q

Check for
updates

veriFIRE: Verifying an Industrial,
Learning-Based Wildfire Detection
System

Guy Amir!® | Ziv Freund?, Guy Katz', Elad Mandelbaum?, and Idan Refaeli!

! The Hebrew University of Jerusalem, Jerusalem, Israel
{guyam, guykatz,idan0610}@cs.huji.ac.il
2 Elbit Systems—EW & SIGINT—Elisra Ltd., Holon, Israel
{ziv.freund,elad.mandelbaum}@elbitsystems.com

Abstract. In this short paper, we present our ongoing work on the ver-
iFIRE project—a collaboration between industry and academia, aimed
at using verification for increasing the reliability of a real-world, safety-
critical system. The system we target is an airborne platform for wildfire
detection, which incorporates two deep neural networks. We describe the
system and its properties of interest, and discuss our attempts to verify
the system’s consistency, i.e., its ability to continue and correctly classify
a given input, even if the wildfire it describes increases in intensity. We
regard this work as a step towards the incorporation of academic-oriented
verification tools into real-world systems of interest.

1 Introduction

In recent years, deep neural networks (DNNs) [16] have achieved unprecedented
results in a variety of fields, such as image recognition [44], speech analysis [39],
and many others [7,23,32,37,43]. This success has led to the integration of DNNs
in various safety-critical systems [10].

A particular safety-critical application of DNNs is within wildfire detection
systems [31,34,42,51], whose goal is to detect and alert first responders to situa-
tions that could later become life threatening. One such airborne system, which
is currently being considered by Elbit Systems for use on aerial vehicles, is based
on Infra-Red (IR) sensors that feed their inputs, usually a series of image frames,
to multiple neural networks—which then determine whether the images contain
a wildfire. Naturally, it is possible that (a) the system will mistakenly issue an
alert when a wildfire does not exist, or, worse, that (b) the system will fail to issue
an alert when the images do indicate the existence of a wildfire. The second kind
of failure is clearly very dangerous, and could potentially jeopardize human lives.
Consequently, potential users of the system require it to be extremely reliable.

Although DNN-based systems are highly successful, prior research has shown
that even complex and highly-accurate DNNs are prone to errors. For example,
small input perturbations, due to either random noise or adversarial attacks,

All authors contributed equally.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 648-656, 2023.
https://doi.org/10.1007/978-3-031-27481-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_38&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_38

veriFIRE 649

are known to cause modern DNNs to fail miserably [17,30,38]. Such issues raise
serious concerns regarding the trustworthiness of a DNN-based wildfire detection
system, and could delay or prevent its deployment.

In order to address such issues and facilitate the certification of DNNs, the
formal methods community has recently suggested various tools and approaches
for formally wverifying the correctness of DNNs [5,11,15,19,21,22,24,25,27,
35,36,45,47,49,50], based on reachability analysis and abstract interpreta-
tion [15,35,46], SMT-solving [3,12,18,19,24,26,29], and other methods. Given
a DNN and a specification, these techniques allow us to formally prove that the
DNN satisfies the specification for any possible input of interest (see Appendix A
for additional details). However, despite the rapid improvement in DNN verifi-
cation technology, there remains a gap between the capabilities of verification
tools developed by academia, and the actual needs of industrial teams. First,
academic tools often face scalability issues, and may be unsuitable for verifying
industrial-sized DNNs with millions of neurons. Second, academic-oriented veri-
fication tools may not support the various DNN specifications used in industry.
Consequently, practitioners often resort to using various forms of testing, and
not verification, when attempting to certify real-world DNNs.

In this paper, we describe our ongoing work on the veriFIRE project—a col-
laboration between Elbit Systems and the Hebrew University, aimed at formally
verifying the correctness of the aforementioned wildfire detection system. As part
of this project, our goals are to (1) produce formal specifications for this system,
which could then be formulated into DNN verification tools; and (2) enhance and
extend existing verification technology, so that it can be successfully applied to
this system.

2 The VeriFIRE Project

The Platform. The veriFIRE project is a recent and ongoing collaboration
between Elbit Systems and the Hebrew University. It involves an airborne wild-
fire detection system, designed to be mounted on aerial vehicles (AVs)—from
small drones, to large manned or unmanned aircraft—being manufactured by
Elbit Systems (see Fig.1). The airborne system consists of the following com-
ponents: (i) a set of infra-red (IR) sensors, located at different spots on the AV,
and pointing at different angles. These sensors produce temporal image streams
of the background surrounding the AV; (ii) a first, convolutional DNN, which
receives the image streams generated by the IR sensors, and produces candidate
detections, based on temporal changes as detected when compared to previous
images of the background. Each candidate detection is a stream of slices (through
time) taken from the background image streams, around the suspicious areas;
and (iil) a second convolutional DNN; which receives a candidate detection, pro-
duced by the first DNN, and determines whether it is a wildfire (at its early
stages), or a false detection of the first DNN. The goal of the veriFIRE project
is to ensure the overall reliability of the system, by verifying the correctness of
its DNN components.

650 G. Amir et al.

Fig. 1. A scheme of the airborne wildfire detection system. At first, an airborne plat-
form takes multiple IR images, and uses the first DNN to detect candidate areas, in
which a wildfire is suspected. Next, these candidates are passed to a second DNN,
which determines whether a wildfire has truly occurred, or not.

Training the wildfire detection platform is performed using a proprietary
simulator that automatically generates synthetic images, by adding simulated
wildfire images to recorded background images. Given two datasets, one con-
taining only normalized wildfire signals (S) with no background, and another
for background images (B) which do not contain any wildfires, the simulator
creates a new dataset of synthetic images, each one generated by combining a
wildfire image with a background image, in a process referred to as planting.
More formally, for any zs € S, xp € B, the simulator uses a planting function
p to produce a realistic image I = p(e - x4, xp), which contains the wildfire with
intensity e. At its early stages, a wildfire is a sub-pixel in the sensor’s field of
view, and thus the planting function can be treated as a linear combination of
the wildfire image and the background image. We note that this methodology is
common practice, and is acceptable to Elbit Systems’ clients.

Although the dataset is large enough to produce sufficiently many test sam-
ples, statistical testing alone is inadequate for guaranteeing the platform’s relia-
bility. Specifically, clients may wish to guarantee that some performance features
are not random—for example, it is required that if a small wildfire is detected
by the platform in a given scenario, a stronger wildfire will definitely be detected
as well. Thus, we began by focusing on formally verifying the correctness of the
second DNN used, which we term N. This network can be regarded as a map-
ping N : R»** — R, where n is the number of pixels in each image, and k is the
number of time-steps observed. When presented with a stream of input images
z € R"¥* N computes a score, N (2); and if this score exceeds a threshold 4,
then N classifies as an image containing a wildfire. The value of § is deter-
mined according to the clients’ needs, as a balancing point between the empirical
false-alarm rate and its tradeoff with the empirical positive-detection rate, after
a short evaluation period. The network NN is comprised of three convolution

veriFIRE 651

layers [28,44], each one followed by a max-pooling layer and two fully-connected
layers. In the last layer, the network has a single output node with a sigmoid
activation, which serves as the output of the entire DNN.

Consistency. One main challenge in the veriFIRE project is to produce formal
specifications for N. Ideally, we would like to prove that N correctly identifies
any possible wildfire within any possible image, but this is difficult to formulate
rigorously. Current state-of-the-art verification tools focus primarily on verify-
ing local adversarial robustness [8,15,18,33,36,40,46,48], i.e., on proving that a
DNN continues to correctly classify an input in the presence of slight perturba-
tions; but we have observed that this kind of property is of limited interest to
potential clients of the system. Thus, a new kind of specification is required for
this process. With that in mind, we introduce the definition for local consistency:

Definition 1 (Local Consistency). Given a deep neural network N : R"*F —
R, a wildfire signal image stream x5 € S, and an input background image stream
xp € B, we say that N is (xs,xp)-locally-consistent if for every e; > e, it holds
that N(p(ey - x5, 23)) > N(p(ea - x4, 23)), where p : RM*F x Rnxk o Rnxk g g
planting function, such that p(s,b) plants the signal s into the background b.

Intuitively, local consistency in this context means that if the original image
x was determined to contain a wildfire (i.e., N (z) exceeded the threshold d), then
any image stream with a stronger signal, e.g., a larger wildfire, will also be deter-
mined to contain a wildfire. If this property holds, then there is a specific wildfire
magnitude threshold, above which the system will be reliable. For our purposes,
we use the linear planting function: p(s,b) = s + b, as a good approximation to
the full generation function, as it approximately represents real wildfire signals
at their early stages on the background images.

The above definition only considers a single pair of a signal image stream
and a background image stream. Ideally, we would like to verify consistency
for all possible background images containing wildfires. Thus, we define global
consistency, as follows:

Definition 2 (Global Consistency). Given a deep neural network N
R™* — R, we say that N is globally-consistent if for every x5 € S and xp € B,
N is (x5, zp)-locally-consistent.

We note that the sets S and B are not necessarily finite, and may represent
all possible wildfire signal images and all possible background images, respec-
tively. Thus, global consistency is significantly more complex to prove than local
consistency.

3 Conclusion and Remaining Challenges

This paper presents a collaboration between academia and industry, with the
goal of verifying an airborne system for wildfire detection. Our work so far has

652 G. Amir et al.

focused on devising novel kinds of specifications of interest, which are better
suited for this domain than the specifications commonly supported by academia-
oriented verification tools. Moving forward, we plan to formulate such properties
for the remaining parts of the system, and also to enhance existing verification
engines so that they become sufficiently expressive and scalable to tackle the
networks in question.

Acknowledgement. This work was supported by a grant from the Israel Innovation
Authority. The work of Amir was also supported by a scholarship from the Clore Israel
Foundation.

Appendices

A Background: DNNs and Their Verification

Deep Neural Networks. A deep neural network (DNN) [16] is a computa-
tional, directed graph, comprised of layers. The network computes a value, by
receiving inputs and propagating them through its layers until reaching the final
(output) layer. These output values can be interpreted as a classification label or
as a regression value, depending on the kind of network in question. The actual
computation depends on each layer’s type. For example, a node y in a rectified
linear unit (ReLU) layer calculates the value y = ReLU(x) = max(0, z), for the
value z of one of the nodes in its preceding layer. Additional layer types include
weighted sum layers, as well as layers with various non-linear activations. Here,
we focus on feed-forward neural networks, i.e., DNNs in which each layer is
connected only to its following layer.

Weighted

Input ReLU Output

sum
.1 ReLU
H——@— @
+3 \

>< ,Ui

3 /
& -0
-1 ReLLU
-1

Fig. 2. A toy DNN.

Figure 2 depicts a toy DNN. For input V; = [1, 3]7, the second layer computes
the values Vo = [13,—6]T. In the third layer, the ReLU functions are applied,
producing V3 = [13,0]%. Finally, the network’s single output value is V = [65].

DNN Verification. A DNN verification engine [15,19,24,36,47] receives a DNN
N, a precondition P that defines a subspace of the network’s inputs, and a post-
condition @ that limits the network’s output values. The verification engine then

veriFIRE 653

searches for an input zq that satisfies P(xg) A Q(N(zg)). If such an input exists,
the engine returns SAT and a concrete input that satisfies the constraints; other-
wise, it returns UNSAT, indicating that no such input exists. The postcondition
Q usually encodes the negation of the desired property, and hence a SAT answer
indicates that the property is violated, and that the returned zq triggers a bug.
However, an UNSAT result indicates that the property holds.

For example, suppose we wish to verify that the simple DNN depicted in Fig. 2
always outputs a value strictly larger than 25; i.e., for any input z = (vi,v?), it
holds that N(x) = v} > 25. This property is encoded as a verification query by
choosing a precondition that does not restrict the input, i.e., P = (true), and
by setting a postcondition @Q = (v} < 25). For this verification query, a sound
verification engine will return SAT, alongside a feasible counterexample such as
x = (1,0), which produces v} = 20 < 25, proving that the property does not
hold for this DNN.

In our work, we used Marabou [26]—a sound and complete DNN-verification
engine, which has recently been used in a variety of applications [1,2,4,6,9,13,
14,20,40,41].

References

1. Amir, G., et al.: Verifying Learning-Based Robotic Navigation Systems (2022).
Technical report. https://arxiv.org/abs/2205.13536

2. Amir, G., Schapira, M., Katz, G.: Towards scalable verification of deep reinforce-
ment learning. In: Proceedings 21st International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 193-203 (2021)

3. Amir, G., Wu, H., Barrett, C., Katz, G.: An SMT-based approach for verify-
ing binarized neural networks. In: TACAS 2021. LNCS, vol. 12652, pp. 203-222.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_11

4. Amir, G., Zelazny, T., Katz, G., Schapira, M.: Verification-aided deep ensemble
selection. In: Proceedings of the 22nd International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 27-37 (2022)

5. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verifica-
tion of neural networks and its security applications. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS), pp. 1249—
1264 (2019)

6. Bassan, S., Katz, G.: Towards Formal Approximated Minimal Explanations of
Neural Networks, Technical report (2022). https://arxiv.org/abs/2210.13915

7. Bojarski, M., et al.: End to End Learning for Self-Driving Cars, Technical report
(2016). http://arxiv.org/abs/1604.07316

8. Casadio, M., et al.: Neural network robustness as a verification property: a prin-
cipled case study. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. Lecture Notes in
Computer Science, vol. 13371, pp. 219-231. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-13185-1_11

9. Corsi, D., Yerushalmi, R., Amir, G., Farinelli, A., Harel, D., Katz, G.: Constrained
Reinforcement Learning for Robotics via Scenario-Based Programming, Technical
report (2022). https://arxiv.org/abs/2206.09603

10. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications.
Comput. Sci. Rev. 40, 100379 (2021)

https://arxiv.org/abs/2205.13536
https://doi.org/10.1007/978-3-030-72013-1_11
https://arxiv.org/abs/2210.13915
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-031-13185-1_11
https://doi.org/10.1007/978-3-031-13185-1_11
https://arxiv.org/abs/2206.09603

654

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

G. Amir et al.

Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Munoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121-138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5_9

Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269-286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19
Elboher, Y.Y., Cohen, E., Katz, G.: Neural network verification using residual
reasoning. In: chlingloff, B.H., Chai, M. (eds.) Software Engineering and Formal
Methods. SEFM 2022. Lecture Notes in Computer Science, vol. 13550, pp. 173-189.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17108-6-11

Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43-65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8_3

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings 39th IEEE Symposium on Security and Privacy (S&P)
(2018)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial
Examples, Technical report (2014). http://arxiv.org/abs/1412.6572

Gopinath, D., Katz, G., Pasareanu, C.S., Barrett, C.: DeepSafe: a data-driven
approach for assessing robustness of neural networks. In: Lahiri, S.K., Wang, C.
(eds.) ATVA 2018. LNCS, vol. 11138, pp. 3-19. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01090-4_1

Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3-29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural network verification with proof
production. In: Proceedings of the 22nd International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD), pp. 38-48 (2022)

Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, L.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embedded Comput. Syst. (TECS) 20(1), 1-26 (2020)

Jin, P., Tian, J., Zhi, D., Wen, X., Zhang, M.: Trainify: A CEGAR-driven training
and verification framework for safe deep reinforcement learning. In: Shoham, S.,
Vizel, Y. (eds.) Computer Aided Verification (CAV), CAV 2022. Lecture Notes in
Computer Science, vol. 13371, pp. 193-218. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-13185-1-10

Jumper, J.; et al.: Highly accurate protein structure prediction with AlphaFold.
Nature 596(7873), 583-589 (2021)

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97-117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

Katz, G., Barrett, C., Dill; D.L., Julian, K., Kochenderfer, M.J.: Reluplex: a cal-
culus for reasoning about deep neural networks. Formal Methods Syst. Des., 1-30
(2021). https://doi.org/10.1007/s10703-021-00363-7

https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-031-17108-6_11
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-031-13185-1_10
https://doi.org/10.1007/978-3-031-13185-1_10
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/s10703-021-00363-7

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

veriFIRE 655

Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443-452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Konighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 290-306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
4.16

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of 26th Conference on Neural Infor-
mation Processing Systems (NeurIPS), pp. 1097-1105 (2012)

Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward Scalable Verification for Safety-Critical Deep Networks, Technical report
(2018). https://arxiv.org/abs/1801.05950

Kurakin, A., Goodfellow, I.J., Bengio, S: Adversarial examples in the physical
world. In: Artificial Intelligence Safety and Security, pp. 99-112 (2018)

Lee, W., Kim, S., Lee, Y.T., Lee, H.W., Choi, M.: Deep neural networks for wild fire
detection with unmanned aerial vehicle. In: Proceedings of 2017 IEEE International
Conference on Consumer Electronics (ICCE), pp. 252-253 (2017)

Lekharu, A., Moulii, K. Y., Sur, A., Sarkar, A.: Deep learning based prediction
model for adaptive video streaming. In: Proceedings of International Conference
on Communication Systems & Networks (COMSNETS), pp. 152-159 (2020)
Levy, N., Katz, G.: RoMA: a Method for Neural Network Robustness Measurement
and Assessment, Technical report (2021). https://arxiv.org/abs/2110.11088

Li, P., Zhao, W.: Image fire detection algorithms based on convolutional neural
networks. Case Stud. Therm. Eng. 19, 100625 (2020)

Lomuscio, A., Maganti, L.: An Approach to Reachability Analysis for Feed-Forward
ReLU Neural Networks, Technical report (2017). http://arxiv.org/abs/1706.07351
Lyu, Z., Ko, C. Y., Kong, Z., Wong, N., Lin, D., Daniel, L.: Fastened crown:
tightened neural network robustness certificates. In: Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI), pp. 5037-5044 (2020)

Mnih, V., et al.: Playing Atari with Deep Reinforcement Learning. Technical report
(2013). http://arxiv.org/abs/1312.5602

Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial per-
turbations. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 1765-1773 (2017)

Nassif, A., Shahin, I., Attili, I., Azzeh, M., Shaalan, K.: Speech recognition using
deep neural networks: a systematic review. IEEE Access 7, 19143-19165 (2019)
Ostrovsky, M., Barrett, C., Katz, G.: An abstraction-refinement approach to ver-
ifying convolutional neural networks. In: Bouajjani, A., Holik, L., Wu, Z. (eds.)
Automated Technology for Verification and Analysis. ATVA 2022. Lecture Notes
in Computer Science, vol. 13505, pp. 391-396 (2022). https://doi.org/10.1007/978-
3-031-19992-9_25

Refaeli, I., Katz, G.: Minimal multi-layer modifications of deep neural networks. In:
Isac, O., Ivanov, R., Katz, G., Narodytska, N., Nenzi, L. (eds.) Software Verification
and Formal Methods for ML-Enabled Autonomous Systems. NSV (FoMLAS) 2022.
Lecture Notes in Computer Science, vol. 13466, pp. 46—66. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-21222-2_4

Sharma, J., Granmo, O.-C., Goodwin, M., Fidje, J.T.: Deep convolutional neural
networks for fire detection in images. In: Boracchi, G., Iliadis, L., Jayne, C., Likas,
A. (eds.) EANN 2017. CCIS, vol. 744, pp. 183-193. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65172-9_16

https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://arxiv.org/abs/1801.05950
https://arxiv.org/abs/2110.11088
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/978-3-031-19992-9_25
https://doi.org/10.1007/978-3-031-19992-9_25
https://doi.org/10.1007/978-3-031-21222-2_4
https://doi.org/10.1007/978-3-319-65172-9_16
https://doi.org/10.1007/978-3-319-65172-9_16

656

43.

44.

45.

46.

47.

48.

49.

50.

51.

G. Amir et al.

Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484-489 (2016)

Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition, Technical report (2014). http://arxiv.org/abs/1409.1556
Strong, C.A., et al.: Global optimization of objective functions represented by
ReLU networks. J. Mach. Learn., 1-28 (2021). https://doi.org/10.1007/s10994-
021-06050-2

Tjeng, V., Xiao, K., Tedrake, R.: Evaluating Robustness of Neural Networks with
Mixed Integer Programming, Technical report (2017). http://arxiv.org/abs/1711.
07356

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX
Security Symposium, pp. 1599-1614 (2018)

Weng, T.: Towards Fast Computation of Certified Robustness for ReLU Networks,
Technical report (2018). http://arxiv.org/abs/1804.09699

Zelazny, T., Wu, H., Barrett, C., Katz, G.: On reducing over-approximation errors
for neural network verification. In: Proceedings of the 22nd International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD), pp. 17-26 (2022)
Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verifica-
tion of recurrent neural networks for cognitive tasks via reachability analysis. In:
Proceedings of the 24th European Conference on Artificial Intelligence (ECAI),
pp. 1690-1697 (2020)

Zhang, Q., Xu, J., Xu, L., Guo, H.: Deep convolutional neural networks for forest
fire detection. In: Proceedings of the International Forum on Management, Edu-
cation and Information Technology Application (IFMEITA), pp. 568-575 (2016)

http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/s10994-021-06050-2
https://doi.org/10.1007/s10994-021-06050-2
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1804.09699

