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Abstract. Adversarial robustness verification is essential for ensuring 
the safe deployment of Large Language Models (LLMs) in runtime-
critical applications. However, formal verification techniques remain com-
putationally infeasible for modern LLMs due to their exponential runtime 
and white-box access requirements. This paper presents a case study 
adapting and extending the RoMA statistical verification framework to 
assess its feasibility as an online runtime robustness monitor for LLMs in 
black-box deployment settings. Our adaptation of RoMA analyzes confi-
dence score distributions under semantic perturbations to provide quan-
titative robustness assessments with statistically validated bounds. Our 
empirical validation against formal verification baselines demonstrates 
that RoMA achieves comparable accuracy (within 1% deviation), and 
reduces verification times from hours to minutes. We evaluate this frame-
work across semantic, categorial, and orthographic perturbation domains. 
Our results demonstrate RoMA’s effectiveness for robustness monitoring 
in operational LLM deployments. These findings point to RoMA as a 
potentially scalable alternative when formal methods are infeasible, with 
promising implications for runtime verification in LLM-based systems. 

Keywords: LLM safety · Neural Network Verification · LLM 
verification · Robustness 

1 Introduction 

Large Language Models (LLMs) such as GPT, BERT, and LLaMA [ 9, 43, 49] oper-
ate over sequences of embedded tokens and obtain state-of-the-art results across 
diverse domains, demonstrating unprecedented capabilities in natural language 
understanding, reasoning, and generation tasks [ 35, 41, 49]. This success has 
driven their rapid deployment across virtually every sector, from medicine [ 14] 
and education [ 31] to scientific research [ 11] and creative industries [ 57]. LLMs 
are increasingly being integrated into safety-critical domains such as autonomous 
systems [ 18], legal decision-making [ 7], and healthcare [ 14], where their deploy-
ment will only continue to expand. However, as LLMs become widespread in 
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applications where failures can lead to severe consequences, ensuring these pow-
erful models are safe becomes crucial. 

LLMs, like their Deep Neural Network (DNN) predecessors, are highly vul-
nerable to adversarial perturbations: subtle modifications to input data that can 
cause incorrect outputs [ 3, 47]. In contrast to adversarial attacks in computer 
vision, these perturbations in natural language are often coherent and contex-
tually meaningful [ 39], making them particularly challenging to detect using 
traditional validation methods [ 34]. This fragility poses significant risks in safety-
critical systems, highlighting the need for runtime verification tools capable of 
monitoring LLM behavior during real-world deployment. 

Formal verification methods [ 5, 23] provide strong theoretical guarantees but 
scale poorly with large models, making them impractical for billion-parameter 
LLMs [ 24, 52]. Statistical methods [ 8, 17, 54] offer better scalability but often rely 
on assumptions like Lipschitz continuity or Gaussian distributions, which are 
frequently violated in transformer-based models [ 26]. While several runtime veri-
fication techniques have been developed for neural networks, they are unsuitable 
for LLMs: Activation-based monitors [ 15, 16] require white-box access to model 
internals, and dynamic reachability methods like POLAR-Express [ 55] assume 
explicit system dynamics incompatible with natural language. These limitations 
highlight the critical gap in runtime verification capabilities for modern language 
models. 

To address the gap in runtime verification for LLMs, we propose adapting 
the Robustness Measurement and Assessment (RoMA) method [ 29] as a statisti-
cal framework for real-time robustness monitoring in operational environments. 
RoMA operates as a black-box framework, requiring no access to model internals, 
and efficiently handles high-dimensional inputs while empirically validating its 
statistical assumptions. These properties make RoMA particularly well-suited 
to overcome the limitations of existing verification approaches that fail to scale 
to modern LLMs. While RoMA has been used in the original study for vision 
classification tasks on small-scale networks, it has not previously been tested or 
adapted for LLMs, which is a novel contribution of this work. 

This work presents a case study demonstrating the adaptation and extension 
of RoMA from offline image verification to online runtime monitoring for LLMs 
in operational environments. We perform an empirical evaluation of BERT-
based [ 9] sentiment classifiers on the SST-2 dataset [ 46], examining three core 
robustness dimensions: (i) embedding robustness, which measures how sensitive 
the model is to semantic perturbations in the Word2Vec [ 33] embedding space; 
(ii) categorial robustness, measuring systematic performance differences across 
sentiment classes; and (iii) orthographic robustness, measuring model tolerance 
to typographical errors in real-world text. Our experimental results demonstrate 
that our adapted RoMA framework achieves computational efficiency suitable 
for runtime deployment: with 50% of SST-2 sentences were processed within 
15 min, with full evaluation completed in under 36 min. Our robustness assess-
ment reveals that optimally trained models maintain 97.18% robustness under 
semantic perturbations. Categorial analysis indicates systematic robustness dif-
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ferences of up to 1.5% across sentiment classes. Additionally, orthographic anal-
ysis shows 94.44% robustness under typographical errors. Taken together, these 
findings suggest that our adapted RoMA framework offers a scalable approach 
for runtime verification in LLMs. 

An important consideration for statistical verification frameworks is whether 
they can deliver sufficiently accurate robustness estimates for practical deploy-
ment. To address this question, we empirically validate RoMA’s accuracy against 
the Exact Count formal verification algorithm [ 32], which provides precise robust-
ness measurements. We conduct systematic experiments across synthetic neural 
network models and the ACAS Xu safety-critical aviation benchmark [ 21, 22] 
that appeared in the original Exact Count study. Our evaluation demonstrates 
that RoMA estimates robustness within 1% deviation from Exact Count’s results 
while reducing verification time from hours to minutes. This efficiency suggests 
that statistical frameworks like RoMA could be suitable for runtime monitoring, 
potentially helping to narrow the gap between theoretical robustness guarantees 
and practical operational constraints, though broader validation is needed to 
fully assess their applicability. 

To summarize, our contributions include: (i) adapting and extending RoMA 
from offline CNN verification to an online black-box runtime monitor for LLMs, 
(ii) empirically validating its accuracy against formal verification baselines, show-
ing comparable accuracy with reduced computational requirements, and (iii) 
demonstrating its application across embedding, categorial, and orthographic 
perturbation domains relevant to NLP deployments. 

The rest of the paper is organized as follows. In Sect. 2, we provide the nec-
essary background to contextualize our work. In Sect. 3 we review the related 
work to this paper. Building on this foundation, Sect. 4 introduces our proposed 
framework, detailing the methodology for assessing LLM robustness. In Sect. 5, 
we present our experimental setup, evaluation metrics, and empirical findings, 
offering insights into the robustness profiles of widely-used LLMs. Finally, in 
Sect. 6, we summarize our contributions and outline future research aimed at 
enhancing the reliability and trustworthiness of language models in real-world 
applications. 

2 Background 

DNNs, Adversarial Perturbations, and Robustness. A DNN  N is defined 
as a function N : Rn → Rm that maps an input vector x ∈ Rn to an output 
vector y ∈ Rm. In this work, we focus on classification networks, where an input 
x is classified as label l when arg max(N(x)) = l. In such networks, the final 
layer is usually a softmax layer, whose outputs are commonly interpreted as 
confidence scores. 

In real-world settings, models are often exposed to adversarial perturba-
tions: input modifications that cause misclassification yet remain impercepti-
ble to human operators [ 6, 12]. This vulnerability is particularly problematic for
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runtime-critical systems, which require mechanisms to monitor model behavior 
during operation and detect such adversarial perturbations. 

Local robustness quantifies a network’s resilience within some input bounds 
[ 24]: 

Definition 1. A DNN N is ε-locally-robust at input point x0 if and only if 

∀x.||x − x0||∞ ≤ ε ⇒ arg max(N(x)) = arg max(N (x0)) 

Intuitively, Definition 1 specifies that a DNN is locally robust if, for all input 
vectors x within an ε-ball centered at a fixed input vector x0, the network assigns 
the same label to x as it does to x0. Verifying local robustness is computationally 
intractable for large networks due to its NP-complete nature [ 23]. As a result, 
runtime verification must often rely on probabilistic estimates of robustness. 

Definition 2. The probabilistic-local-robustness (plr) score of a DNN N at input 
point x0, abbreviated plrε(N, x0), is defined as: 

plrε(N, x0) � Px:‖x−x0‖∞≤ε(arg max(N (x)) = arg max(N (x0))) 

The plr score quantifies the likelihood that predictions remain unchanged 
within an ε-ball and is particularly suitable for runtime certification under uncer-
tainty [ 27]. Approximating plr efficiently enables real-time assessment of robust-
ness in black-box settings [ 8, 17, 54]. This probabilistic measure aligns with certi-
fication standards requiring quantitative failure probability assessments, such as 
ARP 4754 guidelines [ 27], while remaining computationally feasible for runtime 
evaluation. 

Statistical Verification Under Runtime Constraints. Statistical verifica-
tion methods hold significant potential for addressing the scalability challenges 
that limit formal verification approaches. Here, we set out to examine this possi-
bility by systematically evaluating statistical verification for LLM runtime mon-
itoring. 

The first approach involves methods that rely on Gaussian distributional 
assumptions, such as randomized smoothing techniques [ 8]. However, these 
assumptions are frequently violated in transformer-based models [ 13]. The sec-
ond approach is importance sampling techniques such as [ 54], but these can 
exhibit sensitivity to outlier samples, resulting in erratic monitoring behavior. 
Several approaches, such as Lipschitz-margin training [ 50] and spectral norm 
regularization [ 56], assume Lipschitz-continuity, but these constants may not be 
well-defined for contemporary transformer architectures [ 26]. Finally, we select 
RoMA [ 29] as our statistical verification framework for LLM runtime monitoring 
because it addresses these limitations through several distinguishing character-
istics. 

RoMA [ 29] and gRoMA [ 30] are black-box robustness estimation frameworks 
designed to evaluate the robustness of DNNs. These methods analyze confidence 
scores from thousands of uniformly-sampled perturbations around an input
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point, employing Anderson-Darling goodness-of-fit [ 1] testing to validate nor-
mal distribution assumptions. When necessary, they apply the Box-Cox power 
transformation [ 4] to achieve normality, enabling reliable probabilistic analy-
sis. Specifically, RoMA focuses on the second-highest confidence score across all 
classes (the runner-up class), which reflects the margin between the predicted 
label and the nearest alternative. By analyzing the distribution of these scores 
across perturbations, RoMA quantifies how close the model is to misclassifica-
tion, providing a sensitive measure of local robustness tied to Definition 2. This 
approach enables probabilistic assessment of model reliability under the input 
variations encountered during operational deployment. 

RoMA’s key runtime advantages include no white-box access requirements, 
making it compatible with proprietary model deployments, empirically validated 
statistical assumptions that ensure distributional validity, and consistent compu-
tational overhead with linear scaling that enables predictable runtime resource 
consumption. Although RoMA was originally evaluated on vision tasks (CIFAR-
10), it has not yet been extended to the unique challenges of high-dimensional 
NLP tasks. This gap is addressed in our work, where we apply the RoMA frame-
work to LLMs, demonstrating its effectiveness in this new domain. 

3 Related Work 

Robustness to Text Perturbations in Language Models. The robustness 
of language models to text perturbations is a vital research area, particularly as 
LLMs are increasingly deployed in real-world applications. Jin et al. [ 19] explored 
BERT’s vulnerability to adversarial attacks with TextFooler, a method that gen-
erates adversarial examples through synonym replacement, revealing that even 
advanced models can be misled by subtle changes. In addition, Singh et al. [ 45] 
conducted a comprehensive analysis of LLM robustness to systematic text pertur-
bations across different architectures and tasks, demonstrating that model behav-
ior can be highly sensitive to small input changes. Finally, Romero-Alvarado et 
al. [ 42] investigated language models’ resilience to various perturbation types, 
revealing systematic brittleness patterns across different input categories. While 
these studies provide valuable insights into LLM vulnerabilities through offline 
analysis, RoMA differentiates itself by enabling black-box statistical verification 
with quantitative robustness bounds designed for continuous monitoring during 
operational deployment. 
DNN Enable Monitor (DEM). A closely related approach is DNN Enable 
Monitor (DEM) [ 25], which provides output-centric, black-box certification for 
DNNs in safety-critical aerospace settings. While both DEM and our method 
rely on perturbation-based analysis without requiring model internals, they dif-
fer in scope and methodology. DEM applies hypothesis testing to detect adver-
sarial inputs in image classifiers based on label consistency, producing binary 
accept/reject outcomes. Additionally, DEM requires a lengthy and sensitive cali-
bration process before deployment, whereas our RoMA framework operates with-
out any calibration requirements. Our RoMA-based framework targets LLMs
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and computes continuous robustness scores via distributional analysis of runner-
up confidence margins under semantic, categorial, and orthographic perturba-
tions. This enables more expressive and fine-grained monitoring suited to natural 
language domains. 

Runtime Monitoring for Neural Networks. Runtime monitoring tech-
niques for neural networks follow several paradigms. POLAR-Express [ 55] per-
forms online reachability analysis in NN-controlled systems, enabling dynamic 
controller switching upon detecting unsafe states. The combined Gaussian 
and Outside-the-Box monitor [ 15] detects out-of-distribution (OOD) inputs 
via activation-based analysis, blending neuron-wise Gaussian modeling with 
clustering. Similarly, the box-based monitor for YOLO [ 16] constructs hyper-
rectangular activation zones to identify OOD behavior at runtime. While effec-
tive, these approaches rely on binary decisions and require access to internal 
activations [ 15, 16] or explicit dynamics [ 55]. In contrast, RoMA’s black-box 
methodology supports scalable, model-agnostic monitoring for LLMs, providing 
probabilistic robustness estimates that capture nuanced behavior under realistic 
input shifts. 

4 Method: Statistical Distribution Analysis for LLM 
Classification Resilience 

The RoMA framework is a statistical verification technique originally developed 
to assess the robustness of image classifiers. RoMA operates as a black-box 
method, meaning it requires no access to internal model weights or gradients. 
Instead, it evaluates robustness by sampling perturbations around a given input 
and analyzing their effect on the model’s confidence scores. A key innovation of 
RoMA is its focus on the runner-up confidence score—the second-highest class 
probability—across perturbed inputs. This score serves as a proxy for how close 
the model is to changing its prediction. For example, consider a classifier that 
assigns cat to an image with 92% confidence and dog with 8%. If slight pertur-
bations cause the runner-up score (dog) to rise significantly, this indicates an 
unstable prediction. RoMA collects thousands of such perturbed inputs, tests 
whether the runner-up scores follow a normal distribution using the Anderson-
Darling test [ 1], and applies the Box-Cox transformation [ 4] if needed to enforce 
normality. This enables robust estimation of the probability that random per-
turbations will flip the classification, providing a quantitative measure of local 
robustness (plr). 

While RoMA was originally designed for image classifiers, extending it to 
LLMs introduces several significant challenges. First, unlike images, where per-
turbations involve continuous pixel value changes, language inputs consist of 
discrete tokens embedded in high-dimensional semantic spaces. Text perturba-
tions must preserve syntactic validity and semantic meaning, and arbitrary token 
replacements can easily produce nonsensical inputs. Second, in practical deploy-
ment settings, LLMs are typically accessed as black-box services via APIs, pro-
viding only output probabilities without access to internal embeddings or model
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parameters. Third, the distributional assumptions underpinning RoMA, particu-
larly the normality of runner-up confidence scores, are not guaranteed to hold for 
natural language data, which exhibits complex statistical patterns distinct from 
image data. These challenges necessitate fundamental adaptations in how per-
turbations are generated, how model responses are analyzed, and how statistical 
validity is ensured for NLP applications. 

Word embeddings play a central role in natural language processing by map-
ping discrete words to continuous high-dimensional vectors that capture seman-
tic similarity. In this space, words with related meanings are located near one 
another, enabling quantitative reasoning over language. Embedding models such 
as Word2Vec [ 33], GloVe [ 38], and contextualized embeddings from transform-
ers like BERT [ 9] allow us to compare words using cosine similarity, facilitating 
controlled semantic perturbations without compromising linguistic validity. In 
our adaptation, we use pre-trained Word2Vec embeddings as a lightweight and 
interpretable basis for generating meaning-preserving input variations. While 
Word2Vec was chosen for its simplicity and transparency, our framework is gen-
eral and can accommodate other perturbation techniques, such as paraphrasing 
or syntactic restructuring, which may further enhance robustness evaluation. 

Building on this embedding-based representation of semantic similarity, we 
adapt RoMA’s perturbation strategy to the linguistic domain. Instead of inject-
ing pixel-level noise as in vision tasks, we introduce semantically meaningful per-
turbations by replacing words with similar alternatives in the embedding space. 
Specifically, we use Word2Vec embeddings to identify replacement candidates 
whose cosine similarity to the original word exceeds a threshold of 1 − ε, where
ε is derived from the original RoMA framework and controls the magnitude of 
allowed semantic drift. This constraint ensures that perturbed sentences remain 
semantically coherent while still exploring the model’s decision boundaries. For 
example, with ε = 0.35 (as used in our experiments), when perturbing the word 
“good” in the sentence “This movie is really good”, we might select “great” 
(word similarity to “good”: 0.68) or “excellent” (word similarity to “good”: 0.73), 
yielding variants such as “This movie is really great” and “This movie is 
really excellent”. By generating hundreds of such semantically constrained 
perturbations and analyzing the resulting confidence distributions, our adapta-
tion enables RoMA’s statistical framework to operate on LLMs while preserving 
the black-box deployment setting required for runtime verification. 

Several perturbation strategies have been explored for evaluating LLM 
robustness, each with trade-offs that limit their applicability for runtime verifica-
tion. One approach perturbs internal model embeddings directly by modifying 
hidden layer activations [ 44], but this requires white-box access incompatible 
with most deployed systems. Another common strategy is character-level noise 
injection, simulating typographical errors by inserting or substituting letters [ 45]. 
While such perturbations may not always preserve full semantic coherence, they 
offer a lightweight and realistic proxy for input noise encountered in real-world 
deployments, and can still yield meaningful robustness estimates, as demon-
strated in our orthographic robustness evaluation (See Sect. 5.4). Finally, seman-
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tic substitution, replacing words with meaning-preserving alternatives, offers the 
most promise for black-box runtime verification as it maintains linguistic valid-
ity while testing model stability. This approach, which we implement through 
controlled word embedding similarities, forms the foundation of our adaptation. 

Our perturbation generation process systematically explores the semantic 
neighborhood around each input while maintaining linguistic validity. Given 
an input sentence, we first tokenize it and randomly select multiple word posi-
tions for perturbation, ensuring coverage across the entire sentence rather than 
concentrating changes in a single region. For each selected word, we query 
the Word2Vec [ 33] embedding space to retrieve semantically similar candidates 
whose cosine similarity exceeds a threshold of (1−ε). To preserve sentence quality, 
we filter out stopwords, proper nouns, and out-of-vocabulary terms that could 
compromise coherence. By sampling different combinations of word replacements 
across multiple positions, we generate up to 1,000 unique variants per sentence, 
sufficient for RoMA’s statistical analysis while ensuring comprehensive explo-
ration of the local semantic space. This structured approach balances semantic 
coverage with computational efficiency, enabling robust statistical estimation 
within runtime constraints. 

For each perturbed variant generated from a given input sentence, we query 
the LLM sentiment classifier to obtain confidence scores for the positive and 
negative sentiment classes. Following the RoMA framework, we focus on the 
runner-up confidence score, which in binary sentiment analysis corresponds to 
the confidence score of the non-predicted class. For example, if the model pre-
dicts “positive” sentiment with 85% confidence, the runner-up score is 15% for 
“negative”. A high runner-up score signals uncertainty and indicates that the 
model’s prediction could easily flip under slight perturbations. By aggregating 
runner-up scores across all perturbations (up to 1,000 per sentence), we con-
struct an empirical distribution that captures classification stability in the local 
semantic neighborhood. To validate this distribution for statistical analysis, we 
apply the Anderson-Darling goodness-of-fit test [ 1] to assess normality. When 
this assumption is violated, we apply the Box-Cox power transformation [ 4] to  
approximate normality and enable reliable probabilistic inference. This allows 
us to estimate the probability that a random semantic perturbation will cause 
the model to misclassify the sentiment, yielding a quantitative robustness score 
aligned with the probabilistic-local-robustness (plr) metric defined in Sect. 2. 

While RoMA was originally designed as an offline evaluation tool for 
image classifiers, extending it to online runtime LLM verification required sig-
nificant methodological modifications. These adjustments include developing 
semantically-constrained text perturbations (replacing pixel noise), validating 
statistical assumptions for transformer confidence distributions, and addressing 
the strict computational constraints of continuous monitoring. Our framework 
operates entirely through black-box API queries, making it suitable for propri-
etary LLM deployments where internal model access is unavailable. Perturbation 
analysis is performed during inference gaps or alongside batched requests, allow-
ing for continuous robustness monitoring without disrupting service. The linear
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scalability of perturbation generation and consistent processing times support 
predictable resource allocation, which is critical for deployment scenarios where 
latency must remain bounded. In summary, our work transforms an offline frame-
work into an online runtime verification system, demonstrating the potential of 
statistical verification for practical LLM monitoring in operational environments. 

5 Evaluation 

Our experimental evaluation comprises two complementary phases designed to 
establish both the empirical validity and practical applicability of our runtime 
verification framework. We first conduct an empirical validation of RoMA’s 
statistical methodology against Exact Count, a formal verification baseline, to 
demonstrate precision and reliability on established benchmarks where ground 
truth verification is computationally feasible. This validates RoMA’s statistical 
approach and quantifies its accuracy relative to exhaustive formal methods. 

Subsequently, we demonstrate the framework’s significance by applying it to 
contemporary LLM verification scenarios that exceed the computational scope 
of formal methods. Our evaluation addresses three dimensions of LLM verifi-
cation: (i) embedding space robustness under semantic perturbations, (ii) cate-
gorial performance consistency across classification boundaries, and (iii) ortho-
graphic resilience to typographical variations commonly encountered in opera-
tional deployments. These evaluations collectively establish RoMA’s capability 
to provide quantitative robustness guarantees for large-scale neural architectures 
while maintaining computational efficiency suitable for runtime monitoring. 

All experiments were conducted on dedicated research infrastructure to 
ensure reproducible and controlled evaluation conditions. The baseline valida-
tion experiments (Sect. 5.1) utilized an AMD EPYC 7313 CPU with 128GB 
RAM and NVIDIA A10 GPU acceleration. The LLM verification experiments 
(Sects. 5.2, 5.3, and  5.4) were performed using equivalent computational resources 
with NVIDIA A5000 GPU acceleration to accommodate the increased mem-
ory requirements of transformer-based architectures. Complete implementation 
details, experimental configurations, and reproducibility materials are publicly 
available through our research repository [ 28], enabling independent validation 
and extension of our findings. 

5.1 Validating RoMA Against Formal Verification 

Formal verification methods provide mathematical guarantees by proving the 
absence of adversarial perturbations within specified input regions. If adversar-
ial perturbations exist, a formal verifier will usually return a concrete example 
that demonstrates this. These techniques rely on SMT solving, abstract inter-
pretation, or reachability analysis [ 5, 23], and are implemented in tools such as 
Marabou [ 24], Beta-CROWN [ 52], and PyRAT [ 48]. However, to the best of 
our knowledge, such methods do not scale to the architectural complexity and 
size of modern LLMs, which include components like multi-head attention and
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large embedding layers. This motivates our use of smaller models, where exact 
robustness bounds remain tractable and can serve as a reliable reference. 

Formal verification’s primary strength is soundness: once verified, a property 
holds universally. However, their practical use in runtime scenarios is limited 
due to the following reasons: (i) the verification problem is NP complete [ 23], 
making it challenging for verifiers to scale to modern LLMs; (ii) verification 
techniques typically require white-box access to a model’s parameters, which is 
often impossible; and (iii) the high latency of these approaches typically renders 
them unsuitable for deployment-time constraints. 

The Exact Count algorithm [ 32] constitutes a formal methodology for the 
precise quantification of DNN safety violations through exhaustive domain anal-
ysis. This approach implements a systematic recursive partitioning strategy of 
the input space, decomposing it into regions that can be definitively classified 
according to their adherence to specified safety properties. 

Exact Count computes the violation rate with mathematical precision, 
defined formally as the ratio of unsafe regions to the total input space volume. 
This metric provides an exact measure of the probability of encountering adver-
sarial perturbations, which is 1−plr as defined in Definition 2. This establishes a 
connection between formal verification and probabilistic robustness assessment. 

However, the computational complexity of Exact Count, which increases 
exponentially with input dimensionality and network size, fundamentally con-
strains its practical application. Even for relatively small networks like those 
in the ACAS Xu collision avoidance systems [ 37] (approximately 300 neurons), 
Exact Count becomes computationally intractable within practical time limits. 
Our experimental evaluation shows that Exact Count consistently timed out 
after 24 h (See Table 1). This highlights the need for more scalable alternatives, 
such as RoMA, which was able to produce reliable estimates for the same models 
in under 16 min. 

CountingProVe [ 32] offers a scalable, randomized alternative by sampling 
subregions and bounding the violation rate statistically. While more tractable, it 
sacrifices precision and requires repeated solver queries that limit its applicability 
in real-time systems. 

We acknowledge that the feedforward networks and ACAS Xu models used in 
our formal validation differ from transformer-based LLMs in architectural com-
plexity, including the presence of multi-head attention, positional encodings, and 
high-dimensional embeddings. While this validation demonstrates the statistical 
reliability of RoMA’s methodology, it does not capture these LLM-specific char-
acteristics. The LLM experiments in subsequent sections provide complementary 
evidence of RoMA’s effectiveness on transformer architectures, although direct 
comparison with formal verification remains infeasible for such large-scale mod-
els. 

Experimental Design. To establish the accuracy and reliability of our statis-
tical verification framework, we conduct a comprehensive empirical validation 
against the Exact Count algorithm [ 32], a formal verification method that com-
putes mathematically precise probabilistic robustness (plr) scores. While Exact
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Table 1. RoMA vs. Exact Count—Robustness Measurement
Model Exact Count RoM A 

V iolation Rate P LR Run time P LR Run time 
Model_2_20 20.88% 79.12% 794 s 79.24% 487 s 
Model_2_56 55.44% 44.56% 374 s 45.56% 458 s 
Model_2_68 68.20% 31.80% 211 s 32.06% 466 s 
Model_5_09 10.60% 89.40% 2,636 s 90.36% 467 s 
Model_5_50 50.33% 49.67% 3,696 s 49.52% 486 s 
Model_5_95 95.35% 4.65% 3,561 s 4.59% 444 s 
Model_10_76 — — 24 h 22.78% 465 sec 
φ2 ACAS Xu_2.1 — — 24 h 99.18% 775 s 
φ2 ACAS Xu_2.3 — — 24 h 98.24% 638 s 
φ2 ACAS Xu_2.4 — — 24 h 98.96% 915 s 
φ2 ACAS Xu_2.5 — — 24 h 98.09% 679 s 
φ2 ACAS Xu_2.7 — — 24 h 97.21% 616 s 

Count provides definitive ground truth robustness measurements for small-scale 
neural networks, its exponential computational complexity fundamentally limits 
applicability to contemporary large-scale architectures. Nevertheless, it serves as 
an authoritative benchmark for evaluating the precision of RoMA’s probabilistic 
approximations under rigorously controlled experimental conditions. 

We implemented a complete reproduction of the Exact Count algorithm and 
conducted systematic experiments across two established benchmark suites from 
the original paper: (i) synthetic neural network models with varying architectural 
complexities, and (ii) the ACAS Xu safety-critical aviation collision avoidance 
benchmark [ 23], representing real-world verification challenges in autonomous 
systems. This benchmark selection ensures comprehensive evaluation across both 
controlled synthetic scenarios and practical safety-critical applications, providing 
robust validation of RoMA’s statistical methodology across diverse verification 
contexts. 

Results. The scalability advantages of RoMA become particularly pronounced 
for larger networks, including ACAS Xu benchmarks with property φ2, where 
Exact Count consistently terminates with a timeout after 24 h of computation. 
In contrast, RoMA provides reliable and accurate robustness measurements in 
under 16 min for these identical verification challenges, demonstrating applica-
bility to complex models that fundamentally exceed the computational reach 
of formal verification methods. These results, summarized in Table 1 and illus-
trated in Figs. 1 and 2, establish RoMA’s capability to address the computational 
intractability barrier that prevents formal verification deployment in runtime sce-
narios.



468 N. Levy et al.

Fig. 1. PLR scores of RoMA and the Exact 
Count algorithm across benchmark models. 

Fig. 2. Runtime comparison between 
RoMA and the Exact Count algo-
rithm. 

Implications for Runtime Verification. The experimental validation demon-
strates that RoMA can bridge the gap between theoretical verification guarantees 
and practical runtime applicability. The consistent sub-1% accuracy achieved 
across diverse benchmark scenarios, combined with predictable computational 
overhead independent of model scale, establishes RoMA as a statistically accu-
rate and operationally viable alternative to formal verification for large-scale 
neural network verification. While these empirical results cannot provide univer-
sal mathematical guarantees across all possible network architectures, they offer 
compelling evidence of RoMA’s precision and computational efficiency across rep-
resentative verification scenarios. This validation extends statistical verification 
to contemporary LLM architectures. The demonstrated reliability of RoMA’s 
statistical methodology against formal verification baselines provides the neces-
sary confidence to proceed with LLM verification applications, where ground 
truth formal verification is computationally infeasible but statistical reliability 
assessment remains critical for operational deployment. 

5.2 Statistical Verification of LLM Embedding Robustness 

Experimental Design. To demonstrate the practical applicability of our sta-
tistical verification framework for contemporary language models, we conducted 
a comprehensive robustness assessment on fine-tuned BERT architectures [ 9] 
using the SST-2 classification task from the GLUE benchmark [ 51]. This evalu-
ation employs two distinct BERT-base-uncased variants [ 2] (110M parameters) 
to examine how training optimization affects distributional robustness under 
semantic perturbations. The GLUE dataset and BERT model have been widely 
used to evaluate generalization and robustness in NLP models, and have become 
the de-facto standard frameworks for such assessments. Our experimental design 
utilizes two model configurations representing different training strategies: Mbest, 
corresponding to the optimal performance checkpoint during training, and Mfinal, 
representing the final training iteration. 

For each of the 1,821 test sentences in the SST-2 evaluation set, we applied 
our semantic perturbation methodology to generate up to 1,000 variations per
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input, subsequently analyzing the distributional properties of runner-up confi-
dence scores to assess classification stability. The statistical validation process 
revealed that confidence score distributions satisfied normality assumptions in 
81.60% of cases for Mbest and 75.07% for Mfinal, demonstrating the reliability of 
our distributional approach for the majority of inputs. This high rate of distri-
butional normality validates the fundamental statistical assumptions underlying 
our verification framework, providing confidence in the reliability of probabilistic 
robustness estimates for operational LLM deployment scenarios. 

Fig. 3. Cumulative distribution function (CDF) showing the percentage of SST-2
dataset instances processed over time by RoMA in the LLM embedding case study
for the two models.

Results. We quantified embedding robustness as the percentage of semanti-
cally perturbed inputs maintaining classification confidence scores above the 
0.50 threshold for correct sentiment classification. Lower confidence scores indi-
cate reduced classification certainty and potential vulnerability to distributional 
shifts encountered during runtime operation. 

The robustness performance results show 97.18% robustness score for Mbest, 
and 96.60% robustness score for Mfinal. The superior robustness exhibited by 
Mbest supports the hypothesis that optimization for classification performance 
may simultaneously enhance resilience to semantic perturbations, a finding which 
is consistent with previous work on neural network robustness [ 29]. This corre-
lation suggests that performance-driven training optimization can contribute to 
improved distributional stability, with important implications for model selection 
in runtime-critical applications.
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Beyond robustness quantification, we evaluated the computational efficiency 
of our statistical verification approach to determine its viability for large-scale 
LLM assessment in production environments. Figure 3 presents the Cumulative 
Distribution Function (CDF) of RoMA processing times across the complete 
evaluation dataset. We observe that 50% of the instances were processed within 
15 min, and the entire dataset was evaluated in under 36 min. 

Implications for Runtime Verification. These results suggest that our sta-
tistical framework meets the performance demands of runtime monitoring in 
deployed LLM systems. By delivering timely robustness estimates based on 
semantically meaningful perturbations, our adaptation and extension of RoMA 
enables continuous assessment of classification stability during operation. This 
capability is essential for runtime verification pipelines that must monitor model 
behavior under distributional drift, without relying on white-box access or intro-
ducing latency that disrupts real-time service. 

5.3 Categorial Robustness 

Prior work in computer vision has established that neural network robustness 
exhibits significant variation across distinct input categories [ 29]. To examine 
whether this categorial heterogeneity extends to natural language processing 
architectures, we conducted a systematic analysis of distributional robustness 
patterns across sentiment classification categories using our statistical verifica-
tion framework. 

We define categorial robustness as the statistical measure of model resilience 
computed independently for each classification category, enabling identification 
of systematic vulnerabilities that may not be apparent in aggregate robustness 
assessments. For our binary sentiment analysis evaluation, we partitioned the 
SST-2 test dataset according to ground truth labels (positive and negative sen-
timent) and calculated category-specific robustness scores through our semantic 
perturbation methodology. 

Experimental Design. Categorial Analysis Protocol: (i) Partition inputs by 
true classification labels to isolate category-specific behavior (ii) Apply the 
semantic perturbation framework independently within each category (iii) Com-
pute distributional statistics for runner-up confidence scores per category (iv) 
Calculate category-specific robustness metrics using the 0.50 confidence thresh-
old (v) Analyze asymmetric patterns across classification boundaries 

Results. Our analysis reveals systematic variation in distributional robustness 
across categories, consistent with prior observations in computer vision architec-
tures [ 29]. This suggests that asymmetries in categorial robustness may be an 
inherent property of neural networks. Figure 4 illustrates the categorial robust-
ness across sentiment classes for both Mbest and Mfinal. 

Implications for Runtime Verification. These findings have important impli-
cations for runtime verification, as they highlight that model resilience is not uni-
formly distributed across classes. Runtime monitors must therefore account for
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Fig. 4. A comparison of categorial robustness between Mbest and Mfinal.

class-conditional robustness profiles to ensure reliable behavior across all inputs. 
Integrating category-aware metrics into verification pipelines can enable early 
detection of systematic vulnerabilities and support targeted mitigation strate-
gies in safety-critical NLP applications. 

5.4 Orthographic Perturbation Analysis for Runtime Input 
Validation 

Experimental Design. To evaluate LLM resilience to typographical errors in 
operational environments, we implemented systematic character-level perturba-
tions simulating common human typing mistakes. Specifically, each character 
in every word was systematically replaced with all possible alphabetic alterna-
tives, generating a broad set of single-character substitution variants. While this 
method is simple by design, it provides comprehensive coverage of potential 
character-level noise in user input, such as accidental character substitutions 
(e.g., “great” → “grebt”). We limited perturbations to alphabetic characters, 
avoiding modifications to whitespace and punctuation. We acknowledge that 
this process does not replicate empirical human error distributions, but rather 
serves as a lightweight proxy for orthographic noise. Incorporating more realis-
tic perturbation models, such as those based on keyboard adjacency or observed 
typo patterns, remains a promising direction for future work. 

Results. Analysis of 500 SST-2 sentences with 500 character-level perturbations 
each revealed that runner-up confidence scores failed Anderson-Darling goodness-
of-fit normality tests even after Box-Cox transformation. Despite non-normal 
distributions, our framework produced robustness estimates of 94.44% for Mbest 
and 93.94% for Mfinal. To validate these estimates, we conducted an exhaustive
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evaluation across all 1,821 test sentences, yielding ground truth scores of 94.61% 
and 93.84% respectively. 

Implications for Runtime Verification. This agreement between estimated 
and ground truth robustness scores (within 0.17%), provides preliminary evi-
dence that RoMA may remain effective even when distributional assumptions 
such as normality are violated. This potential resilience is relevant for runtime 
verification, where inputs are often subject to noise, typographical errors, or 
other irregularities. While further validation is needed, these results suggest that 
statistically grounded robustness assessments could remain informative under 
realistic deployment conditions. 

6 Conclusion and Future Work 

This paper presented a case study on adapting and extending the RoMA frame-
work for runtime robustness assessment of LLM systems. We examine the fea-
sibility of applying statistical verification techniques for continuous reliability 
monitoring in black-box settings, where white-box access is not available. The 
case study illustrates how RoMA could potentially support LLM robustness 
auditing under practical deployment constraints. Preliminary empirical compar-
isons with the Exact Count formal verification baseline indicate that RoMA can 
approximate robustness within sub-1% error margins, while reducing computa-
tion time significantly. While these results are encouraging, they represent an 
initial step toward evaluating the role of statistical methods in runtime verifica-
tion for large-scale models. 

Technical Contributions. This study presents an initial exploration into 
adapting and extending RoMA for runtime robustness assessment of LLMs. The 
proposed methodology incorporates the following components: (i) an adapta-
tion of RoMA from offline evaluation to online monitoring for language mod-
els in black-box settings, (ii) a semantic perturbation strategy based on word 
embedding transformations to examine distributional sensitivity, (iii) a categorial 
robustness analysis aimed at identifying potential variation in resilience across 
sentiment classes, and (iv) an orthographic perturbation evaluation designed 
to assess model behavior under character-level input noise. These contribu-
tions form the basis for assessing runtime behavior under realistic perturbation 
domains, though further validation is needed to generalize beyond the specific 
case study explored here. 

Operational Impact. Our analysis suggests that robustness characteristics 
may vary across models and input categories, highlighting the potential value of 
adaptive monitoring strategies in practice. The statistical nature of the proposed 
methodology, which does not rely on internal model access, indicates that it 
may be applicable to a range of LLM deployments, including settings where 
models are accessed through black-box APIs. Initial findings on computational 
efficiency point toward the feasibility of integrating such methods into runtime 
environments, where verification must be performed under time and resource
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constraints. Further investigation is needed to confirm these observations across 
a broader range of applications and model types. 

Future Directions. Several directions remain for further exploration. One 
avenue is to extend the framework to additional supervised learning domains, 
such as speech recognition, to examine its applicability beyond text-based tasks. 
Another is to adapt the approach for reinforcement learning, which poses unique 
challenges for runtime verification. In addition, incorporating more diverse 
semantic perturbation techniques, such as paraphrasing, sentence restructur-
ing, or syntactic transformations, could further enrich the robustness evaluation 
beyond simple synonym substitution with Word2Vec. Another promising direc-
tion is to perform empirical comparisons with established robustness benchmarks 
and attack frameworks, such as TextFooler, Adversarial GLUE, and other recent 
evaluations [ 10, 20, 53], which would provide valuable insights into the scalabil-
ity and competitiveness of our approach. Lastly, while this study focused on 
encoder-only architectures (specifically BERT), future work should evaluate the 
applicability of the proposed framework to decoder-only models [ 36] and encoder-
decoder architectures [ 40]. These directions may help assess the generalizability 
of the framework and identify domain-specific considerations for broader deploy-
ment. 

Runtime Verification Contribution. This study explores the use of a sta-
tistical methodology for monitoring learning-enabled components in operational 
settings where formal verification techniques may be impractical. The proposed 
framework offers an initial step toward enabling continuous reliability assess-
ment in large-scale neural architectures, particularly in scenarios where white-
box access is unavailable. While preliminary, the ability to estimate classification 
resilience under perturbations may contribute to the development of runtime 
assurance strategies for safety-critical applications that rely on LLMs. 
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