ B | Ti, j < 0}. Throughout the execution, the following
rules can be used to derive tighter bounds for xi , regardless of the current assignment:

deriveLowerBound
xi ∈ B, l(xi ) <

∑
x j∈pos(xi ) Ti, j · l(x j ) + ∑

x j∈neg(xi ) Ti, j · u(x j )

l(xi ) := ∑
x j∈pos(xi ) Ti, j · l(x j ) + ∑

x j∈neg(xi ) Ti, j · u(x j )

deriveUpperBound
xi ∈ B, u(xi ) >

∑
x j∈pos(xi ) Ti, j · u(x j ) + ∑

x j∈neg(xi ) Ti, j · l(x j )
u(xi ) := ∑

x j∈pos(xi ) Ti, j · u(x j ) + ∑
x j∈neg(xi ) Ti, j · l(x j )

The derived bounds can later be used to derive additional, tighter bounds. Similar approaches
have proven useful for linear arithmetic theory solvers [11].

When tighter bounds are derived for ReLU variables, these variables can sometimes be
eliminated, i.e., fixed to the active or inactive state, without splitting. For a ReLU pair x f =
ReLU(xb), discovering that either l(xb) or l(x f ) is strictly positive means that in any feasible
solution this ReLU connection will be active. Similarly, discovering that u(xb) < 0 implies
inactivity. In these cases, the ReLU constraint should be replaced by linear constraints similar
to those introduced by the ReluSplit rule.

Bound tightening operations incur overhead, and simplex implementations often use them
sparsely [39]. In Reluplex, however, the benefits of eliminating ReLUs justify the cost. The
actual amount of bound tightening to perform can be determined heuristically; we describe
the heuristic that we used in Sect. 6.

4.2 Derived bounds and conflict analysis

Bound derivation can lead to situations where we learn that l(x) > u(x) for some variable x .
Such contradictions allow Reluplex to immediately undo a previous split (or answer UNSAT
if no previous splits exist). However, in many cases more than just the previous split can be
undone. For example, if we have performed 8 nested splits so far, it may be that the conflicting
bounds for x are the direct result of split number 5 but have only just been discovered. In this
case we can immediately undo splits number 8, 7, and 6. This is a particular case of conflict
analysis, which is a standard technique in SAT and SMT solvers [53].

4.3 Floating point arithmetic

SMT solvers typically use precise (as opposed to floating point) arithmetic to avoid roundoff
errors and guarantee soundness. Unfortunately, precise computation is usually at least an
order of magnitude slower than its floating point equivalent, and so efforts have been made
to leverage floating point arithmetic in solvers (e.g., [17,55]). Invoking Reluplex on a large
DNN can require millions of pivot operations, each of which involves the multiplication and
division of rational numbers, potentially with large numerators or denominators—making
the use of floating point arithmetic important for scalability.

There are standard techniques for keeping the roundoff error small when implementing
simplex using floating point, which we incorporated into our implementation. For example,
one important practice is trying to avoid Pivot operations involving the inversion of extremely
small numbers [71].

To provide increased confidence that any roundoff error remained within an acceptable
range, we also added the following safeguards: (1) After a certain number of Pivot steps we
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would measure the accumulated roundoff error; and (2) If the error exceeded a threshold M ,
we would restore the coefficients of the current tableau T using the initial tableau T0.

Cumulative roundoff error can be measured by plugging the current assignment values
for the non-basic variables into the equations of the initial tableau T0, using them to calculate
the values for every basic variable xi , and then measuring by how much these values differ
from the current assignment α(xi ). We define the cumulative roundoff error as:

∑

xi∈B0

∣
∣
∣
∣
∣
∣
α(xi ) −

∑

x j /∈B0

T0i, j · α(x j )

∣
∣
∣
∣
∣
∣

T is restored by starting from T0 and performing a short series of Pivot steps that result
in the same set of basic variables as in T . In general, the shortest sequence of pivot steps to
transform T0 to T is much shorter than the series of steps that was followed by Reluplex—
and hence, although it is also performed using floating point arithmetic, it incurs a smaller
roundoff error.

The tableau restoration technique serves to increase our confidence in the algorithm’s
results when using floating point arithmetic, but it does not guarantee soundness. Providing
true soundness when using floating point arithmetic remains a future goal (see Sect. 8).

4.4 Under-approximations

Under-approximation can be integrated into the Reluplex algorithm in a straightforward
manner. Consider a variable x with lower and upper bounds l(x) and u(x), respectively. Since
we are searching for feasible solutions for which x ∈ [l(x), u(x)], an under-approximation
can be obtained by restricting this range, and only considering feasible solutions for which
x ∈ [l(x) + ε, u(x) − ε] for some small ε > 0.

Applying under-approximations can be particularly useful when it effectively eliminates a
ReLU constraint (consequently reducing the potential number of case splits needed). Specif-
ically, observe a ReLU pair x f = ReLU(xb) for which we have l(xb) ≥ −ε for a very small
positive ε. We can under-approximate this range and instead set l(xb) = 0; and, as previously
discussed, we can then fix the ReLU pair to the active state. Symmetrical measures can be
employed when learning a very small upper bound for x f , in this case leading to the ReLU
pair being fixed in the inactive state.

Any feasible solution that is found using this kind of under-approximationwill be a feasible
solution for the original problem. However, if we determine that the under-approximated
problem is infeasible, the original may yet be feasible.

5 Case study: the ACAS Xu system

Airborne collision avoidance systems are critical for ensuring the safe operation of aircraft.
The Traffic Alert and Collision Avoidance System (TCAS) was developed in response to
midair collisions between commercial aircraft, and is currently mandated on all large com-
mercial aircraft worldwide [47]. Recent work has focused on creating a new system, known as
Airborne Collision Avoidance System X (ACAS X) [41,42]. This system adopts an approach
that involves solving a partially observable Markov decision process to optimize the alerting
logic and further reduce the probability of midair collisions, while minimizing unnecessary
alerts [41,42,44].
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Fig. 6 Geometry for ACAS Xu
horizontal logic table

Ownship

vown

Intruder

vint

ρ

ψ

θ

The unmanned variant of ACAS X, known as ACAS Xu, produces horizontal maneuver
advisories. So far, development of ACAS Xu has focused on using a large lookup table that
maps sensor measurements to advisories [32]. However, this table requires over 2GB of
memory. There is concern about the memory requirements for certified avionics hardware.
To overcome this challenge, a DNN representation was explored as a potential replacement
for the table [32]. Initial results show a dramatic reduction in memory requirements without
compromising safety. In fact, due to its continuous nature, the DNN approach can sometimes
outperform the discrete lookup table [32]. Recently, in order to reduce lookup time, the DNN
approach was improved further, and the single DNN was replaced by an array of 45 DNNs.
As a result, the original 2GB table can now be substituted with efficient DNNs that require
less than 3MB of memory.

ADNN implementation of ACASXu presents new certification challenges. Proving that a
set of inputs cannot produce an erroneous alert is paramount for certifying the system for use in
safety-critical settings. Previous certificationmethodologies included exhaustively testing the
system in 1.5 million simulated encounters [43], but this is insufficient for proving that faulty
behaviors do not exist within the continuous DNNs. This highlights the need for verifying
DNNs and makes the ACAS Xu DNNs prime candidates on which to apply Reluplex.

5.1 Network functionality

The ACAS Xu system maps input variables to action advisories. Each advisory is assigned
a score, with the lowest score corresponding to the best action. The input state is composed
of seven dimensions (shown in Fig. 6) which represent information determined from sensor
measurements [42]: (1) ρ: Distance from ownship to intruder; (2) θ : Angle to intruder relative
to ownship heading direction; (3) ψ : Heading angle of intruder relative to ownship heading
direction; (4) vown: Speed of ownship; (5) vint: Speed of intruder; (6) τ : Time until loss of
vertical separation; and (7) aprev: Previous advisory. There are five outputs which represent
the different horizontal advisories that can be given to the ownship: Clear-of-Conflict (COC),
weak right, strong right, weak left, or strong left. Weak and strong mean heading rates of
1.5 ◦ /s and 3.0 ◦ /s, respectively.

The array of 45 DNNs was produced by discretizing τ and aprev, and producing a network
for each discretized combination. Each of these networks thus has five inputs (one for each of
the other dimensions) and five outputs. The DNNs are fully connected, use ReLU activation
functions, and have 6 hidden layers with a total of 300 ReLU nodes each.
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Fig. 7 Advisories for a head-on
encounter with
aprev = COC, τ = 0 s. Ranges
are measured in kilofeet (kft)
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5.2 Network properties

It is desirable to verify that the ACAS Xu networks assign correct scores to the output
advisories in various input domains. Fig. 7 illustrates this kind of property by showing a
top-down view of a head-on encounter scenario, in which each pixel is colored to represent
the best action if the intruder were at that location. We expect the DNN’s advisories to be
consistent in each of these regions; however, Fig. 7 was generated from a finite set of input
samples, and there may exist other inputs for which a wrong advisory is produced, possibly
leading to collision. Therefore, we used Reluplex to prove properties from the following
categories on the DNNs: (1) The system does not give unnecessary turning advisories; (2)
Alerting regions are uniform and do not contain inconsistent alerts; and (3) Strong alerts do
not appear for high τ values.

6 Evaluation

We used a proof-of-concept implementation of Reluplex to check realistic properties on
the 45 ACAS Xu DNNs. Our implementation consists of three main logical components:
(1) a simplex engine for providing core functionality such as tableau representation and
pivot and update operations; (2) a Reluplex engine for driving the search and performing
bound derivation, ReLU pivots and ReLU updates; and (3) a simple SMT core for providing
splitting-on-demand services. For the simplex engine we used the GLPK open-source LP
solver3 with some modifications, for instance in order to allow the Reluplex core to perform
bound tightening on tableau equations calculated by GLPK. Our implementation, together
with the experiments described in this section, is available online [33].

Our search strategy was to repeatedly fix any out-of-bounds violations first, and only then
correct any violated ReLU constraints (possibly introducing new out-of-bounds violations).
We performed bound tightening on the entering variable after every pivot operation, and
performed a more thorough bound tightening on all the equations in the tableau once every
few thousand pivot steps. Tighter bound derivation proved extremely useful, and we often
observed that after splitting on about 10% of the ReLU variables it led to the elimination of
all remaining ReLUs. We counted the number of times a ReLU pair was fixed via Updateb
or Update f or pivoted via PivotForRelu, and split only when this number reached 5 (a
number empirically determined to work well). We also implemented conflict analysis and
back-jumping. Finally, we checked the accumulated roundoff error (due to the use of double-
precision floating point arithmetic) after every 5000 Pivot steps, and restored the tableau if

3 www.gnu.org/software/glpk/.
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Table 1 Comparison to SMT and
LP solvers. Entries indicate
solution time (in seconds)

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

CVC4 – – – – – – – –

Z3 – – – – – – – –

Yices 1 37 – – – – – –

MathSat 2040 9780 – – – – – –

Gurobi 1 1 1 – – – – –

Reluplex 8 2 7 7 93 4 7 9

the error exceeded 10−6.Most experiments described below required two tableau restorations
or fewer.

We began by comparing our implementation of Reluplex to state-of-the-art solvers: the
CVC4, Z3, Yices andMathSat SMT solvers and theGurobi LP solver (see Table 1).We ran all
solvers with a 4 hour timeout on 2 of the ACAS Xu networks (selected arbitrarily), trying to
solve for 8 simple satisfiable properties ϕ1, . . . , ϕ8, each of the form x ≥ c for a fixed output
variable x and a constant c. The SMT solvers generally performed poorly, with onlyYices and
MathSat successfully solving two instances each. We attribute the results to these solvers’
lack of direct support for encoding ReLUs, and to their use of precise arithmetic. Gurobi
solved 3 instances quickly, but timed out on all the rest. Its logs indicated that whenever
Gurobi could solve the problem without case-splitting, it did so quickly; but whenever the
problem required case-splitting, Gurobi would time out. Reluplex was able to solve all 8
instances. See “Encoding ReLUs for SMT and LP solvers” section of the Appendix for the
SMT and LP encodings that we used.

Next, we used Reluplex to test a set of 10 quantitative properties φ1, . . . , φ10. The proper-
ties, described below, are formally defined in Formal definitions for properties �1, . . . , �10

section of the Appendix. Table 2 depicts for each property the number of tested networks
(specified as part of the property), the test results and the total duration (in seconds). The
Stack and Splits columns list the maximal depth of nested case-splits reached (out of a max-
imal depth of 300; averaged over the tested networks) and the total number of case-splits
performed, respectively. For each property, we looked for an input that would violate it; thus,
an UNSAT result indicates that a property holds, and a SAT result indicates that it does not
hold. In the SAT case, the satisfying assignment is an example of an input that violates the
property.

Propertyφ1 states that if the intruder is distant and is significantly slower than the ownship,
the score of a COC advisory will always be below a certain fixed threshold (recall that the
best action has the lowest score). Property φ2 states that under similar conditions, the score
for COC can never be maximal, meaning that it can never be the worst action to take. This
property was discovered not to hold for 35 networks, but this was later determined to be
acceptable behavior: the DNNs have a strong bias for producing the same advisory they had
previously produced, and this can result in advisories other than COC even for far-away
intruders if the previous advisory was also something other than COC. Properties φ3 and φ4

deal with situations where the intruder is directly ahead of the ownship, and state that the
DNNs will never issue a COC advisory.

Propertiesφ5 throughφ10 each involve a single network, and check for consistent behavior
in a specific input region. For example, φ5 states that if the intruder is near and approaching
from the left, the network advises “strong right”. Property φ7, on which we timed out, states
that when the vertical separation is large the network will never advise a strong turn. The
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Table 2 Verifying properties of
the ACAS Xu networks

Networks Result Time Stack Splits

φ1 41 UNSAT 394517 47 1522384

4 TIMEOUT

φ2 1 UNSAT 463 55 88388

35 SAT 82419 44 284515

φ3 42 UNSAT 28156 22 52080

φ4 42 UNSAT 12475 21 23940

φ5 1 UNSAT 19355 46 58914

φ6 1 UNSAT 180288 50 548496

φ7 1 TIMEOUT

φ8 1 SAT 40102 69 116697

φ9 1 UNSAT 99634 48 227002

φ10 1 UNSAT 19944 49 88520

large input domain and the particular network proved difficult to verify. Property φ8 states
that for a large vertical separation and a previous “weak left” advisory, the network will either
output COC or continue advising “weak left”. Here, we were able to find a counter-example,
exposing an input on which the DNN was inconsistent with the lookup table. This confirmed
the existence of a discrepancy that had also been seen in simulations, and which will be
addressed by retraining the DNN. We observe that for all properties, the maximal depth of
nested splits was always well below the total number of ReLU nodes, 300, illustrating the fact
that Reluplex did not split on many of them. Also, the total number of case-splits indicates
that large portions of the search space were pruned.

Another class of properties that we tested is adversarial robustness properties. DNNs
have been shown to be susceptible to adversarial inputs [69]: correctly classified inputs that
an adversary slightly perturbs, leading to their misclassification by the network. Adversarial
robustness is thus a safety consideration, and adversarial inputs can be used to train the
network further, making it more robust [23]. There exist approaches for finding adversarial
inputs [4,23], but the ability to verify their absence is limited.

We say that a network is δ-locally-robust at input point x if for every x′ such that ‖x −
x′‖∞ ≤ δ, the network assigns the same label to x and x′. In the case of the ACASXu DNNs,
this means that the same output has the lowest score for both x and x′. Reluplex can be used
to prove local robustness for a given x and δ, as depicted in Table 3. We used one of the
ACAS Xu networks, and tested combinations of 5 arbitrary points and 5 values of δ. SAT
results show that Reluplex found an adversarial input within the prescribed neighborhood,
and UNSAT results indicate that no such inputs exist. Using binary search on values of δ,
Reluplex can thus be used for approximating the optimal δ value up to a desired precision:
for example, for point 4 the optimal δ is between 0.025 and 0.05. It is expected that different
input points will have different local robustness, and the acceptable thresholds will thus need
to be set individually.

Finally, we mention an additional variant of adversarial robustness which we term global
adversarial robustness, and which can also be solved by Reluplex. Whereas local adversarial
robustness is measured for a specific x, global adversarial robustness applies to all inputs
simultaneously. This is expressed by encoding two side-by-side copies of the DNN in ques-
tion, N1 and N2, operating on separate input variables x1 and x2, respectively, such that x2
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Table 3 Local adversarial
robustness tests. All times are in
seconds

δ Point 1 Point 2 Point 3 Point 4 Point 5

0.1 Result SAT UNSAT UNSAT SAT UNSAT

Time 135 5880 863 2 14560

0.075 Result SAT UNSAT UNSAT SAT UNSAT

Time 239 1167 436 977 4344

0.05 Result SAT UNSAT UNSAT SAT UNSAT

Time 24 285 99 1168 1331

0.025 Result UNSAT UNSAT UNSAT UNSAT UNSAT

Time 609 57 53 656 221

0.01 Result UNSAT UNSAT UNSAT UNSAT UNSAT

Time 57 5 1 7 6

Total Time 1064 7394 1452 2810 20462

represents an adversarial perturbation of x1. We can then check whether ‖x1 − x2‖∞ ≤ δ

implies that the two copies of the DNN produce similar outputs. Formally, we require that if
N1 and N2 assign output a values p1 and p2 respectively, then |p1− p2| ≤ ε. If this holds for
every output, we say that the network is ε-globally-robust. Global adversarial robustness is
harder to prove than the local variant, because encoding two copies of the network results in
twice as many ReLU nodes and because the problem is not restricted to a small input domain.
We were able to prove global adversarial robustness only on small networks; improving the
scalability of this technique is left for future work.

7 Related work

The state of the art prior to this work was limited to verifying fairly small networks. For
example, in [59] the authors propose an approach for verifying properties of neural networks
with sigmoid activation functions. They replace the activation functions with piecewise linear
approximations, and then invoke black-box SMT solvers. When spurious counter-examples
are found, the approximation is refined. The authors highlight the difficulty in scaling up this
technique and are able to tackle only small networks with at most 20 hidden nodes [60].

Other prior work focused on trading away soundness for better scalability. For example,
the authors of [4] propose a technique for finding local adversarial examples in DNNs with
ReLUs. Given an input point x, they encode the problem as a linear program and invoke
a black-box LP solver. The activation function issue is circumvented by considering a suf-
ficiently small neighborhood of x, in which all ReLUs are fixed at the active or inactive
state, making the problem convex. Thus, it is unclear how to address an x for which one or
more ReLUs are on the boundary between active and inactive states. In contrast, Reluplex
can be used on input domains for which ReLUs can have more than one possible state. In
another paper [27], the authors propose a method for proving the local adversarial robustness
of DNNs. For a specific input point x, the authors attempt to prove consistent labeling in
a neighborhood of x by means of discretization: they reduce the infinite neighborhood into
a finite set of points, and check that the labeling of these points is consistent. This process
is then propagated through the network, layer by layer. While the technique is general in
the sense that it is not tailored for a specific activation function, the discretization process
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means that any UNSAT result only holds modulo the assumption that the finite sets correctly
represent their infinite domains. In contrast, our technique can guarantee that there are no
irregularities hiding between the discrete points.

Since this work first appeared [34], there have been several interesting developments in
the field, and additional verification approaches have been proposed [50]: constraint-solving
based approaches with various heuristics (e.g., [7,13,15,51,70,75]), approaches that analyze
DNNs as continuous functions (e.g., [54,63]), and approaches based on abstract interpretation
(e.g., [18,65,66,72]). Other researchers have focused on verifying cyber-physical systems that
incorporate DNNs as controllers (e.g., [5,12,28,68,74]) and on using verification to explain
the behaviors of DNNs to humans (e.g., [9,31]). Yet another line of work attempted to train
DNNs that are correct by construction (e.g., [14,25,45,49,61]).

In addition to these advances, the Reluplex algorithm itself has been implemented as
part of the open-source Marabou framework [37] and has been extended in various ways.
These include: (i) the integration of abstraction-refinement methods [16] and parallelization
methods [73] to significantly improve the scalability of the algorithm; the addition of phase
two simplex into the algorithm, to solve qualitative questions about neural networks [67];
support for binarized neural networks [1]; and the leveraging of automated invariant infer-
ence techniques to verify recurrent neural networks [29]. Reluplex has also been used to
verify the adversarial robustness of networks in various contexts [8,24,35,48], to simplify
neural networks through the removal of neurons and edges in ways that do not harm their
accuracy [20], to verify computer network protocols [38], and to make provably minimal
modifications to DNNs in order to remove unwanted behaviors [21].

8 Conclusion and next steps

We presented a novel decision algorithm for solving queries on deep neural networks with
ReLU activation functions. The technique is based on extending the simplex algorithm to
support the non-convex ReLUs in a way that allows their inputs and outputs to be temporarily
inconsistent and then fixed as the algorithmprogresses. To guarantee termination, someReLU
connections may need to be split upon—but in many cases this is not required, resulting in an
efficient solution. Our success in verifying properties of the ACAS Xu prototype networks
indicates that the technique holds much potential for verifying real-world DNNs.

In the future, we plan to increase the technique’s scalability. Apart from making engi-
neering improvements to our implementation, we plan to explore better strategies for the
application of the Reluplex rules, and to employ advanced conflict analysis techniques
for reducing the amount of case-splitting required. Another direction is to provide better
soundness guarantees without harming performance, for example by replaying floating-point
solutions using precise arithmetic [40], or by producing externally-checkable correctness
proofs [36]. Finally, we plan to extend our approach to handle DNNs with additional kinds
of layers; specifically, layers that involve activation functions that are not piecewise linear.
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Appendix

Verifying properties in DNNs with ReLUs is NP-complete

Let N be a DNN with ReLUs and let ϕ denote a property that is a conjunction of linear
constraints on the inputs x and outputs y of N , i.e. ϕ = ϕ1(x) ∧ ϕ2(y). We say that ϕ is
satisfiable on N if there exists an assignment α for the variables x and y such that α(y) is the
result of propagating α(x) through N and α satisfies ϕ.

Claim The problem of determining whether ϕ is satisfiable on N for a given DNN N and a
property ϕ is NP-complete.

Proof Wefirst show that the problem is in NP. A satisfiability witness is simply an assignment
α(x) for the input variables x. This witness can be checked by feeding the values for the input
variables forward through the network, obtaining the assignment α(y) for the output values,
and checking whether ϕ1(x) ∧ ϕ2(y) holds under the assignment α.

Next, we show that the problem is NP-hard, using a reduction from the 3-SAT problem.
We will show how any 3-SAT formula ψ can be transformed into a DNN with ReLUs N and
a property ϕ, such that ϕ is satisfiable on N if and only if ψ is satisfiable.

Letψ = C1∧C2∧. . .∧Cn denote a 3-SAT formula over variable set X = {x1, . . . , xk}, i.e.
eachCi is a disjunction of three literals q1i ∨q2i ∨q3i where the q’s are variables from X or their
negations. The question is to determine whether there exists an assignment a : X → {0, 1}
that satisfies ψ , i.e. that satisfies all the clauses simultaneously.

For simplicity, we first show the construction assuming that the input nodes take the
discrete values 0 or 1. Later we will explain how this limitation can be relaxed, so that the
only limitation on the input nodes is that they be in the range [0, 1].

We begin by introducing the disjunction gadget which, given nodes q1, q2, q3 ∈ {0, 1},
outputs a node yi that is 1 if q1 + q2 + q3 ≥ 1 and 0 otherwise. The gadget is shown below
for the case that the qi literals are all variables (i.e. not negations of variables):

q1i

q2i

q3i

ti

1

−1

−1

−1
1

ReLU yi
−1

1

The disjunction gadget can be regarded as calculating the expression

yi = 1 − max (0, 1 −
3∑

j=1

q j
i )

If there is at least one input variable set to 1, yi will be equal to 1. If all inputs are 0, yi will
be equal to 0. The crux of this gadget is that the ReLU operator allows us to guarantee that
even if there are multiple inputs set to 1, the output yi will still be precisely 1.

In order to handle any negative literals q j
i ≡ ¬x j , before feeding the literal into the

disjunction gadget we first use a negation gadget:
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xj qji

1

−1

1

This gadget simply calculates 1 − x j , and then we continue as before.
The last part of the construction involves a conjunction gadget:

y1

yn

...
y

1

1

Assuming all nodes y1, . . . , yn are in the domain {0, 1}, we require that node y be in the
range [n, n]. Clearly this holds only if yi = 1 for all i .

Finally, in order to check whether all clauses C1, . . . ,Cn are simultaneously satisfied, we
construct a disjunction gadget for each of the clauses (using negation gadgets for their inputs
as needed), and combine them using a conjunction gadget:

x1

x2

...

xn

1

...

t1
ReLU y1

−1

1

1

tn
ReLU yn

−1

1

1

y

1

1

where the input variables are mapped to each ti node according to the definition of clause
Ci . As we discussed before, node yi will be equal to 1 if clause Ci is satisfied, and will
be 0 otherwise. Therefore, node y will be in the range [n, n] if and only if all clauses are
simultaneously satisfied. Consequently, an input assignment a : X → {0, 1} satisfies the
input and output constraints on the network if and only if it also satisfies the original ψ , as
needed.

The construction above is based on the assumption that we can require that the input
nodes take values in the discrete set {0, 1}, which does not fit our assumption that ϕ1(x) is a
conjunction of linear constraints. We show now how this requirement can be relaxed.

Let ε > 0 be a very small number. We set the input range for each variable xi to be [0, 1],
but we will ensure that any feasible solution has xi ∈ [0, ε

2 ] or xi ∈ [1 − ε
2 , 1]. We do this
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by adding to the network for each xi an auxiliary gadget that uses ReLU nodes to compute
the expression

max (0, ε − x) + max (0, x − 1 + ε),

and requiring that the output node of this gadget be in the range [ ε
2 , ε]. It is straightforward

to show that for x ∈ [0, 1], this holds if and only if x ∈ [0, ε
2 ] or x ∈ [1 − ε

2 , 1].
The disjunction gadgets in our construction then change accordingly. The yi nodes at the

end of each gadget will no longer take just the discrete values {0, 1}, but instead be in the
range [0, 3 · ε

2 ] if all inputs were in the range [0, ε
2 ], or in the range [1 − ε

2 , 1] if at least one
input was in the range [1 − ε

2 , 1].
If every input clause has at least one node in the range [1 − ε

2 , 1] then all yi nodes will
be in the range [1 − ε

2 , 1], and consequently y will be in the range [n(1 − ε
2 ), n]. However,

if at least one clause does not have a node in the range [1− ε
2 , 1] then y will be smaller than

n(1 − ε
2 ) (for ε < 2

n+3 ). Thus, by requiring that y ∈ [n(1 − ε
2 ), n], the input and output

constraints will be satisfiable on the network if and only if ψ is satisfiable; and the satisfying
assignment can be constructed by treating every xi ∈ [0, ε

2 ] as 0 and every xi ∈ [1 − ε
2 , 1]

as 1. ��

The Reluplex calculus is sound and complete

We define a derivation tree as a tree where each node is a configuration whose children (if
any) are obtained by applying to it one of the derivation rules. A derivation tree D derives a
derivation tree D′ if D′ is obtained from D by applying exactly one derivation rule to one of
D’s leaves. A derivation is a sequence Di of derivation trees such that D0 has only a single
node and each Di derives Di+1. A refutation is a derivation ending in a tree, all of whose
leaves are UNSAT. A witness is a derivation ending in a tree, at least one of whose leaves
is SAT. If φ is a conjunction of atoms, we say that D is a derivation from φ if the initial
tree in D contains the configuration initialized from φ. A calculus is sound if, whenever a
derivation D from φ is either a refutation or a witness, φ is correspondingly unsatisfiable or
satisfiable, respectively. A calculus is complete if there always exists either a refutation or a
witness starting from any φ.

In order to prove that the Reluplex calculus is sound, we first prove the following lemmas:

Lemma 1 Let D denote a derivation starting from a derivation tree D0 with a single node
s0 = 〈B0, T0, l0, u0, α0, R0〉. Then, for every derivation tree Di appearing in D, and for
each node s = 〈B, T , l, u, α, R〉 appearing in Di (except for the distinguished nodes SAT
and UNSAT), the following properties hold:

(i) if an assignment satisfies T , then it also satisfies T0; and
(ii) the assignment α satisfies T (i.e., α satisfies all equations in T ).

Proof The proof is by induction on i . For i = 0, the claim holds trivially (recall that α0

assigns every variable to 0). Now, suppose the claim holds for some i and consider Di+1.
Di+1 is equivalent to Di except for the addition of one ormore nodes added by the application
of a single derivation rule d to some node s with tableau T and assignment α. Because s
appears in Di , we know by the induction hypothesis that an assignment that satisfies T also
satisfies T0, and that α satisfies T . Let s′ be a new node (not a distinguished node SAT or
UNSAT) with tableau T ′ and assignment α′, introduced by the rule d . Note that d cannot be
ReluSuccess, Failure1, or Failure2, as these introduce only distinguished nodes; note also that
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if d is deriveLowerBound or deriveUpperBound then both the tableau and the assignment
are unchanged, so both properties are trivially preserved.

Suppose d is Pivot1, Pivot2 or PivotForRelu. For any of these rules, α′ = α and T ′ =
pivot(T , i, j) for some i and j . Observe that by definition of the pivot operation, the equations
of T logically entail those of T ′ and vice versa, and so they are satisfied by exactly the same
assignments. Alternatively, suppose d is ReluSplit. For the child node corresponding to the
inactive case (u(xi ) := min(u(xi ), 0), l(x j ) := max(l(x j ), 0) and u(x j ) := min(u(x j ), 0)),
the tableau and assignment are unchanged. For the active case (l(xi ) := max(l(xi ), 0)), the
tableau and assignment are changed by the addEq operation. This operation adds a single
equation with a fresh variable as its left hand side, and then extends the assignment to assign
this fresh variable a value that satisfies the new equation; the assignments of all other variables
are unchanged. From these observations, both properties follow easily.

The remaining cases are when d is Update, Updateb or Update f . For these rules,
T ′ = T , from which property (i) follows trivially. For property (ii), we first note that
α′ = update(α, xi , δ) for some i and δ. By definition of the update operation, because α

satisfied the equations of T , α′ continues to satisfy these equations and so (because T ′ = T )
α′ also satisfies T ′. ��
Lemma 2 Let D denote a derivation starting from a derivation tree D0 with a single node
s0 = 〈B0, T0, l0, u0, α0, R0〉. If there exists an assignment α∗ (not necessarily α0) such that
α∗ satisfies T0, for every pair 〈xi , x j 〉 ∈ R it holds that α∗(x j ) = max(0, α∗(xi )), and
l0(xi ) ≤ α∗(xi ) ≤ u0(xi ) for all i , then for each derivation tree Di appearing in D at least
one of these two properties holds:

(i) Di has a SAT leaf.
(ii) Di has a leaf s = 〈B, T , l, u, α, R〉 (that is not a distinguished node SAT or UNSAT)

such that l(xi ) ≤ α∗(xi ) ≤ u(xi ) for all i , and α∗ satisfies T .

Proof The proof is again by induction on i . For i = 0, property (ii) holds trivially. Now,
suppose the claim holds for some i and consider Di+1. Di+1 is equivalent to Di except for
the addition of one or more nodes added by the application of a single derivation rule d to a
leaf s of Di .

Due to the induction hypothesis, we know that Di has a leaf s̄ that is either a SAT leaf
or that satisfies property (ii). If s̄ �= s, then s̄ also appears as a leaf in Di+1, and the claim
holds. We will show that the claim also holds when s̄ = s. Because none of the derivation
rules can be applied to a SAT or UNSAT node, we know that node s is not a distinguished
SAT or UNSAT node, and we denote s = 〈B, T , l, u, α, R〉.

If d is ReluSuccess, Di+1 has a SAT leaf and property (i) holds. Suppose d is Pivot1,
Pivot2, PivotForRelu, Update, Updateb or Update f . In any of these cases, node s has a
single child in Di+1, which we denote s′ = 〈B′, T ′, l ′, u′, α′, R′〉. By definition of these
derivation rules, l ′(x j ) = l(x j ) and u′(x j ) = u(x j ) for all j . Further, T ′ is either identical
or equivalent to T . Because node s satisfies property (ii), we get that s′ is a leaf that satisfies
property (ii), as needed.

Suppose that d is ReluSplit, applied to a pair 〈xi , x j 〉 ∈ R. Node s has two children in
Di+1: a state s− in which the upper bounds for xi and x j have been decreased to 0 if theywere
previously positive, and the lower bound for x j has been increased to 0 if it was previously
negative; and a state s+ in which the lower bound for xi has been increased to 0 if it was
previously negative, and the tableau has been extended to include the equation x j = xi . It is
straightforward to see that ifα∗(xi ) ≤ 0, then property (ii) holds for s−; and that ifα∗(xi ) ≥ 0,
then property (ii) holds for s+. In particular, in the latter case, α∗(x j ) = max(0, α∗(xi ))
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combined with α∗(xi ) ≥ 0 implies that the new equation in T , namely x j = xi , is satisfied
(we assume without loss of generality that α∗ assigns 0 to all variables introduced by addEq).
Either way, Di+1 has a leaf for which property (ii) holds, as needed.

Next, consider the case where d is deriveLowerBound (the deriveUpperBound case
is symmetrical and is omitted). Node s has a single child in Di+1, which we denote
s′ = 〈B′, T ′, l ′, u′, α′, R′〉. Because the deriveLowerBound and deriveUpperBound rules
cannot be applied to the distinguished SAT node, property (ii) must hold for s. Let xi denote
the variable to which deriveLowerBound was applied. By definition, l ′(xi ) ≥ l(xi ), and
all other variable bounds are unchanged between s and s′. Thus, it suffices to show that
α∗(xi ) ≥ l ′(xi ). Because property (ii) holds for s, α∗ satisfies T ; and by the induction
hypothesis, l(x j ) ≤ α∗(x j ) ≤ u(x j ) for all j . The fact that α∗(xi ) ≥ l ′(xi ) then follows
directly from the guard condition of deriveLowerBound.

The remaining two cases are when d is the Failure1 or Failure2 rule. Because these
rules are not applicable to the distinguished SAT node, it follows that property (ii) holds
for s. Suppose towards contradiction that in this case, the Failure1 rule is applicable to
some variable xi , and suppose (without loss of generality) that α(xi ) < l(xi ). By the
inductive hypothesis, we know that l(x j ) ≤ α∗(x j ) ≤ u(x j ) for all j , and by property
(ii) we know that α∗ satisfies T . Consequently, there must be a variable xk such that
(Ti,k > 0 ∧ α(xk) < α∗(xk)), or (Ti,k < 0 ∧ α(xk) > α∗(xk)). But because all variables
under α∗ are within their bounds, it follows that slack+(xi ) �= ∅, which is contradictory to
the fact that the Failure1 rule was applicable in s. Next, suppose towards contradiction that
the Failure2 rule is applicable to some variable xi , i.e. that l(xi ) > u(xi ). This immediately
contradicts the fact that l(xi ) ≤ α∗(xi ) ≤ u(xi ). The claim follows. ��
Lemma 3 Let D denote a derivation starting from a derivation tree D0 with a single node
s0 = 〈B0, T0, l0, u0, α0, R0〉. Then, for every derivation tree Di appearing in D, and for
each node s = 〈B, T , l, u, α, R〉 appearing in Di (except for the distinguished nodes SAT
and UNSAT), the following properties hold:

(i) R = R0; and
(ii) l(xi ) ≥ l0(xi ) and u(xi ) ≤ u0(xi ) for all i .

Proof Property (i) follows from the fact that none of the derivation rules (except for
ReluSuccess, Failure1, and Failure2) changes the set R. Property (ii) follows from the fact
that the only rules (except for ReluSuccess, Failure1, and Failure2) that update lower and
upper variable bounds are deriveLowerBound, deriveUpperBound, and ReluSplit, and that
these rules can only increase lower bounds or decrease upper bounds.

We are now ready to prove that the Reluplex calculus is sound and complete.

Claim The Reluplex calculus is sound.

Proof We begin with the satisfiable case. Let D denote a witness for φ. By definition, the
final tree D in D has a SAT leaf. Let s0 = 〈B0, T0, l0, u0, α0, R0〉 denote the initial state of
D0, and let s = 〈B, T , l, u, α, R〉 denote a state in D to which the ReluSuccess rule was
applied (i.e., a predecessor of a SAT leaf).

By Lemma 1, α satisfies T0. Also, by the guard conditions of the ReluSuccess rule, l(xi ) ≤
α(xi ) ≤ u(xi ) for all i . By property (ii) of Lemma 3, this implies that l0(xi ) ≤ α(xi ) ≤ u0(xi )
for all i . Consequently, α satisfies every linear inequality in φ. Finally, we observe that by the
conditions of the ReluSuccess rule, α satisfies all the ReLU constraints of s. From property
(i) of Lemma 3, it follows that α also satisfies the ReLU constraints of s0, which are precisely
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the ReLU constraints in φ. We conclude that α satisfies every constraint in φ, and hence φ is
satisfiable, as needed.

For the unsatisfiable case, it suffices to show that if φ is satisfiable then there cannot exist
a refutation for it. This is a direct result of Lemma 2: if φ is satisfiable, then there exists
an assignment α∗ that satisfies the initial tableau T0, and for which all variables are within
bounds and all ReLU constraints are satisfied. Hence, Lemma 2 implies that any derivation
tree in any derivation D from φ must have a leaf that is not the distinguished UNSAT leaf. It
follows that there cannot exist a refutation for φ. ��
Claim The Reluplex calculus is complete.

Proof Having shown that the Reluplex calculus is sound, it suffices to show a strategy for
deriving a witness or a refutation for every φ within a finite number of steps. As mentioned
in Sect. 3, one such strategy involves two steps: (i) Eagerly apply the ReluSplit rule, once
for each ReLU in R; and (ii) For every leaf of the resulting derivation tree, apply the simplex
rules Pivot1, Pivot2, Update, Failure1, and Failure2, and the Reluplex rule ReluSuccess, in a
way that guarantees a SAT or an UNSAT configuration is reached within a finite number of
steps.

Let D denote the derivation tree obtained after step (i). In every leaf s of D, all ReLU
connections have been eliminated, meaning that the variable bounds and equations force each
ReLU connection to be either active or inactive. This means that every such s can be regarded
as a pure simplex problem, and that any solution to that simplex problem is guaranteed to
satisfy also the ReLU constraints in s.

The existence of a terminating simplex strategy for deciding the satisfiability of each leaf
of D follows from the completeness of the simplex calculus [71]. One such widely used
strategy is Bland’s Rule [71]. We observe that although the simplex Success rule does not
exist in Reluplex, it can be directly substituted with the ReluSuccess rule. This is so because,
having applied the ReluSplit rule on each of the ReLUs, any assignment that satisfies the
variable bounds in s also satisfies the ReLU constraints in s.

It follows that for every φ, we can produce a witness or a refutation, as needed. ��

Encoding ReLUs for SMT and LP solvers

We demonstrate the encoding of ReLU nodes that we used for the evaluation conducted using
SMT and LP solvers. Let y = ReLU(x). In the SMTLIB format, used by all SMT solvers
that we tested, ReLUs were encoded using an if-then-else construct:

(assert (= y (ite (>= x 0) x 0)))

In LP format this was encoded using mixed integer programming. Using Gurobi’s built-in
Boolean type, we defined for every ReLU connection a pair of Boolean variables, bon and
boff, and used them to encode the two possible states of the connection. Taking M to be a
very large positive constant, we used the following assertions:

bon + boff= 1
y >= 0
x - y - M*boff <= 0
x - y + M*boff >= 0
y - M*bon <= 0
x - M*bon <= 0
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When bon= 1 and boff= 0, the ReLU connection is in the active state; and otherwise,
when bon= 0 and boff= 1, it is in the inactive state.

In the active case, because boff = 0 the third and fourth equations imply that x = y
(observe that y is always non-negative). M is very large, and can be regarded as ∞; hence,
because bon= 1, the last two equationsmerely imply that x, y ≤ ∞, and so pose no restriction
on the solution.

In the inactive case, bon = 0, and so the last two equations force y = 0 and x ≤ 0. In this
case boff= 1 and so the third and fourth equations pose no restriction on the solution.

Formal definitions for properties �1,…,�10

The units for the ACAS Xu DNNs’ inputs are:

– ρ: feet.
– θ, ψ : radians.
– vown, vint: feet per second.
– τ : seconds.

θ and ψ are measured counter clockwise, and are always in the range [−π, π]. In line with
the discussion in Sect. 5, the family of 45 ACAS Xu DNNs are indexed according to the
previous action aprev and time until loss of vertical separation τ . The possible values for
these two indices are:

1. aprev: [Clear-of-Conflict, weak left, weak right, strong left, strong right].
2. τ : [0, 1, 5, 10, 20, 40, 60, 80, 100].

We use Nx,y to denote the network trained for the x-th value of aprev and y-th value of τ .
For example, N2,3 is the network trained for the case where aprev = weak left and τ = 5.
Using this notation, we now give the formal definition of each of the properties φ1, . . . , φ10

that we tested.

Property�1

– Description: If the intruder is distant and is significantly slower than the ownship, the
score of a COC advisory will always be below a certain fixed threshold.

– Tested on: all 45 networks.
– Input constraints: ρ ≥ 55947.691, vown ≥ 1145, vint ≤ 60.
– Desired output property: the score for COC is at most 1500.

Property�2

– Description: If the intruder is distant and is significantly slower than the ownship, the
score of a COC advisory will never be maximal.

– Tested on: Nx,y for all x ≥ 2 and for all y.
– Input constraints: ρ ≥ 55947.691, vown ≥ 1145, vint ≤ 60.
– Desired output property: the score for COC is not the maximal score.
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Property�3

– Description: If the intruder is directly ahead and is moving towards the ownship, the
score for COC will not be minimal.

– Tested on: all networks except N1,7, N1,8, and N1,9.
– Input constraints: 1500 ≤ ρ ≤ 1800, −0.06 ≤ θ ≤ 0.06, ψ ≥ 3.10, vown ≥ 980,

vint ≥ 960.
– Desired output property: the score for COC is not the minimal score.

Property�4

– Description: If the intruder is directly ahead and is moving away from the ownship but
at a lower speed than that of the ownship, the score for COC will not be minimal.

– Tested on: all networks except N1,7, N1,8, and N1,9.
– Input constraints: 1500 ≤ ρ ≤ 1800, −0.06 ≤ θ ≤ 0.06, ψ = 0, vown ≥ 1000,

700 ≤ vint ≤ 800.
– Desired output property: the score for COC is not the minimal score.

Property�5

– Description: If the intruder is near and approaching from the left, the network advises
“strong right”.

– Tested on: N1,1.
– Input constraints: 250 ≤ ρ ≤ 400, 0.2 ≤ θ ≤ 0.4, −3.141592 ≤ ψ ≤ −3.141592 +

0.005, 100 ≤ vown ≤ 400, 0 ≤ vint ≤ 400.
– Desired output property: the score for “strong right” is the minimal score.

Property�6

– Description: If the intruder is sufficiently far away, the network advises COC.
– Tested on: N1,1.
– Input constraints: 12000 ≤ ρ ≤ 62000, (0.7 ≤ θ ≤ 3.141592) ∨ (−3.141592 ≤ θ ≤

−0.7), −3.141592 ≤ ψ ≤ −3.141592 + 0.005, 100 ≤ vown ≤ 1200, 0 ≤ vint ≤ 1200.
– Desired output property: the score for COC is the minimal score.

Property�7

– Description: If vertical separation is large, the network will never advise a strong turn.
– Tested on: N1,9.
– Input constraints: 0 ≤ ρ ≤ 60760, −3.141592 ≤ θ ≤ 3.141592, −3.141592 ≤ ψ ≤

3.141592, 100 ≤ vown ≤ 1200, 0 ≤ vint ≤ 1200.
– Desired output property: the scores for “strong right” and “strong left” are never the

minimal scores.
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Property�8

– Description: For a large vertical separation and a previous “weak left” advisory, the
network will either output COC or continue advising “weak left”.

– Tested on: N2,9.
– Input constraints: 0 ≤ ρ ≤ 60760, −3.141592 ≤ θ ≤ −0.75 · 3.141592, −0.1 ≤ ψ ≤

0.1, 600 ≤ vown ≤ 1200, 600 ≤ vint ≤ 1200.
– Desired output property: the score for “weak left” is minimal or the score for COC is

minimal.

Property�9

– Description: Even if the previous advisory was “weak right”, the presence of a nearby
intruder will cause the network to output a “strong left” advisory instead.

– Tested on: N3,3.
– Input constraints: 2000 ≤ ρ ≤ 7000, −0.4 ≤ θ ≤ −0.14, −3.141592 ≤ ψ ≤

−3.141592 + 0.01, 100 ≤ vown ≤ 150, 0 ≤ vint ≤ 150.
– Desired output property: the score for “strong left” is minimal.

Property�10

– Description: For a far away intruder, the network advises COC.
– Tested on: N4,5.
– Input constraints: 36000 ≤ ρ ≤ 60760, 0.7 ≤ θ ≤ 3.141592, −3.141592 ≤ ψ ≤

−3.141592 + 0.01, 900 ≤ vown ≤ 1200, 600 ≤ vint ≤ 1200.
– Desired output property: the score for COC is minimal.
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