Theory-Aided Model Checking of Concurrent Transition Systems
Supplementary Material

Guy Katz
Weizmann Institute of Science
guy.katz@weizmann.ac.il

A. DERIVATION RULES FOR THE 7S SOLVER

A derivation tree consists of nodes containing sets of
assertions. The root node contains an initial set of assertions
and each non-leaf node is labeled by a derivation rule used
to derive the children of the node from the node itself.
The derivation rules used by the 7S solver give rise to
a sequence of derivation trees (called a derivation). The
initial tree in the derivation contains only a single node
with the initial set of assertions. Each subsequent tree in the
sequence is obtained from its predecessor by the application
of a derivation rule to one of the predecessor’s leaves. A
branch terminating with a leaf consisting of the value _L is
called a closed branch; if all branches are closed, we say
that the derivation tree is closed. A derivation culminating
with a closed derivation tree indicates that the initial set
of assertions is unsatisfiable. A derivation that leads to a
derivation tree containing a leaf node that is not | and to
which no derivation rule can be applied indicates that the
initial set of assertions is satisfiable. When such a tree is
produced, the derivation terminates.

We now describe the actual derivation rules used by the
theory. The first rule, used to initiate the traversal of the state
space, is the Start rule:

['[—safe(s)]

START
T, —safe_state(s,q1) ...

F7 ﬂsafe_state(S, (In) 5

where I" denotes the initial set of assertions (in particular it
includes 3 and ®). The derivation rule contains a nondeter-
ministic split such that each branch adds a single assertion
to I'.! The Start rule is only applicable when the following
guard conditions hold:

I Brs Yge Q. (I(s,q) < (¢=q1)V(¢=q2)V
...V (¢ = gn)), where s is of sort Sg
—safe_state(s,q;) ¢ T fori € {1...n}.
Intuitively, the Start rule translates the fact that the system

is unsafe into an assertion that one of the initial states is
unsafe. The first part of the guard condition ensures that all

I'Splits are implemented by utilizing the SAT solver through the DPLL(T)
splitting-on-demand framework.

Clark Barrett
New York University
barrett@cs.nyu.edu

David Harel
Weizmann Institute of Science
david.harel @weizmann.ac.il

of the potential initial states are considered as possibilities,
and the second part ensures that the rule is applied only once
at the beginning of the derivation.

Next comes the Decide rule. This rule performs a similar
function to that of Start, and applies when the traversal of
the state space is already underway:

T'[—safe_state(s, q)]

DECIDE
F, —\safe_state(s, q'n) .

T, —safe_state(s,q1) ...

The Decide rule is applicable when the following conditions
hold:
—deadlock(s,q) ¢ T (1)
I' Frg V¢ €Q,ec E.
((Tr(s,q,e,q') A R(s,q,e) A —~B(s,q,¢)) <=
@ =q)V(@ =a@)V...V(d =q))
where s is of sort Sg and n > 1.

2)

Intuitively, if a state ¢ has not already been recorded as a
non-deadlock state (condition 1), the Decide rule lets the
solver derive the unsafety of one of ¢’s successor states, as
long as such successors exist (condition 2). Note in particular
that the Decide rule will not apply if ¢ is a deadlock state
because condition 2 will fail.

For cases where Decide is not applicable and no deadlock
state has been found, we have the Unsat rule:

I'[—safe_state(s, q)]
1

UNSAT

The Unsat rule is applicable when there are no more states
to explore on this branch (and at least one state has been
explored) and no deadlock has been discovered. Specifically,
the guard condition is:

whenever —safe_state(s,q’) € T,
we also have —~deadlock(s,q') € T.
In addition to the derivation rules, we use the theory

lemma feature of the DPLL(T) framework to periodically
generate a deadlock lemma:

PAP = —deadlock(s,q)

Of course, as a theory lemma must be valid in the theory,
this lemma can only be generated if ¢ is not a deadlock state
in s, or, formally,

B, P Frs 3¢ €Q,ec E.
Tr(s,q,e,q') A R(s,q,€) A~B(s,q,e),
where s has the sort Sg and ¢ has the sort Q.

Because I includes 3 and @, the DPLL(T) framework
will ensure that whenever a deadlock lemma is added, the
predicate —deadlock (s, q) will be included in I" on all future
branches. For our purposes, we can view the generation of a
deadlock lemma as a derivation rule which modifies a given
derivation tree by adding —deadlock(s,q) to every node of
the tree (except those labeled with).

Clearly, not every strategy for applying derivation rules
and deadlock lemmas will be complete. Thus, we enforce
the following strategy. A deadlock lemma for s and ¢
is generated immediately after an invocation of Decide
triggered on —safe_state(s, q); and moreover, this is the
only time a deadlock lemma is generated.

This strategy guarantees that deadlock lemmas are valid
and are generated only for states whose successors have been
expanded, and that each state’s successors are only expanded
at most once in any derivation.

Lemma 1: For each ¢, the Decide rule is applied at most
once with trigger —safe_state(s, ¢) in any derivation starting
with Start triggered on —safe(s).

Proof: Observe a derivation tree T' in which the Decide
rule has just been applied with trigger —safe_state(s, q).
The strategy used by the 7S solver guarantees that in
this case, the invocation of the Decide rule for ¢ will
be immediately followed by the generation of a deadlock
lemma for ¢ (recall that if Decide was applied to ¢, it cannot
be a deadlock state). This transforms 7" into a new tree, 7",
in which the assertion —deadlock(s,q) has been added to
every node.

The TS solver now continues working on tree 7”. In order
for the Decide rule to be re-applied to ¢ in some node of T,
the assertions in that node must not contain —~deadlock(s, q).
However, this is clearly not possible, as new nodes in 7" are
derived from existing nodes by the addition of terms (rules
Start, Decide and the lemma generation rule). Thus the only
nodes in the tree where —deadlock(s,q) is not present are
nodes derived using the Unsat rule, in which case the branch
is closed and no further rules may be applied.]
We also observe that in every derivation that starts with
B, D, —safe(s), the Start rule is applied precisely once.

Lemma 2: In every derivation starting with
B, D, —safe(s), the Starr rule is the first rule applied
and it is applied precisely once.

Proof: This holds because (i) Start is the only rule
applicable at the very first step of the derivation process;

and (ii) as rules only add to the set of assertions along any
branch, every leaf contains all of the assertions in its parent
nodes; and (iii) because of (ii), once Start has been applied
once, its guard rule prevents it from being applied again to
any successor derivation tree. |
The described derivation rules and proof strategy also guar-
antee partial correctness (i.e., soundness and completeness):

Proposition 1: Let s be an input system for which the 7S
solver terminates when started with 3, ®, —safe(s). Then s
is safe iff the final derivation tree is closed.

Proof: Suppose that s is unsafe; then let g9 — ¢ —

. = ¢y be a shortest path in s such that gy is an initial
state, ¢;+1 is a successor of ¢; for all 0 < ¢ < n, and ¢, is
a deadlock state.

We now claim that for each derivation tree after the
first, there is a value of ¢ with 0 < ¢ < n such that the
tree has a leaf node containing —safe_state(s,q;) and not
containing —safe_state(s, qx) for i < k < n and also not
containing —deadlock(s,qy) for i < k < n. We prove
this by induction on the derivation. It is easy to see this
is true for the second derivation tree as it is generated using
the Start rule and so does not yet contain any assertions
of the form —deadlock(s,q). Thus, the largest ¢ such that
—safe_state(s, q;) appears in the tree satisfies the claim.

Now, assume the claim holds for some tree 7" in the
derivation (whose position is second or later) with value 1.
Let 7" be its successor in the derivation. We consider each
of the possible ways in which 7" could have been obtained
from T

e T' cannot be derived using Start as (by Lemma 2) this
rule can only be applied once in the sequence.

e Suppose T” is derived from T using the Unsar rule.
It cannot be the case that the Unsat rule was applied
to the leaf containing —safe_state(s, ;) as that would
require —deadlock(s, ;) to also be present in the leaf
node and our inductive hypothesis states it is not. Thus
the leaf satisfying the claim in T is still present and
satisfies the claim in 7".

o Suppose 7" is derived using Decide followed by an
application of the deadlock lemma (we lump these
two rules together for simplicity and wlog). If the
Decide rule uses —safe_state(s, q;) as its trigger, then
T’ contains a new leaf which differs from the previ-
ous leaf by the addition of —safe_state(s,q;+1) and
—deadlock(s, g;). By minimality of the path, there are
no new leaves with —safe_state(s, qr) with k > i+ 1
and ¢;+1 # ¢;. Thus, it is clear that the value ¢ + 1
satisfies the claim in 7”. If the Decide rule uses
—safe_state(s, q) as its trigger with ¢ # ¢;, there are
two possibilities. The first possibility is that ¢ contains
a successor g with k > 4. In this case it is easy to see
that the value k satisfies the claim in 7. If ¢ contains no
such successor, then it is clear that the value ¢ continues
to satisfy the claim in 7".

This shows the claim is true for every tree in the derivation,
in particular the final tree which implies that the final tree
is not closed.

For the other direction, suppose towards contradiction that
s is safe but that the final derivation tree is not closed.
Then, there is a leaf node in the tree which is not L and to
which rules Start, Decide, and Unsat may not be applied.
We denote this node by «.

Node o has at least one assertion of the form
—safe_state(s, q) (generated by the Start rule at the begin-
ning of the derivation). Any other terms of this form were
generated by the Decide rule. From this, and by the guard
condition for Decide, it follows that for every state ¢ such
that —safe_state(s, q) is a term in «, ¢ is reachable in s.

We now distinguish between two cases. If there ex-
ists some ¢ such that —safe_state(s,q) is in « but
—deadlock(s, q) is not, then the Decide rule may be applied
— because we know, by our assumption that s is safe, that
q is not a deadlock state. If there is no such ¢, then Unsat
may be applied. Either case contradicts our assumption that
no rule may be applied in «, as needed.]

Proposition 1 tells us that when the 7S solver terminates,
it gives a correct result. However, it may not always termi-
nate. The following lemma characterizes one case in which
termination is guaranteed:

Proposition 2: For an input system s with a finite set of
states, the 7S solver terminates.

Proof: Lemma 2 ensures that in every derivation, the
Start rule is applied only once. Further, as Lemma 1 shows,
the Decide rule may only be applied once per state in the
entire derivation. Similarly, according to the proof strategy
used by the solver, the lemma generation rule may only
be applied once per state, as it is only invoked after an
invocation of Decide. Finally, the last derivation rule, Unsat,
always reduces the number of open branches in the tree, and
thus may only be applied a finite number of times once no
other rules are available. From all of the above, we deduce
that every derivation is of finite length.]

B. BACKWARD REACHABILITY

The derivation rules given so far — Start, Decide and
Unsat — effectively perform a reachability analysis over the
state space, looking for bad states. In some cases, as in the
case of periodic programs (Section V in the paper), it may
be useful to also perform a backward reachability search,
starting at bad states and checking if they are reachable. This
is performed by extending the 7'S theory with the predicate
reachableg : Sq x Q, where reachable(s,q) signifies that
state ¢ is reachable in s. The semantics are extended to
include (for each Q € Q1):

Vs :80,q: Q. reachable(s,q) = I(s,q) V
3¢ : Sg,e: E. (Tr(s,q,e,q) NR(s,q, e)A
—-B(s,q',e) A reachable(s,q")).

Intuitively, a state is reachable if it is either initial or if it
has a predecessor state that is reachable. This last condition
is what makes the search “backward”: we will start at bad
states, and attempt to construct a legal path backwards,
towards an initial state.

We will also use an alternative (but equivalent) semantics
for the system safety predicate. For each Q € Q+:

Vs : Sg. —safe(s) <
dq : Q. (deadlock(s, q) N reachable(s,q)) ,

and so a system is unsafe if it has an unsafe initial state or
(equivalently) a reachable deadlock state.

The derivation rules for this case are extended to include
“backward” versions of the three original rules. Here, the
negation of the initial state predicate plays the role that was
previously played by the deadlock predicate, namely that of
marking those states that have been visited by generating a
lemma. The first derivation rule is the BStart rule:

I[-safe(s)]

BSTART
T, reachable(s, q1)

... T, reachable(s, g,)

The BStart rule is only applicable when the following guard
conditions hold:
I Ers Vg€ Q. (deadlock(s,q) <~
(g=q) V...V (¢ =qn)), where s is of sort Sg
reachable(s,q;) ¢ T for i € {1...n}.

Intuitively, states ¢qi,...,q, are the deadlock (bad) states
of the system — the states on which we want to perform
the backward reachability analysis. Next comes the BDecide
rule:

['[reachable(s, q)]

BDECIDE
T, reachable(s, q1)

... T, reachable(s, q,) .

The BDecide rule is applicable when the following condi-
tions hold:

[Frs —1(s,q)

—I(s,q) ¢T

I' Frs V¢ €Q,ec E.
((Tr(s,q',e,q) AN R(s,q',e) N—B(s,q,e)) <
@ =q)V...V(d=a))
where s is of sort Sg and n > 1.

We also have a special BDecide2 rule which handles the
special case when a non-initial state has no predecessors:

T[reachable(s, q)]
r

BDECIDE2

The BDecide?2 rule is applicable when the following condi-
tions hold:
I'Ers ~I(s,q)
—I(s,q) ¢ T
I' Frs V¢ € Q,ec E.
~(Tr(s,q',e,q) AN R(s,q',e) A\ —B(s,q,¢))
where s is of sort Sg.
Finally, we have the BUnsat rule:
[[reachable(s, q)]
L

BUNSAT

The BUnsat rule has the following guard condition:

whenever reachable(s,q’) € T', we also have —1(s,q') € T.

In addition to the derivation rules, we again use the theory
lemma feature of the DPLL(T) framework to periodically
generate an initial state lemma:

PAP = —I(s,q)

As before, only valid theory lemmas are allowed, so this
lemma can only be generated if we know that g is not an
initial state.

Similarly to the forward reachability case, the 7S solver’s
strategy dictates that the initial state lemma generation
rule always be applied with trigger (s,q) immediately
after an invocation of BDecide or BDecide2 with trigger
reachable(s, q). As before, this guarantees that one of these
rules is applied at most once for each state q.

The backward reachability derivation rules are very sim-
ilar to the forward reachability ones; it is straightforward
to show that they do not change the solver’s soundness
and completeness, and that the solver still terminates for
transition systems with finite state sets and finite event sets.

C. A SIMPLE SCHEDULABLE PERIODIC PROGRAM

Consider a periodic program with 3 tasks, 77,75, T3, each
with execution time C; = Cy = C3 = 1. The tasks’ periods
are 2, 3 and 6, respectively. As depicted in Fig. 1, every 2
consecutive time slots include a scheduling of 77; every 3
consecutive slots include a scheduling of T5; and every 6
consecutive slots include a scheduling of 75. The schedule
repeats after every 6 steps (the hyper-period). Hence, this
program is schedulable.

- == == — ==

2 2 2 2

6

Figure 1: A scheduling for a periodic program with 3 tasks, 1%, T2, T3, with
execution time C; = Cy = C3 = 1 and periods P; = 2, P, = 3 and P3 = 6.

D. EXAMPLE: APPLYING THE SHARED ARRAY PATTERN
TO TiCc-TAC-TOE

We demonstrate the shared array pattern on a behavioral
application for playing Tic-Tac-Toe from [2]. Tic-Tac-Toe
is a game played between “X” and “O” players on a 3x3
board. Each in their turn, the players mark an empty square
on the board with their respective sign. A player wins by
completing a row, a column or a diagonal. If neither player
errs, the game is guaranteed to end in a draw.

In [2], the authors construct a behavioral application that
plays “O”, where a human player plays “X”. Suppose that
we wish to prove that the game application upholds the
property that “X never wins by taking the upper row”;
verifying this property can be useful, e.g., during incremental
development [1].

The theory-aided verification of this system is as follows.
In the implantation of [2], the game board is in fact a
ternary array — with values empty, O and X. By an-
alyzing the individual threads, the 7S solver recognizes
this array and determines that a violation can occur only
when the three upper row cells (say, cells 0, 1 and 2 in
the array) are set to X. The 7S solver then creates a 9-
cell ternary array variable arr, and asserts that target =
write(write(write(arr,0,X), 1, X), 2, X). Next, the solver
writes fresh constants cg, ..., cs to arr’s cells, and equates
the result to target:

T A=

target = write(. .. write(write(arr,0,¢p),1,¢2) ..., 8, ¢cs)

The Tic-Tac-Toe application has, for every board square,
a thread that waits for write events and then blocks any
additional writes. Thus, every triggered write event fixes
an array entry, causing the 7S solver to generate a lemma
that equates the corresponding c; constant to its final value.
For instance, suppose the game so far has included moves
X(0,1),0(1,1), X(2,2), and that it is now O’s turn to play.
We denote this current state by g;. Now, suppose the 7S
solver explores a new state, g2, reachable from g; when O
marks square O(0, 2). Thread analysis shows that starting in
state go the blocker thread will forever block any additional
write events to square (0, 2), and so the TS solver generates
the lemma: P A & A —safe_state(s,q2) = (ca = O).
This causes the array theory solver to raise a conflict, which
in turn causes the underlying SAT solver to deduce that
sate go cannot be unsafe. Thus, backtracking is performed,
and another successor of state ¢; is checked (effectively
choosing another move, instead of O(0,2)). Consequently,
the successor states of g2 need not to be explored.

A Note. RWB programs, and in particular those with
shared arrays, tend to have a large number of threads.
The resulting performance overhead may be mitigated via
lightweight threading; see, e.g., the Erlang implementation
of BP at http://www.b-prog.org.

REFERENCES

[1] D. Harel, R. Lampert, A. Marron, and G. Weiss. Model-
Checking Behavioral Programs. EMSOFT, 2011.

[2] D. Harel, A. Marron, and G. Weiss. Behavioral Programming.
C. ACM, 2012.

