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CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems; Robotics; Embedded systems; • Theory of

computation→ Logic and verification; Verification by model

checking; • Software and its engineering→ Software verifi-

cation and validation.

Deep learning (DL) [4] is dramatically changing the world of soft-

ware. The rapid improvement in deep neural network (DNN) tech-

nology now enables engineers to train models that achieve super-

human results, often surpassing algorithms that have been carefully

hand-crafted by domain experts [19, 20]. There is even an intensi-

fying trend of incorporating DNNs in safety-critical systems, e.g.

as controllers for autonomous vehicles and drones [1, 12].

Although DNN-based systems demonstrate excellent perfor-

mance, they are far from perfect. It has been observed, in multiple

domains, that systems that rely on DNN components can err dra-

matically when encountering situations they had not encountered

before [21]. These errors are highly troubling if DNNs are to be

used in critical autonomous systems; and they are detrimental to

the wide adoption of these systems and their acceptance by reg-

ulators and the public. Unfortunately, DNN opacity prevents us

from applying industry best practices for quality assurance, which

are designed for hand-crafted code. There is thus an acute need

for techniques and approaches for improving the reliability and

maintainability of DNN-based systems.

One promising approach for tackling this difficulty is through

formal verification: the rigorous and automated examination of a

DNN-based system, in order to prove that it satisfies a specifica-

tion. The formal verification of DNNs is a fairly new topic, which

has received significant attention in recent years (e.g., [3, 10, 15]).

A major barrier to DNN verification is scalability: the underlying
decision problem is NP-complete, making it difficult to verify large

DNNs [15]. Consequently, great efforts are being put into devising

scalable verification tools, by using optimized decision procedures,

parallelization, abstraction-refinement techniques, and others. How-

ever, an equally significant problem,which has received only limited

attention, is how to make verification technology useful to engi-

neers: namely, how to effectively integrate DNN verification tools
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into the development cycle of DNN-based systems [8]. One chal-

lenge is how to come up with meaningful specifications to verify;

and another is how to use a discovered bug (e.g., a counter-example

returned by the verifier) in order to correct and improve the sys-

tem. Addressing these challenges is vital for the adoption of DNN

verification technology.

We argue here that a promising way of tackling these challenges

lies in drawing upon the many decades of work in software engi-

neering (SE). Specifically, we argue that exploiting synergies be-

tween DL and SE could provide the means for domain experts

to use their knowledge to generate meaningful specifications for

DNNs. Additionally, appropriate SE infrastructure could assist in

generalizing discovered bugs into code components that could be

reintegrated into the system, thus paving the way for using verifi-

cation to increase overall system reliability.

There have been recent attempts to combine deep learning with

software engineering techniques, which are in line with our view

— although these have not focused on verification. A notable ap-

proach is to augment ML-based systems with hand-crafted code

modules [17, 18]. So far, this approach has mostly been applied to

augment a DL model with ad-hoc, external override rules, which
guard it from performing clearly-catastrophic mistakes. These en-

couraging attempts highlight the potential of augmenting DL with

more advanced SE techniques.

In order to bridge the existing gap, we propose a more intensive

integration between DL and SE — one that will allow hand-crafted

modules to both guide the DL model by partaking in its training,

and also to guard its actions after deployment. We believe that such

methods, when combined with evolving DNN verification technol-

ogy, will constitute a key ingredient in making DL sufficiently safe

for deployment in safety-critical settings. Below we briefly describe

some of the research directions that we are pursuing, as well as

initial results.

Scenario-Based Programming. We identify the scenario-based
programming (SBP) [9] paradigm as being particularly suited for

integration with DL. SBP is a software development approach, par-

ticularly aimed at designing systems in a translucent, incremental

and intuitive way, which is aligned with how humans perceive

system requirements [5, 6, 9]. In SBP, a user specifies scenarios that

represent behaviors that the system should include or avoid. Each

scenario is standalone and self-contained, and concerns itself with

one aspect of the system, typically a single requirement. The sce-

narios are interwoven at runtime, in a way that produces cohesive

system behavior. An illustrative example appears in Fig. 1.

We propose to apply the SBP principles in devising a novel

methodology for creating software systems that leverage big data

on one hand, and domain knowledge on the other. Specifically, we
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Figure 1: (From [7]) A scenario-based system that controls the

water level in a tank. The AddHotWater scenario repeat-

edly waits for WaterLow events and requests three times

the event AddHot, signifying the addition of hot water; and

the AddColdWater scenario performs a symmetrical oper-

ation with cold water. To maintain the stability of the water

temperature in the tank, the Stability scenario enforces

the interleaving of AddHot and AddCold events by using

event blocking. For additional details, see [7].

propose to (i) integrate domain-expert scenarios into the training

process of DL-enabled systems, for guiding it; and (ii) augment the

resulting DL model with additional scenarios that will guard it from

making catastrophic errors.We argue that the special characteristics

of SBP, and specifically the presence of intuitive and independent

scenarios, make it highly suitable for this task.

We report on some of our initial, favorable results towards this

goal. In [2], we demonstrated how a scenario-based program could

improve the performance of a deep learning controller for a virtual

robot soccer player. There, we used SBP to model a naïve player,

by creating scenarios that specified how the robot player should

(i) turn; (ii) move towards the ball; and (iii) grab the ball. Each

action was also parametrized by its speed and force. Next, we added

additional scenarios, specifying the goals of the player. Finally,

we integrated the internal states of these scenarios into the DL

training procedure, in order to create a robot player that could

successfully grab the ball. We observed that the resulting controller

more successfully learned the correct amount of speed and force

required for effectively grabbing the ball than a controller generated

purely using DL [2].

In another recent project [13], we demonstrated how SBP can

be used for guarding DNN-based systems. Specifically, we targeted

state-of-the-art computer network systems, and demonstrated how

manually-crafted scenarios could be used to correct various bugs

discovered, e.g., through verification [16]. We focused on two kinds

of properties: safety properties, which ensure that bad things do

not happen; and liveness properties, which ensure that good things

eventually happen. For example, we studied a DNN-based conges-

tion controller [11]: a system used by Internet servers to select their

outgoing bit rates, with the goal of utilizing (without exceeding)

all available bandwidth. One concern with such a system is that it

might be overly conservative, i.e. choose a low sending rate even

though higher rates could be used. Thus, we augmented this system

with SBP components that ensured that this did not happen, by iden-

tifying such a situation and forcing the system to try out a higher

sending rate [13]. In another example, we studied a DNN-based

resource manager [17]: a system that controls CPU and memory

resources, and assigns them to incoming jobs in order to maximize

throughout. DNN verification has revealed that this system suffers

from certain security vulnerabilities [16], and that specific inputs

could cause it to repeatedly assign resources to non-existing jobs,

effectively starving other, legitimate jobs. In [13, 14] we showed

how the system could be augmented with SBP components that

generalized, and prevented, such undesirable behavior.

These initial examples demonstrate the feasibility and potential

of integrating SBP into various aspects of a DNN-based system’s

life cycle. Other directions that we are pursuing include the auto-

mated and semi-automated generalization of a discovered counter-

examples into scenarios, and also the use of scenarios as specifica-

tion artifacts for the DNN, to be repeatedly re-verified as the DNN

is updated and extended.
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