
Formal Methods in Computer-Aided Design 2023

DelBugV: Delta-Debugging Neural
Network Verifiers

Raya Elsaleh and Guy Katz
The Hebrew University of Jerusalem, Jerusalem, Israel

Email: {rayae,guykatz}@cs.huji.ac.il

Abstract—Deep neural networks (DNNs) are becoming a key
component in diverse systems across the board. However, despite
their success, they often err miserably; and this has triggered
significant interest in formally verifying them. Unfortunately,
DNN verifiers are intricate tools, and are themselves susceptible
to soundness bugs. Due to the complexity of DNN verifiers, as
well as the sizes of the DNNs being verified, debugging such
errors is a daunting task. Here, we present a novel tool, named
DELBUGV, that uses automated delta debugging techniques on
DNN verifiers. Given a malfunctioning DNN verifier and a correct
verifier as a point of reference (or, in some cases, just a single,
malfunctioning verifier), DELBUGV can produce much simpler
DNN verification instances that still trigger undesired behavior —
greatly facilitating the task of debugging the faulty verifier. Our
tool is modular and extensible, and can easily be enhanced with
additional network simplification methods and strategies. For
evaluation purposes, we ran DELBUGV on 4 DNN verification
engines, which were observed to produce incorrect results at the
2021 neural network verification competition (VNN-COMP’21).
We were able to simplify many of the verification queries that
trigger these faulty behaviors, by as much as 99%. We regard our
work as a step towards the ultimate goal of producing reliable
and trustworthy DNN-based software.

I. INTRODUCTION

Deep neural networks (DNNs) [21] are software artifacts
that are generated automatically, through the generalization of
a finite set of examples. These artifacts have been shown to
outdo manually crafted software in a variety of key domains,
such as natural language processing [19], [25], [37], image
recognition [25], [59], protein folding [26], [41], and many
others. However, this impressive success comes at a price:
unlike traditional software, DNNs are opaque artifacts, and are
incomprehensible to humans. This poses a serious challenge
when it comes to certifying, modifying, extending, repairing
or reasoning about them [22], [27], [32].

In an effort to address these issues, the formal methods
community has taken up an interest in DNN verification [27],
[30], [45]: automated techniques that can determine whether
a DNN satisfies a prescribed specification, and provide a
counter-example if it does not. DNN verification technology
has been making great strides, and its applicability has been
demonstrated in various domains [2], [3], [18], [30], [33].
In fact, this technology has progressed to a point where
DNN verifiers themselves have become quite complex, and
consequently error-prone; especially as they often perform
delicate arithmetic operations that can introduce bugs into the
verification process [30]. Thus, it is not surprising that various
bugs have been observed in these tools [29]. For example,

in the VNN-COMP’21 competition [9], various verifiers have
been shown to disagree on the result of multiple verification
queries (each query is comprised of a neural network and
a property to be checked), or produce incorrect counter-
examples — indicating bugs in those verifiers. Moreover,
many verifiers are still under development, with new and
experimental features being introduced, possibly allowing the
introduction of new bugs, as well. An inability to trust the
results of DNN verifiers could undermine the benefits of DNN
verification technology, and clearly needs to be addressed.

Here, we propose to mitigate this issue by adopting known
techniques from related fields (e.g., SMT solving [12]) —
specifically, that of delta debugging. The idea is to leverage
the fact that DNN verification is at a point where many
verification tools are available, and to allow engineers to
readily compare the results produced by their verification tool
to those produced by others, in order to identify and correct
bugs. When a verification query that triggers some bug in a
verifier is detected, we can initiate an automated process that
repeatedly and incrementally simplifies the verification query.
After each simplification step, we can check that the verifier
in question still disagrees with the remaining, oracle verifiers,
until reaching the simplest verification query that we can find.
If this final query is much simpler than the original, it will be
that much easier for engineers to debug their tools, eventually
improving their overall soundness.

We present a new tool, DELBUGV (Delta deBugging Neural
Network Verifiers), that takes as input a verification query, a
malfunctioning DNN verifier that errs on the given verification
query, and an oracle DNN verifier. Within DELBUGV, we
implement a set of operations for simplifying the neural net-
work of the given verification query into a network with fewer
layers and fewer neurons. We empirically design a strategy
that applies these operations sequentially in an order that pro-
duces much simpler verification queries. In some cases, when
the malfunctioning DNN verifier produces a faulty counter-
example, DELBUGV can run in single solver mode – without
an oracle verifier, where the query is repeatedly simplified as
long as the malfunctioning DNN verifier continues to produce
incorrect counter-examples.

For evaluation, we tested DELBUGV on 4 DNN ver-
ifiers “suspected” of errors, per the results of VNN-
COMP’21 [9]: Marabou [32], NNV [50]–[53], [60], Neu-
ralVerification.jl(NV.jl) [36], and nnenum [7], [8], [50], [51].
We ran DELBUGV on queries where pairs of these verifiers

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 11 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_11
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_11
https://creativecommons.org/licenses/by/4.0/

disagreed. Our evaluation demonstrates that DELBUGV could
reduce the size of the error-triggering queries by an average
of 96.8%, and by as much as 99% in some cases, resulting
in very simple neural networks. We believe that these results
highlight the significant potential of our tool and approach.

The rest of the paper is organized as follows. In Sec. II
we provide the necessary background on DNNs and their
verification. Next, in Sec. III we describe the design of DEL-
BUGV, focusing on its algorithm and network simplification
methods and the strategy we use to apply those methods. The
implementation and evaluation of DELBUGV are discussed in
Sec. IV. This is followed by a discussion of related work in
Sec. V, and we conclude in Sec. VI.

II. BACKGROUND

Neural Networks. A neural network is a directed acyclic
graph in which the nodes, called neurons, are organized in
layers l0, l1, . . . , ln. l0 is called the input layer, ln the output
layer, and layers l1, . . . , ln−1 are called hidden layers. Each
hidden layer has an associated non-linear activation function.
In feed-forward networks, which are our subject matter here,
neurons in layer li have edges connecting them only to neurons
in the next layer, layer li+1.

Each neuron in the network (except the ones in the input
layer) has a bias value, and each edge has a weight. The biases
and weights belonging to neurons in layer li are organized into
a vector Bi and a matrix W i, respectively. The j, j′-th entry
of W i is the weight assigned to the edge out-going from the
j′-th neuron in layer li−1 and entering the j-th neuron in layer
li. For a fully connected layer, W i is a full matrix; whereas
for a convolutional layer, W i is very sparse, and has a specific
structure (discussed later).

An input to neural network N is a vector I of values of the
neurons in the input layer, and it produces an output vector
N (I) which is the values of the neurons in the output layer. We
denote the values of neurons in layer li, prior to applying the
activation function, by N li(I); and the values after applying
the activation function by N ai

(I). The values of the neurons
are evaluated according to the rules:

N l0(I) = I, N li(I) = W iN ai−1

(I) +Bi,

N ai

(I) = Acti(N li(I))

where Acti is the activation function associated with layer li.
We define the size of a neural network to be the total number

of neurons in the graph (including the neurons in the input and
output layers) and denote it by |N |. The automated training
(i.e., selection of weights and biases) of neural networks is
beyond our scope here; see, e.g., [21].

Fig. 1 depicts a neural network, Ne, with a single input,
a single output, and 2 hidden layers with 3 neurons in each.
It uses the ReLU activation function, ReLU(x) = max(0, x).
The bias of each neuron is listed above it, and weights are

listed over the edges (zero values are omitted). In matrix
representation, the weights and biases are:

W 1 =

⎡⎣ −5−0.5
−1

⎤⎦, B1 =

⎡⎣ 10
−2.5
7

⎤⎦ ,W 2 =

⎡⎣0.8 −1 −2
0 0.5 0
2 0.5 −1

⎤⎦ ,

B2 =

⎡⎣82
0

⎤⎦ ,W 3 =

⎡⎣0.252
0.5

⎤⎦T

, B3 =
[︁
0
]︁

Ne is of size 8 (every lij and rij pair in the figure are counted
as one neuron; we split them only for visualization purposes),
and has 4 layers. The figure also demonstrates an evaluation of
the network, for the input x = 5. The assignment of each node
is listed below it; and we can see that the produced output in
this case is y = 5.

Input layer l0

First hidden layer l1 Second hidden layer l2

Output layer l3

x

5

l10

l11

l12

+10

−2.5

+7

−15

−5

2

r10

r11

r12

0

0

2

l20

l21

l22

+8

+2

4

2

−2

r20

r21

r22

4

2

0

y

5

−5

−0.5

−1

ReLU

ReLU

ReLU

0.8

2

−1

0.5

0.5

−2

−1

ReLU

ReLU

ReLU

0.25

2

0.5

Fig. 1: An example of a neural network, Ne, with ReLU
activation functions.

Convolutional Neural Networks. A convolutional neural
network is a neural network with one or more convolutional
layers (typically, these are the first layers of the network).
The parameters of a convolutional layer include the height h
and width w of images in the input; the kernel size k; the
stride size s; the padding size p; the input channels ci; the
output channels co; the kernel weights W , given as a tensor
of dimensions (co× ci× k× k); and the biases, B, organized
in an array of length co. We assume for simplicity that the
kernel size, padding size, and stride size are equal along all
axes, although this is not a limitation of our approach.

The convolutional layer filters its input, which is a (ci ×
k × k)-dimensional matrix, using the above parameters and
outputs a multidimensional matrix which represents feature
maps. For additional information on how a convolutional layer
computes its output, see [21]. Note that convolutional layers
are comprised strictly of linear operations.

Neural Network Verification. A property P is a set of
constraints on the inputs and outputs of the neural network.
These constraints give rise to an input region I(P) and an
output region O(P). Verifying P , with respect to some neural

35

network, entails determining whether there exists an input in
I(P) that the neural network maps to an output in O(P)
(the SAT case), or not (the UNSAT case). Typically, P is
specified so that O(P) represents undesirable behavior, and
so an UNSAT result indicates that the system is correct.
Pe = (5 ≤ x ≤ 10) ∧ (5 ≤ y ≤ 10) is an example of a
property of Ne in Fig. 1.

A neural network verifier takes in a verification query (a
neural network and a property) and attempts to automatically
verify it. When successful, it returns a SAT or UNSAT answer;
otherwise, it can return ERROR, or TIMEOUT. When a neural
network verifier returns SAT, it also returns an input that
proves the satisfiability of the query. Given a verifier V and
a verification query Q = (N ,P), we denote by V(Q) ∈
{SAT,UNSAT,ERROR,TIMEOUT} the answer of V on Q. If
V(Q) = SAT, we denote by Vw(Q) ∈ I(P) the satisfying
assignment (the witness) returned by the verifier.

Continuing with our running example, given a sound neural
network verifier Ve and the verification query Qe = (Ne,Pe),
Ve(Qe) = SAT and a valid witness is (Ve)w(Qe) = (5), since
Ne((5)) = (5) ∈ O(Pe).

Neural network verification is complex, both theoretically
and practically [30]; and modern tools apply sophisticated
techniques to verify large networks [1]. These techniques are
typically theoretically sound, but implementation bugs can
cause verifiers to produce incorrect results. These bugs are
easier to track and correct if the problem manifests for queries
with small networks.

In a situation where two verifiers disagree on the satisfi-
ability of a given query, at least one of them must answer
SAT and provide a satisfying assignment. We evaluate the
neural network on that assignment, and determine whether it
indeed satisfies the property at hand. If so, we conclude that
the other verifier, which returned UNSAT, is faulty; otherwise,
if the satisfying assignment is incorrect, we determine that the
verifier that answered SAT is faulty. The remaining verifier
then takes the role of the oracle verifier.

III. DELBUGV: DELTA-DEBUGGING VERIFICATION
QUERIES

A. General Flow

Applying delta-debugging techniques means automatically
simplifying an input x that triggers a bug in the system into
a simpler input, x′, that also triggers a bug [40]. x′ can often
trigger the bug faster, thus reducing overall debugging time;
and also trigger fewer code lines that are unrelated to the
bug, allowing engineers to more easily identify its root cause.
In our setting, given a verification query Q = (N ,P) that
triggers a bug in a neural network verifier, we seek to generate
another query Q′ = (N ′,P), with a much smaller (simplified)
neural network: |N ′| < |N |. The motivation for focusing on
the neural network, and not on the verification conditions, is
that common verification conditions are typically already quite
simple [56], whereas neural network sizes have a crucial effect
on verifier performance [30].

The general delta debugging framework that our tool follows
appears as Alg. 1. The inputs to the process are a faulty
verifier V , an oracle verifier VO, and a verification query
Q = (N ,P). The algorithm maintains a candidate result
neural networkNr that triggers a bug in V and make it produce
an incorrect answer, and whose size is iteratively decreased.
In each iteration, the algorithm invokes Alg. 2 to attempt
simplifying Nr. The process terminates when Alg. 2 states
that it cannot simplify Nr any further, or when a timeout limit
is exceeded. Finally, it returns the verification query with the
smallest Nr it achieved.

Algorithm 1 Reduce Verification Query

Input: V , VO, Q = (N ,P)
// Faulty Verifier, Oracle Verifier, Verification query

Output: Qr // A simplified query
1: Nr ← N
2: progressMade ← True
3: while noTimeout() ∧ progressMade do
4: Nr ← N
5: progressMade, N ← Simplify(V,VO, Q)
6: return (Nr,P)

Alg. 2 takes in the same arguments as Alg. 1, and its goal
is to perform one successful simplification step on N , from
a pool of potential steps. The algorithm heuristically chooses
a sequence of simplification steps to attempt (Line 1), and
then performs them, one by one, until one is successful. We
propose several simplification steps in Sec. III-B. Specifying
the order according to which these simplification steps are
attempted (Line 1) is key, and different strategies may result in
different simplified networks — we propose one such strategy
in Sec. III-B.

Algorithm 2 Simplify

Input: V , VO, Q = (N ,P)
// Faulty Verifier, Oracle Verifier, Verification query

Output: True/False, Qr // Whether the query was simplified,
and the simplified query

1: Attempts = (M0,M1, . . .)←
attemptsBySimplificationStrategy(N)

2: while Attempts ̸= ∅ do
3: Mi ←Attempts.pop()
4: Nr ←Mi(N)
5: if successSimplification(V,VO, (Nr,P)) then
6: return True, Nr

7: return False, N

Line 5 of Alg. 2 invokes Alg. 3 to check whether the
simplification step attempted succeeded or not. To do so,
Alg. 3 first checks whether V answers SAT, but returns an
incorrect counter-example. If so, this candidate should clearly
be kept. Otherwise, the algorithm checks whether V and VO
disagree in their verdicts; if so, it returns True. In all other

36

cases, i.e. where one of the verifiers times out, or when there is
no basis for comparison (one of the verifiers returned an error),
the algorithm returns False, and an alternative simplification
step in Alg. 2 is attempted.

Algorithm 3 successSimplification

Input: V , VO, Q = (N ,P)
// Faulty Verifier, Oracle Verifier, Verification query

Output: True/False // Was the query successfully simplified?
1: if V(N ,P) = SAT ∧ VW (Q) /∈ I(P) then
2: return True
3: if V(N ,P) = SAT ∧N (VW (Q)) /∈ O(P) then
4: return True
5: if V(N ,P),VO(N ,P) ∈ {SAT,UNSAT}

∧ V(N ,P) ̸= VO(N ,P) then
6: return True
7: return False

One possible risk when using Alg. 1 is a “flip” between the
two verifiers. This can happen when initially, VO produces
a correct answer and V does not; but after a simplification
step, V starts producing the correct answer and VO starts
producing an incorrect answer. This situation is unlikely: the
simplification steps we propose later make local modifications
to the network, and are consequently far more likely to
continue to trigger the same bug in V than to trigger a new
one in VO. Still, this concern can be mitigated even further
by using multiple oracle verifiers, and ensuring that they all
agree amongst themselves while V dissents. Even though this
design does not completely prevent a “flip” scenario, it makes
it highly unlikely.

Single Verifier Mode. Our approach could also be applied
to delta-debug a single verifier that returns incorrect satis-
fying assignments, without using an oracle. As we explain
in Sec. III-B, the simplification methods we apply require
the returned satisfying assignment from either the faulty or
the oracle verifier; and thus, if the faulty verifier returns an
incorrect satisfying assignment for the query at hand, we can
drop the oracle verifier. This is achieved by removing the last
“if” condition from Alg. 3 and removing the oracle verifier
VO from the inputs. Note, however, that if the faulty verifier
returns an UNSAT answer, an oracle verifier is always needed.

B. Simplification Methods

A core component of Alg. 1 is the selection of simplification
strategy to apply (Line 1 in Alg. 2). We now describe our pool
of neural network simplification methods, and the strategy
that we suggest for selecting among them. The goal of all
the simplification methods we propose here is to reduce
neural network sizes, while keeping the network’s behavior
(i.e., its outputs) similar to that of the original; especially on
the counter-example provided by either the faulty verifier or
the oracle verifier. Note that a single simplification method
can often be applied multiple times, in different ways, using
different input parameters.

Method 1: linearizing piecewise-linear activation functions
between fully-connected layers. In general, the presence of
activation functions is a major source of complexity in the
verification process of neural networks: they render the prob-
lem NP-complete, require complex mechanisms for linearly
approximating them, and often entail case-splitting that slows
down the verifiers [30], [39], [57]. Thus, in order to simplify
the neural network, we propose to eliminate such activation
functions, by fixing them to a single linear segment, effectively
replacing them with linear constraints. This procedure is
performed on an entire layer at a time; which, in turn, creates
a sequence of consecutive purely linear layers that can then be
merged into a single linear layer, reducing the overall number
of layers and neurons in the network.

In choosing the linear segment to which each function is
fixed, we propose to use the counter-example I provided by
either the faulty verifier or the oracle verifier. The output of the
new linear segment we choose, with respect to I , will match
the output of the activation function on I .

For simplicity, we focus here on the ReLU activation
function (ReLU(x) = max (x, 0)), although the technique
is applicable to any piecewise-linear function. Intuitively, in
such cases we propose to replace active ReLUs (x ≥ 0) by
the identify function, and inactive ReLUs (x < 0) by zero.
More formally, observe two consecutive layers, lt and lt+1, in
the neural network N , where layer lt has a ReLU activation
function. We construct an alternative layer, la, to replace both
lt and lt+1. la inherits the activation function of lt+1. The
weights W a and the biases Ba of la are calculated as:

W a = W t+1W ′W t

Ba = W t+1W ′Bt +Bt+1

where

W ′
i,j =

{︄
1 i = j ∧

(︂
N lt

Q (I)
)︂
i
≥ 0

0 otherwise

Here W ′ is the new linear segment replacing the activation
function ReLU. Finally, the obtained simplified network Nr

is the network N where layers lt and lt+1 are deleted and
replaced with la.

Fig. 2 depicts the result of applying this method on layers
l2 and l3 from Fig. 1, using the assignment Ie = (5). Fig. 2a
depicts the layers selected for merging; and Fig. 2b depicts the
resulting neural network. Notice that N l2

e (Ie) = (4, 2,−2),
meaning that only the ReLUs in neurons l20 and l21 are active.
Thus, these ReLUs are replaced by the identity function,
whereas the inactive ReLU of l22 is replaced by 0. After this
step, layers l2 and l3 perform only linear operations, and are
merged into a single layer.

Method 2: linearizing piecewise-linear activation functions
between convolutional layers. In this method, a convolutional
layer is combined with the layer following it (either a fully
connected layer or a convolutional one), and replaced by a
single, fully connected layer.

37

x

l10

l11

l12

+10

−2.5

+7

r10

r11

r12

l20

l21

l22

+8

+2

r20

r21

r22

y

−5

−0.5

−1

ReLU

ReLU

ReLU

0.8

2

−1

0.5

0.5

−2

−1

ReLU

ReLU

ReLU

0.25

2

0.5

(a)

x

l10

l11

l12

+10

−2.5

+7

r10

r11

r12

+6

y

−5

−0.5

−1

ReLU

ReLU

ReLU

0.2

0.75

−0.5

(b)

Fig. 2: Ne with layers l2 and l3 selected in orange (a), and
then merged (b).

For simplicity, we focus here on the case where the second
layer is fully connected. More formally, observe two consecu-
tive layers, lt and lt+1 in N , where lt is a convolutional layer
and lt+1 is a fully connected layer. Our goal is to construct
an alternative layer, la, that will replace lt and lt+1. Since a
convolutional layer is a particular case of fully connected layer,
we construct la by first converting the convolutional layer lt

into a fully connected one, denoted lc; then linearizing the
activation functions, as in Method 1; and finally, combining
the two layers into one. This method may add edges to
the network, and could potentially cause the network size to
temporarily increase. However, when this method is used in
conjunction with the remaining methods, it sets the network
up for additional simplification, which ultimately results in a
much smaller network.

Denote by W t and W t+1 the matrices representing the
weights of layer lt and lt+1 respectively, and by Bt and
Bt+1 the vectors representing their respective biases. To
transform a convolutional layer into a fully connecting one,
we calculate the weights, W c, and the biases, Bc, of the fully
connected layer replacing the convolutional one, according to
the conventional layer parameters. First, we turn its input and
output from a multidimensional tensors into 1-dimensional
vectors. The height and width (dimensions) of the feature maps

in the convolutional layer’s output are: ho, wo where

ho =

⌊︃
h+ 2p− k

s

⌋︃
+ 1, wo =

⌊︃
w + 2p− k

s

⌋︃
+ 1.

The convolutional layer’s output contains co feature maps, i.e.,
the dimensions of the output are (co × ho × wo). Thus, the
dimensions of W c are (cohowo×cihw). W c is a sparse matrix.
To calculate the value of the i, j-th entry in W c, we first
compute the following values:

c′i =

⌊︃
j

hw

⌋︃
, c′o =

⌊︃
i

howo

⌋︃
,

i′ =

⌊︃
i− cihw

w

⌋︃
−
(︃⌊︃

j − cohowo

wo

⌋︃
· s− p

)︃
j′ = ((i− cihw) mod w)− (((j − cohowo) mod wo) · s− p)

c′i and c′o are the input and output channels that the i, j-th
entry should be associated with. i′ and j′ are the indices in
the kernel that should match to the i, j-th entry. The weight
matrix W c is given by:

W c
i,j =

{︄
W t

c′i,c
′
o,i

′,j′ 0 ≤ i′ ∧ j′ < k

W c
i,j = 0 otherwise

Finally,
Bc

i = Bt

⌊ i
howo
⌋

According to this construction of W c and Bc, they will
have the same functionality as the convolutional operation
they replace (assuming no floating-point or numerical errors).
This step may temporarily increase the number of edges in
the network (the number of neurons remains fixed); but this
is required to prepare for the minimization step.

The next step is to linearize the ReLU. This is done in a
similar manner to the linearization in the previous method,
from which we get W ′. Next, we construct the weights W a

and the biases Ba of the alternative layer la:

W a =W t+1W ′W c

Ba =W t+1W ′Bc +Bt+1

And the activation function assigned to the new layer la is the
same as the one assigned to layer lt+1. Finally, the simplified
neural network Nr is the network N , where layers lt and lt+1

are deleted and replaced with la.
In case lt+1 is also a convolutional layer, we convert it to

a fully connected layer, as we did with lt; and the remainder
of the process is unchanged.

Method 3: merging neurons. In this method, we seek to
merge a pair of neurons in the same layer into a single neuron,
thus decreasing the neural network size by one. Of course, this
entails selecting the weights of this new neuron’s incoming and
outgoing edges, as well as its bias. Our motivation is to cause
the merged neuron to produce values close to those of the
original neurons, and consequently cause little changes in the
neural network’s eventual output. We present first the technical

38

process of merging neurons, and later discuss which pairs of
neurons should be merged.

We focus again on the case where the activation function is
ReLU. We first use the counter-example I (returned by either
the faulty verifier or the oracle verifier) to check whether the
activation functions of the neurons being merged have the
same phase — i.e., if they are both active, or both inactive. If
they have the same phase, we compute the merged neuron’s
weights and biases using the original neurons’ weights and
biases. Specifically, the weight of each edge incoming to the
merged neuron is the mean of the original incoming edge
weights, and the neuron’s bias is the mean of the original
neurons’ biases; whereas the weights of its outgoing edges
are the weighted sum, according to I , of the original outgoing
edge weights. We choose a weighted sum, instead of a simple
sum, to ensure that the neurons in the following layer obtain
values similar to their original ones with respect to I; and
also to preserve the network’s behavior. In case one of the
neurons is active and the other is inactive, we simply delete
the inactive one, since it does not contribute to the following
layer’s neuron values (with respect to I).

Formally, given a neural network, N , two successive layers
in it, lt and lt+1, and two neurons indices b < c, we construct
two alternative layers la and la+1 that will replace lt and lt+1

respectively. la and la+1 inherit the activation functions of lt

and lt+1 respectively. If the ReLUs of the neurons b and c

in layer lt have the same phases:
(︂
N lt(I)

)︂
b
,
(︂
N lt(I)

)︂
c
> 0

or
(︂
N lt(I)

)︂
b
,
(︂
N lt(I)

)︂
c
< 0, the weights and the biases

W a,W a+1, Ba, Ba+1 of the alternative layers are calculated
as follows:

Ba
i =

⎧⎪⎨⎪⎩
Bt

i i < b ∨ b < i < c
Bt

b+Bt
c

2 i = b

Bt
i+1 c ≤ i

Ba+1 = Bt+1

W a
i,j =

⎧⎪⎨⎪⎩
W t

i,j i < b ∨ b < i < c
W t

b,j+W t
c,j

2 i = b

W t
i+1,j c ≤ i

W a+1
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W t+1

i,j j < b ∨ b < j < c

2·
(︂
W t+1

i,b

(︂
N lt+1

(I)
)︂
b
+W t+1

i,c

(︂
N lt+1

(I)
)︂
c

)︂
(N lt+1 (I))

b
+(N lt+1 (I))

c

j = b

W t+1
i,j+1 c ≤ j

Otherwise, if the ReLUs of the neurons b and c in layer
lt have different phases:

(︂
N lt(I)

)︂
b
> 0 ∧

(︂
N lt(I)

)︂
c
< 0

(assume w.l.o.g. that the c-th neuron is the inactive one), the
weights and biases W a,W a+1, Ba, Ba+1 of the alternative

layers are calculated as follows:

Ba
i =

{︄
Bt

i i < c

Bt
i+1 c ≤ i

, Ba+1 = Bt+1

W a
i,j =

{︄
W t

i,j i < c

W t
i+1,j c ≤ i

, W a+1
i,j =

{︄
W t+1

i,j j < c

W t+1
i,j+1 c ≤ j

Finally, the obtained simplified neural network Nr, is the
network N where layers lt and lt+1 are replaced with la and
la+1 respectively. This method can be applied repeatedly, to
reduce the network size even further.

An example of applying this method on the pair of neurons
l20 and l21 in Ne from Fig. 1 using the assignment Ie = (5)
appears in Fig. 3. Fig. 3a shows the neurons selected for
merging, and Fig. 3b shows the result of the merge.

x

l10

l11

l12

+10

−2.5

+7

r10

r11

r12

l20

l21

l22

+8

+2

r20

r21

r22

y

−5

−0.5

−1

ReLU

ReLU

ReLU

0.8

2

−1

0.5

0.5

−2

−1

ReLU

ReLU

ReLU

0.25

2

0.5

(a)

x

l10

l11

l12

+10

−2.5

+7

r10

r11

r12

l20

l2l

+5

r20

r21

y

−5

−0.5

−1

ReLU

ReLU

ReLU

0.4

2

−0.25

0.5

−1

−1

ReLU

ReLU

5/3

0.5

(b)

Fig. 3: Ne with neurons l20 and l21 selected in orange (a), and
then merged (b).

Choosing which pair of neurons to merge is crucial for
the success of this method. Every two neurons in the same
layer are valid candidates; however, some pairs are more
likely to succeed than others by resulting in a simplified
neural network that behaves similarly to the original. We
consider the following possible approaches for prioritizing
between the pairs: (1) an arbitrary ordering; (2) prioritizing
pairs with neurons that are assigned similar values (prior to
the activation function), when the network is evaluated on
assignment I . The motivation is that merging such pairs is
expected to have smaller effect on the overall functionality
of the neural network; (3) prioritizing pairs of neurons whose

39

ReLUs are inactive when evaluated on I . The motivation is
that inactive neurons may have little effect on the bug at hand.
This approach can be combined with Approach 2 to prioritize
pairs with similar values after categorizing them by the status
of the ReLUs; (4) prioritizing pairs of neurons with positive
values with respect to I . This approach, too, can be combined
with Approach 2; and (5) prioritizing pairs of neurons with
negative values, and then pairs with positive values, with
respect to I . This approach is a combination of Approaches
3 and 4, and again uses Approach 2 for internal prioritization
within each category.

Strategy for applying the simplification rules. Within Alg. 1,
the simplification steps mentioned above can be invoked in any
order. We propose to attempt methods that significantly reduce
the neural network size first, in order to reduce verification
times. We empirically observed that this is achieved by the
following strategy: first, attempt to linearize and merge con-
volutional layers (Method 2). Second, attempt to linearize and
merge fully connected layers (Method 1) — starting with the
output layer, and working backwards towards the input layer.
Finally, merge neurons (Method 3) according to Approach 5.
However, our implementation is highly customizable, and
users can configure it to use any other strategy, according to
the task at hand.

To illustrate, applying our proposed strategy to Ne from
Fig. 1, with respect to the assignment Ie = (5) in which
N l1

e (Ie) = (−15,−5, 2) and N l2

e (Ie) = (4, 2,−2), would
result in attempting the simplification methods in the following
order: (1) merge the layers l2 and l3; (2) merge the layers l1

and l2; (3) merge the pair of neurons l10, l
1
1; (4) merge the pair

of neurons l21, l
2
2; (5) merge the pair of neurons l20, l

2
2; (6) merge

the pair of neurons l11, l
1
2; and then, (7) merge the pair of

neurons l10, l
1
2. These steps are attempted, in order, until one

succeeds; after which the strategy is reapplied to the simplified
network, and so on.

IV. IMPLEMENTATION AND EVALUATION

We designed our tool, DELBUGV, to be compatible with
the standard input format used in the VNN-COMP competi-
tion [9], in which verification queries are encoded using the
VNN-LIB format [11]; and which, in turn, relies on the Open
Neural Network Exchange (ONNX) format. This facilitated
integrating DELBUGV with the various verifiers. DELBUGV
is implemented in Python, and contains classes that wrap
objects of these formats. The tool has a modular design
that allows applying our proposed minimization methods in
any order desired. The source code can be found at https:
//github.com/Raya5/DelBugV.

VNN-COMP’21 included 12 participating neural network
verifiers, and these were tested on a set of verification queries.
We began by extracting from the VNN-COMP’21 results pairs
of dissenting verifiers, and the verification queries that trig-
gered these discrepancies. Each such triple (two verifiers and
a query) constitutes an input to DELBUGV. This extraction
led us to target the following verifiers: (1) Marabou [32];

(2) NNV [50]–[53], [60]; (3) NeuralVerification.jl (NV.jl) [36];
and (4) nnenum [7], [8], [50], [51]. In the experiments
described next, we used the same versions of these verifiers
that were used in VNN-COMP’21.

Neuron Merging and Prioritization Approaches. For our
first experiment, we set out to determine which of the neuron-
pair prioritization schemes described as part of Method 3
in Sec. III-B is the most successful. We measured success
along two parameters: the size of the simplified network
obtained, and by the percentage of successful merging steps
along the way. We tested our algorithm on 5 input triples,
involving networks of size 310 each. Using only Method 3,
we ran DELBUGV with each of the prioritization schemes,
and counted for each scheme the number of merging steps
performed and the number of the steps that succeeded on
all of the 5 input triples. Table. I shows the results of this
comparison: the second column indicates, for every approach,
the percentage of the successful steps out of all the steps tried,
aggregated for all 5 benchmarks.

TABLE I: Comparing neurons merging approaches (Method
3) by size reduction and successful merges.

Successful merges (%) Average Reduction (%)
Approach 1 37.2% 96.0%
Approach 2 68.4% 95.9%
Approach 3 71.6% 96.0%
Approach 4 62.9% 95.8%
Approach 5 75.9% 96.0%

Looking at the average reduction sizes, the results indicate
that all 5 approaches were able to achieve a similar reduction
in size, with a slight advantage to approaches 1, 3 and 5.
However, the number of successful merges varied significantly
— from Approach 1, in which only 37.2% of the merge steps
were successful, and up to 75.9% for Approach 5 (in bold).
These results thus indicate that Approach 5 is the most efficient
among the considered approaches, and so we used it as our
default strategy for Method 3 in the subsequent experiments.

Linearizing ReLU Activations. In Method 1 and Method 2 in
Sec. III-B, we proposed to linearize activation functions, and
then merge them with the previous and following layers. These
methods can be applied to any piecewise-linear activation
function in the network. The order in which they are applied
is customizable. In this experiment, we set out to compare lin-
earizing ReLUs in ascending order (from input layer towards
output layer), and in descending order (from output towards
input). Table II shows the results of this experiment.

Every row in the table corresponds to an input triple to
DELBUGV (two disagreeing verifiers and a verification query
that they disagreed on), and the two simplification approaches
that were attempted.

For each such experiment, the second column indicates the
number of simplification steps tried, until DELBUGV reached
saturation (there were no additional steps to try). The third
column indicates the number of the successful steps out of all

40

https://github.com/Raya5/DelBugV
https://github.com/Raya5/DelBugV

TABLE II: Comparing linearizing layers approaches by suc-
cessful steps. * indicates the existence of a convolutional layer.

Linearizing
approach

No. of
steps

No. of
successful

steps

Successful
steps %

Neuron
reduction %

1. Ascending 6 6 100.0% 96.7%
Descending 6 6 100.0% 96.7%

2. Ascending 6 6 100.0% 96.7%
Descending 6 6 100.0% 96.7%

3. Ascending 6 6 100.0% 96.7%
Descending 6 6 100.0% 96.7%

4. Ascending 6 0 0.0% 0.0%
Descending 6 0 0.0% 0.0%

5. Ascending 12 5 41.6% 80.6%
Descending 9 6 66.6% 96.7%

6. Ascending 3 2 66.6% 39.2%
Descending 2 2 100.0% 39.2%

7. Ascending 3* 2* 66.6% 65.8%
Descending 2* 1 50.0% 0.0%

the steps. In column four, the percentage of successful steps
out of all steps is shown; we use this column to compare the
approaches. We mark in bold the leading approach for every
triple. The final column shows the reduction percentage in the
neural network size. When one of the approaches was clearly
superior, the entry appears in bold.

To analyze the results, observe, e.g., the 5th experiment
in Table II. The results imply that when using the ascending
approach, 12 linearizing and merging steps were made, until
the network could not be simplified further with either Method
1 or Method 2. Of these 12 steps, 5 were successful —
and consequently, the simplified network has 5 fewer layers
than the original. In contrast, with the descending approach
only 9 steps were made until the network could not be
simplified further, 6 of which were successful. Consequently,
the simplified network in this case has 6 fewer layers compared
to the original.

The results indicate that linearizing in descending order
slightly outperforms linearizing in ascending order, although
the gap is not very significant. We believe that the results
depend also on both the functionality of the verifier and the
values of the network as well. Meaning, they can vary between
the benchmarks. The neural network in the last row included
a convolutional layer, and, according to the results, linearizing
it in ascending order performed better. After investigating this
query further, we noticed that in the ascending order approach,
the convolutional layer was merged into a fully connected one;
whereas the descending approach did not succeed in removing
or merging any convolutional layers. We thus conclude that,
for a convolutional network, it is advisable to apply Method
2 before applying Method 1.

An interesting phenomenon in both our methods is that
they have an overall high reduction percentage for most of
the strategies. The strategies mainly differ in the number
of steps taken to reach this reduction. This phenomenon
implies that the simplification methods are overall effective,
but may be time-consuming. Thus, using strategies that entail
dispatching fewer verification queries using the verifiers is
more productive.

Delta Debugging Discrepancies from VNN-COMP’21. For
our final experiment, we considered 13 triples of verifiers,
oracle verifiers, and verification queries. Of these triples, 11
contained DNNs from the ACAS-Xu family [30], 1 was a
DNN from the MNIST DNNs [35], and 1 was a DNN from
the Oval21 benchmark [9]. The DNNs from the ACAS-Xu
family had 8 layers: 6 inner fully-connected layers with 50
neurons in each and 5 neurons in both the input and output
layer — 310 neurons in total in each network. The MNIST
DNN contained 4 fully-connected layers with 784 neurons
in the input layer, 256 neurons in each of the hidden layers
and 10 neurons in the output layer — 1306 neurons in total.
The Oval21 DNN is a convolutional neural network with 5
layers. Its input layer contains 3072 neurons (which represent
3 × 32 × 32 images). Those neurons are processed by the
first two convolutional hidden layers to 4096 neurons and
then to 2048 neurons. The following hidden layer is a fully-
connected one with 100 neurons followed by the output layer
which contains 10 neurons — in total, the Oval21 DNN
has 9326 neurons. It is worth mentioning that the properties
we used (taken from VNN-COMP) separately state the input
specifications and output specifications; however, our methods
do not require such a distinction. Further, although the VNN-
COMP specifications contains primarily linear constraints, our
method can also handle relational properties.

Using the optimal configuration of our tool as previously
discussed, we applied the full-blown delta-debugging algo-
rithm to all of our 13 benchmarks. The results appear in
Table. III. Every row in the table represents a triple, and
the first two columns indicate the number of neurons in the
original network, and the number of remaining neurons after
delta debugging was applied. The next two columns indicate
the number of layers in the original and reduced networks;
and the final column indicates the percentage of neurons that
were removed.

TABLE III: Delta-debugging using our algorithm. * indicates
the existence of a convolutional layer.

Neurons Layers Reduction
percentageIn Original In reduced In original In reduced

310 6 8 2 98%
310 7 8 2 97%
310 6 8 2 98%
310 12 8 8 96%
310 6 8 2 98%

9326 12 5* 3 99%
1306 11 4 2 99%
310 10 8 3 96%
310 6 8 2 98%
310 10 8 4 96%
310 10 8 4 96%
310 9 8 4 97%
310 13 8 6 95%

Overall, the algorithm performed exceedingly well, reducing
the network sizes by an average of 96.8% (!); and, in some
cases, causing a size decrease of 99%, from a neural network
with 1306 neurons and 4 layers to just 11 neurons and 2 layers
(an input layer and an output layer, without any activation

41

functions). The minimal decrease observed was 95%, from
310 neurons to 13. We regard these results as a very strong
indication of the usefulness of delta debugging in the context
of DNN verification. Further analyzing the results, we observe
that the ReLU linearization simplification rule was responsible
for an average of 66% of the size reduction, whereas the
remaining two rules were responsible for an average of 34% —
indicating that the ReLU linearization simplification rule is the
main workhorse of our approach at its current configuration.

V. RELATED WORK

With the increasing pervasiveness of DNNs, the verifica-
tion community has been devoting growing efforts to veri-
fying them. Numerous approaches have been proposed, in-
cluding SMT-based approaches [23], [30]–[32], [48], [58],
approaches based on LP or MILP solvers [14], [16], [49],
reachability-based approaches [38], [60], abstraction and
abstract-interpretation based approaches [5], [18], [24], [27],
[39], [44], [46], [57], synthesis-based approaches [33], [42],
run-time optimization [4], [6], quantitative verification [10],
verification of recurrent networks [28], [62], and many others.
These approaches, in turn, have been used in numerous appli-
cation domains [15], [17], [20], [47], [54], [55], [61]. Given
the scope of these efforts, and the number of available tools,
it is not surprising that bugs are abundant, and that engineers
are in need of efficient debugging tools.

To the best of our knowledge, no previous work has applied
delta debugging in the context of DNN verification, although
similar approaches have been shown successful in the related
domains of SMT [12], [40] and SAT [13] solving. Related
efforts have attempted to reduce DNN sizes, with the purpose
of producing smaller-but-equivalent networks, or networks
smaller with respect to a particular verification property of
interest [5], [34], [43], [44]. In the future, principles from these
approaches could be integrated as simplification strategies
within our delta-debugging approach.

VI. CONCLUSION

In this paper, we presented the DELBUGV tool for automat-
ically reducing the size of a verification query with respect to
an erroneous neural network verifier. We focused on delta-
debugging techniques, and proposed multiple minimization
methods for reducing neural network sizes. These techniques
attempt to simplify the neural network in question, while mod-
ifying it as little as possible. We also suggested a strategy for
the order in which to apply those methods. We demonstrated
the effectiveness of DELBUGV on actual benchmarks from the
VNN-COMP’21 competition, and were able to significantly
simplify them. We regard this work as another step towards
more sound tools for DNN verification.

Moving forward, we aim to continue this line of work
in several directions. One direction we plan to pursue is to
extend our evaluation, by considering more diverse sets of
benchmarks and comparing our approach also to existing,
general-purpose delta debuggers. Another direction is to ex-
tend our pool of neural network simplification methods, for

example by supporting also activation functions that are not
piecewise linear (e.g., Sigmoids). Additionally, we want to
theoretically analyze our simplification methods. Such analysis
will potentially benefit us in reducing the need for oracle
verifiers.

Acknowledgements. This work was partially supported by the
Binational Science Foundation (grant number 2021769).

REFERENCES

[1] A. Albarghouthi. Introduction to Neural Network Verification. verified-
deeplearning.com, 2021.

[2] G. Amir, Z. Freund, G. Katz, E. Mandelbaum, and I. Refaeli. veriFIRE:
Verifying an Industrial, Learning-Based Wildfire Detection System. In
Proc. 25th Int. Symposium on Formal Methods (FM), 2023.

[3] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Verification-Aided
Deep Ensemble Selection. In Proc. 22nd Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD), pages 27–37, 2022.

[4] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization
and Abstraction: a Synergistic Approach for Analyzing Neural Network
Robustness. In Proc. 40th ACM SIGPLAN Conf. on Programming
Languages Design and Implementations (PLDI), pages 731–744, 2019.

[5] P. Ashok, V. Hashemi, J. Kretinsky, and S. Mohr. DeepAbstract: Neural
Network Abstraction for Accelerating Verification. In Proc. 18th Int.
Symp. on Automated Technology for Verification and Analysis (ATVA),
pages 92–107, 2020.

[6] G. Avni, R. Bloem, K. Chatterjee, T. Henzinger, B. Könighofer, and
S. Pranger. Run-Time Optimization for Learned Controllers through
Quantitative Games. In Proc. 31st Int. Conf. on Computer Aided
Verification (CAV), pages 630–649, 2019.

[7] B. Bak. nnenum: Verification of Relu Neural Networks with Optimized
Abstraction Refinement. In Proc. 13th NASA Formal Methods Sympo-
sium (NFM), pages 19–36, 2021.

[8] S. Bak. Execution-Guided Overapproximation (EGO) for Improving
Scalability of Neural Network Verification. In Proc. 3rd Int. Workshop
on Verification of Neural Networks (VNN), 2020.

[9] S. Bak, C. Liu, and T. Johnson. The Second International Verification
of Neural Networks Competition (VNN-COMP 2021): Summary and
Results, 2021. Technical Report. http://arxiv.org/abs/2109.00498.

[10] T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative
Verification of Neural Networks and its Security Applications. In Proc.
ACM SIGSAC Conf. on Computer and Communications Security (CCS),
pages 1249–1264, 2019.

[11] C. Barrett, G. Katz, D. Guidotti, L. Pulina, N. Narodytska, and A. Tac-
chella. The Verification of Neural Networks Library (VNN-LIB), 2019.
www.vnnlib.org.

[12] R. Brummayer and A. Biere. Fuzzing and Delta-Debugging SMT
Solvers. In Proc. 7th Int. Workshop on Satisfiability Modulo Theories
(SMT), 2009.

[13] R. Brummayer, F. Lonsing, and A. Biere. Automated Testing and
Debugging of SAT and QBF Solvers. In Proc. 13th Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT), pages 44–57, 2010.

[14] R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A
Unified View of Piecewise Linear Neural Network Verification. In Proc.
32nd Conf. on Neural Information Processing Systems (NeurIPS), pages
4795–4804, 2018.

[15] G. Dong, J. Sun, J. Wang, X. Wang, and T. Dai. Towards Repairing
Neural Networks Correctly, 2020. Technical Report. http://arxiv.org/abs/
2012.01872.

[16] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Proc. 15th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA), pages 269–286, 2017.

[17] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-
Augmented Systems. In Proc. Conf. of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM), pages
305–318, 2021.

[18] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), 2018.

42

http://arxiv.org/abs/2109.00498
www.vnnlib.org
http://arxiv.org/abs/2012.01872
http://arxiv.org/abs/2012.01872

[19] Y. Goldberg. A Primer on Neural Network Models for Natural Language
Processing. Journal of Artificial Intelligence Research, 57:345–420,
2016.

[20] B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260–278, 2020.

[21] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[22] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples, 2014. Technical Report. http://arxiv.org/abs/1412.
6572.

[23] D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A
Data-driven Approach for Checking Adversarial Robustness in Neural
Networks. In Proc. 16th. Int. Symp. on on Automated Technology for
Verification and Analysis (ATVA), pages 3–19, 2018.

[24] E. Goubault, S. Palumby, S. Putot, L. Rustenholz, and S. Sankara-
narayanan. Static Analysis of ReLU Neural Networks with Tropical
Polyhedra. In Proc. 28th Int. Symposium on Static Analysis (SAS), pages
166–190, 2021.

[25] J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang, J. Xie,
S. Zha, et al. GluonCV and GluonNLP: Deep Learning in Computer
Vision and Natural Language Processing. Journal of Machine Learning
Research, 21(23):1–7, 2020.

[26] J. Hou, B. Adhikari, and J. Cheng. DeepSF: Deep Convolutional Neural
Network for Mapping Protein Sequences to Folds. Bioinformatics,
34(8):1295–1303, 2018.

[27] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[28] Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 57–74, 2020.

[29] K. Jia and M. Rinard. Exploiting Verified Neural Networks via Floating
Point Numerical Error, 2020. Technical Report. http://arxiv.org/abs/
2003.03021.

[30] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[31] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
a Calculus for Reasoning about Deep Neural Networks, 2021.

[32] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[33] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[34] O. Lahav and G. Katz. Pruning and Slicing Neural Networks using
Formal Verification. In Proc. 21st Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 183–192, 2021.

[35] Y. LeCun. The MNIST Database of Handwritten Digits, 1998. http:
//yann.lecun.com/exdb/mnist/.

[36] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. Kochenderfer. Algo-
rithms for Verifying Deep Neural Networks, 2020. Technical Report.
http://arxiv.org/abs/1903.06758.

[37] X. Liu, P. He, W. Chen, and J. Gao. Multi-Task Deep Neural Networks
for Natural Language Understanding, 2019. Technical Report. http://
arxiv.org/abs/1901.11504.

[38] A. Lomuscio and L. Maganti. An Approach to Reachability Analysis
for Feed-Forward ReLU Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1706.07351.

[39] M. Müller, G. Makarchuk, G. Singh, M. Püschel, and M. Vechev.
PRIMA: General and Precise Neural Network Certification via Scalable
Convex Hull Approximations. In Proc. 49th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2022.

[40] A. Niemetz, M. Preiner, and C. Barrett. Murxla: A Modular and Highly
Extensible API Fuzzer for SMT Solvers. In Proc. 34th Int. Conf. on
Computer Aided Verification (CAV), pages 92–106, 2022.

[41] F. Noé, G. De Fabritiis, and C. Clementi. Machine Learning for Protein
Folding and Dynamics. Current Opinion in Structural Biology, 60:77–
84, 2020.

[42] E. Polgreen, R. Abboud, and D. Kroening. Counterexample Guided
Neural Synthesis, 2020. Technical Report. https://arxiv.org/abs/2001.
09245.

[43] P. Prabhakar. Bisimulations for Neural Network Reduction. In Proc.
23rd Int. Conf. Verification on Model Checking, and Abstract Interpre-
tation (VMCAI), pages 285–300, 2022.

[44] P. Prabhakar and Z. Afzal. Abstraction Based Output Range Analysis
for Neural Networks, 2020. Technical Report. https://arxiv.org/abs/2007.
09527.

[45] L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to
Verification of Artificial Neural Networks. In Proc. 22nd Int. Conf. on
Computer Aided Verification (CAV), pages 243–257, 2010.

[46] G. Singh, T. Gehr, M. Puschel, and M. Vechev. An Abstract Domain for
Certifying Neural Networks. In Proc. 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2019.

[47] M. Sotoudeh and A. Thakur. Correcting Deep Neural Networks with
Small, Generalizing Patches. In Workshop on Safety and Robustness in
Decision Making, 2019.

[48] C. Strong, H. Wu, A. Zeljić, K. Julian, G. Katz, C. Barrett, and
M. Kochenderfer. Global Optimization of Objective Functions Repre-
sented by ReLU Networks. Journal of Machine Learning, pages 1–28,
2021.

[49] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming, 2017. Technical Report.
http://arxiv.org/abs/1711.07356.

[50] H.-D. Tran, S. Bak, W. Xiang, and T. Johnson. Verification of Deep
Convolutional Neural Networks Using ImageStars. In Proc. 32nd Int.
Conf. on Computer Aided Verification (CAV), pages 18–42, 2020.

[51] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L. Nguyen,
W. Xiang, and T. Johnson. Star-Based Reachability Analysis of Deep
Neural Networks. In Proc. Int. Symposium on Formal Methods (FM),
pages 670–686, 2019.

[52] H.-D. Tran, P. Musau, D. Lopez, X. Yang, L. Nguyen, W. Xiang,
and T. Johnson. Parallelizable Reachability Analysis Algorithms for
Feed-Forward Neural Networks. In Proc. 7th Int. Workshop on Formal
Methods in Software Engineering (FormaliSE), pages 31–40, 2019.

[53] H.-D. Tran, X. Yang, D. Lopez, P. Musau, L. Nguyen, W. Xiang, S. Bak,
and T. Johnson. NNV: The Neural Network Verification Tool for Deep
Neural Networks and Learning-Enabled Cyber-Physical Systems, 2020.
Technical Report. http://arxiv.org/abs/2004.05519.

[54] C. Urban, M. Christakis, V. Wüstholz, and F. Zhang. Perfectly Parallel
Fairness Certification of Neural Networks. In Proc. ACM Int. Conf.
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), pages 1–30, 2020.

[55] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. Pǎsǎreanu. NNrepair:
Constraint-based Repair of Neural Network Classifiers, 2021. Technical
Report. http://arxiv.org/abs/2103.12535.

[56] International Verification of Neural Networks Competition (VNN-
COMP), 2020. https://sites.google.com/view/vnn20/vnncomp.

[57] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and Z. Kolter.
Beta-CROWN: Efficient Bound Propagation with Per-Neuron Split Con-
straints for Complete and Incomplete Neural Network Verification. In
Proc. 35th Conf. on Neural Information Processing Systems (NeurIPS),
2021.

[58] H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Păsăreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128–137,
2020.

[59] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun. Deep Image: Scaling up
Image Recognition. Technical Report. http://arxiv.org/abs/1501.02876.

[60] W. Xiang, H. Tran, and T. Johnson. Output Reachable Set Estimation
and Verification for Multi-Layer Neural Networks. IEEE Transactions
on Neural Networks and Learning Systems (TNNLS), 2018.

[61] X. Yang, T. Yamaguchi, H.-D. Tran, B. Hoxha, T. Johnson, and
D. Prokhorov. Neural Network Repair with Reachability Analysis, 2021.
Technical Report. https://arxiv.org/abs/2108.04214.

[62] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th European Conf. on Artificial
Intelligence (ECAI), pages 1690–1697, 2020.

43

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2003.03021
http://arxiv.org/abs/2003.03021
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
https://arxiv.org/abs/2001.09245
https://arxiv.org/abs/2001.09245
https://arxiv.org/abs/2007.09527
https://arxiv.org/abs/2007.09527
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/2004.05519
http://arxiv.org/abs/2103.12535
https://sites.google.com/view/vnn20/vnncomp
http://arxiv.org/abs/1501.02876
https://arxiv.org/abs/2108.04214

