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Abstract. In scenario-based programming (SBP), the semantics, which
enables direct execution of these intuitive specifications, calls, among oth-
ers, for synchronizing concurrent scenarios prior to every event-selection
decision. Doing so even when the running scenarios are distributed across
multiple physical system components, may degrade system performance
or robustness. In this paper we describe a technique for automated dis-
tribution of an otherwise-centralized specification, such that much of
the synchronization requirement may be relaxed. The technique calls for
replicating the entire scenario-based executable specification in each of
the components, locally transforming it in a component-specific manner,
and reducing the synchronization requirements to very specific and well-
defined points during execution. Our evaluation of the technique shows
promising results. Given that relaxed synchronization can lead to what
appears as different runs in different components we discuss various cri-
teria for what would constitute acceptable differences, or divergence, in
the parallel, distributed runs of almost-identical copies of a single speci-
fication.

This paper incorporates and substantially extends the material of
the paper published in MODLESWARD’17 Distributing Scenario-Based
Models: A Replicate-and-Project Approach by the same authors [37].
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1 Introduction

With modern reactive systems becoming both pervasive and highly complex,
modeling them is becoming increasingly difficult. Modelers are forced to spend
ever-larger amounts of time and effort in order to reconcile two goals: (1) accu-
rately describe complex real-world systems and phenomena; and (2) do so using
models that are simple, comprehensible and intuitive to humans. These two
goals are often conflicting: it is difficult to describe the properties of such sys-
tems accurately, while at the same time avoiding clutter, which makes it harder
for humans to comprehend the resulting models.
c© Springer International Publishing AG, part of Springer Nature 2018
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Over the recent two decades, an approach termed Scenario-Based Model-
ing [6] has emerged as an attempt to tackle these difficulties. The idea at its
core is to model systems in a way that is more intuitive and understandable
to humans—by defining scenarios that describe desirable or undesirable sys-
tem behavior—and then to automatically combine these scenarios in a way that
produces a cohesive, global model. Appropriate scenario-based approaches and
tools have executable semantics, thus helping to streamline the deployment of
scenario-based models in the real world.

A scenario-based approach has been claimed to be more intuitive for humans
to understand (see, e.g., [11]). It allows the modeler to specify different but pos-
sibly interrelated behavioral aspects as separate scenarios, reducing the inherent
complexities of the modeling process. However, by default and as explained later,
a scenario-based execution requires that all scenarios synchronize at every step,
for the purpose of joint event selection. When executing scenario-based spec-
ifications in a distributed architecture, inter-scenario synchronization induces
inter-component synchronization, which may be undesirable in real-world sys-
tems, where communication is often costly, slow, or unreliable. This difficulty
constitutes a serious barrier when considering the use of scenario-based model-
ing in a real-world distributed setting.

We seek to address this problem by proposing an automated technique for
the transformation of classical, highly synchronous scenario-based models into
equivalent models with a greatly reduced level of synchronization. The basis of
our approach is a rather straightforward replicate-and-project (R&P) technique
but with some subtle facets: we replicate the full set of scenarios in all the
distributed components, but project them in a component-specific fashion, so
that each component is made responsible only for the actions that fall within
its the local scope. Other, external actions, are assumed to be performed by
projections running on other components.

The scenarios then progress asynchronously, each selecting and triggering
events almost completely at its own pace. In order to make the replicated-
and-projected scenarios behave the same as their non-distributed version, the
distributed components broadcast the local actions they perform to all other
components. At times a situation arises that forces some of the distributed com-
ponents to mutually agree on the next action to perform. This might happen
either due to an exclusive choice among multiple enabled actions (i.e., events), or
due to communication latency that might result in different orders of broadcast
actions as observed by different components. In these cases, the affected sce-
narios indeed synchronize and reach a joint decision. An important part of the
work in this paper is dedicated to classifying these cases, understanding when
they arise, automatically detecting their occurrence in a program, and proposing
practical approaches for resolving them.

This process is handled automatically by our distribution algorithm and
infrastructure, and, as we discuss and demonstrate later, it aims to generate
a distributed model that has as few synchronization points as possible.
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The motivation behind the approach is to retain the modeler’s ability to use
classical scenario-based modeling, with its associated advantages, but to be able
to then transform the model into a version that is more amenable to distribution
and deployment in the real world. We prove that, under certain restrictions, our
proposed transformation preserves the behavior of the original model. This gives
rise to a methodology for developing distributed scenario-based models, where
one models a distributed system as if it were centralized, and the model is then
automatically adjusted to more accurately simulate (or even run in) its final
setting.

Automatic distribution of general models (i.e., not just scenario-based ones)
or synthesizing distributed models from specifications have been long-standing
goals of the software modeling and engineering community. Specifically, dis-
tributed synthesis is known to be undecidable in general [36]. We contribute
to this effort by studying the problem in the context of scenario-based modeling,
and leveraging some of the paradigm’s properties of naturalness and relative sim-
plicity. However, difficulties nevertheless arise. We classify and describe them,
and explain how they can still be addressed. Our experimental results indicate
that the technique holds much potential for becoming practical.

The rest of the paper is organized as follows. In Sect. 2 we provide a brief
introduction to the scenario-based approach. In Sect. 3 we present an example
of a distributed execution of a scenario-based specification for a light show to
be performed by light-equipped drones. This general description is used in the
rationale and explanation of various technical details throughout the paper. and
a variant of the example is used in the technical evaluation. In Sect. 4 we dis-
cuss variations, which may or may not be allowed when transforming a fully
synchronized execution into one where some synchronization requirements are
relaxed and certain actions may occur in a different order. In Sect. 5 we describe
the replicate-and-project technique for automatically generating an executable
distributed scenario-based model from a non-distributed one. In this section we
also prove the correctness of this transformation according to the criteria set
in Sect. 4. Section 6 describes how the approach can be applied when different
components in the model operate on different time scales. An example imple-
mentation and its evaluation appear in Sect. 7. In Sect. 8, we discuss related work
that has been carried out on automatic distribution, both in the general setting
and in the context of scenario-based modeling, Sect. 9 contains a discussion of
our ongoing and planned future work. We conclude in Sect. 10.

2 Background: Scenario-Based Specifications

Scenario-based specifications were introduced with the Live Sequence Charts
(LSC ) formalism [6,25]. The approach, aimed at developing executable models
of reactive systems, shifts the focus from describing individual objects of the
system into describing individual behaviors thereof. The basic building block in
this approach is the scenario: an artifact that describes a single behavior of the
system, possibly involving multiple different components thereof. Scenarios can
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describe desirable behaviors of the system or undesirable ones, and their com-
binations. A set of user-defined scenarios is then interwoven into one cohesive,
potentially complex, system behavior.

Several facets of scenario-based modeling have been discussed and handled
in different ways: scenarios can be represented graphically, as in the original
LSC approach, or textually, embedded within conventional programming lan-
guages [13,27]; scenario-based models can be executed by näıve play-out [26], by
smart play-out with lookahead [23] or via controller synthesis (see, e.g., [13,29]).
The modeling process can be augmented by a variety of automated verification,
synthesis and repair tools [16,21]. Research has shown that the basic principles at
the core of the approach, shared by all flavors, are naturalness and incremental-
ity—in the sense that scenario-based modeling is easy to learn and understand,
and that it facilitates the incremental development of complex models [1,11].
These properties stem from the fact that modeling is done in a way similar to
the way humans explain complex phenomena to each other, detailing the various
steps and behaviors one at a time.

For the remainder of the paper, we focus on a particularly simple variant
of scenario-based modeling, called behavioral programming (BP) [27]. Despite
its simplicity, BP has been successfully used in developing medium scale
projects [18,20], and is also known to be particularly amenable to automatic
analysis tools [22]. These properties render BP a good candidate for demon-
strating our approach. The rest of this section is dedicated to demonstrating
and formally defining BP.

In BP, a model is a set of scenarios, termed also behavior threads, or b-threads,
and an execution is a sequence of points, in which all the scenarios synchronize.
At every behavioral-synchronization point (abbreviated bSync) each scenario
pauses and declares events that it requests and events that it blocks. Intuitively,
these two sets encode desirable system behaviors (requested events) and undesir-
able ones (blocked events). Scenarios can also declare events that they passively
wait-for—stating that they wish to be notified if and when these events occur.
The scenarios do not communicate their event declarations directly to each other;
rather, all event declarations are collected by an execution infrastructure com-
mon to all b-threads, termed the event selection mechanism (ESM ), after its
main function. Then, at every synchronization point during execution, the ESM
selects (triggers) an event that is requested by some scenario and not blocked by
any scenario. The ESM notifies every scenario that requested or is waiting for the
triggered event about this selection. The b-threads can then update their inter-
nal states, and proceed to their next synchronization point. When all affected
b-threads synchronize again (with each other and with the b-threads that were
not affected) the ESM repeats the event selection process. In BP, this notifica-
tion of all affected b-threads is the essence of event triggering. Any additional
action that the designer wishes to associate with an event (e.g., opening a water
tap, turning car’s steering wheel, or flashing a light) is to be carried out by the
individual b-threads, using arbitrary method calls, as they transition from one
synchronization point to another (by contrast, in the LSC language, the trigger-



Efficient Distributed Execution of Multi-component Scenario-Based Models 453

Fig. 1. Incrementally modeling a controller for the water level in a tub. The tub has
hot and cold water sources, and either may be turned on in order to increase/reduce
the water temperature. Each scenario is given as a transition system, where the nodes
represent synchronization points. The scenario AddHotWater repeatedly waits for
WaterLow events and requests three times the event AddHot. Scenario AddCold-
Water performs a similar action with the event AddCold, capturing a separate
requirement, which was introduced when adding three water quantities for every sensor
reading proved to be insufficient. When a model with scenarios AddHotWater and
AddColdWater is executed, the three AddHot events and three AddCold events
may be triggered in any order. When a new requirement is introduced, to the effect that
the water temperature be kept stable, the scenario Stability is added, enforcing the
interleaving of AddHot and AddCold events by using event blocking. The execution
trace of the resulting model is depicted in the event log.

ing of an event also drives the invocation of a corresponding method provided by
the application). Figure 1 (borrowed from [20]) demonstrates a simple behavioral
model.

Formally, BP’s semantics are defined as follows. A scenario, also referred to
as a behavior thread (abbreviated b-thread), is defined as a tuple

BT = 〈Q, q0, δ, R,B〉
and with respect to a global set of events Σ. The components of the tuple are:
a set of states Q representing synchronization points; an initial state q0 ∈ Q; a
deterministic transition function δ : Q × Σ → Q that specifies how the thread
changes states in response to the triggering of events; and, two labeling functions,
R : Q → P(Σ) and B : Q → P(Σ), which specify the events that the thread
requests (R) and blocks (B) in a given synchronization point.

A behavioral model M is defined as a collection of b-threads

M = {BT 1, . . . , BTn},

all of them with respect to the same event set Σ. Denoting the individual b-
threads as

BT i = 〈Qi, qi0, δ
i, Ri, Bi〉,

an execution of model M starts at the initial state 〈q10 , . . . , qn0 〉. Then, at every
state 〈q1, . . . , qn〉, the model progresses to the next state 〈q̄1, . . . , q̄n〉 by:
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1. selecting an event e ∈ Σ that is enabled, i.e. requested by at least one b-thread
and blocked by none:

e ∈
(

n⋃
i=1

Ri(qi)

)
\

(
n⋃

i=1

Bi(qi)

)

2. triggering event e and advancing the individual b-threads according to their
transition systems:

∀i, q̄i = δi(qi, e)

For reactive systems, executions are usually considered to be infinite, although
BP can also be used to model systems with finite executions.

The BP definitions above are generic, making it easier to reason about behav-
ioral models. However, for practical purposes, the BP modeling principles have
been integrated into a variety of high-level languages such as Java, C++, Erlang
and Javascript (see the BP website at http://www.b-prog.org/). These frame-
works allow engineers to integrate reactive scenarios into their favorite program-
ming or modeling environments. Further, the same principles that underly BP
play a significant role in several popular modeling frameworks, such as publish-
subscribe architectures [8] and supervisory control [35].

We conclude the section by defining the global state (the cut) of a behavioral
model that is being executed:

Definition 1. Given a behavioral model M = {BT 1, . . . , BTn}, the program
cut r ∈ Q1 × · · · × Qn is defined to be the current model state: r = 〈q1, . . . , qn〉
where qi is the current state of b-thread BT i.

3 A Running Example

In many complex multi-participant operations, the participants, be they mechan-
ical entities or people, have to carry out actions in turns, one participant after
the other. A typical example is the all-way-stop traffic intersection (a.k.a. four-
way stop). When there are queues in each of the intersecting roads, the cars
cross the intersection one at a time, in a round-robin fashion, each coming from
the front of the next queue. Another example is an audience in a packed stadium
‘doing the wave’, where groups of people stand up briefly and then sit down, in
sequential order. These behaviors are very easily described using scenario-based
specifications, where the most basic behavior can be described with a single sce-
nario showing all the relevant entities performing their required actions in turn.
(Of course, there are also other kinds of scenarios; e.g., for passing a all-way-
stop intersection when you are the only car, or for the starting or the ending of
a stadium wave by an audience.)

The example that we will use both to illustrate our general considerations
and as the subject of our detailed analysis, is a simple drone-based light show (see
elaborate shows by Disney in www.youtube.com/watch?v=gYr-PO9meHY, and
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by Intel in www.youtube.com/watch?v=teQwViKMnxw). In our case, a set of
drones form a circle and flash their respective lights in successive turns, creating
the appearance of a point of light moving in a circle. More details are provided in
Sect. 7. The basic, single-cycle example is then expanded into repeating the cycle,
stopping the cycle and then restarting it with a different, arbitrarily-selected
drone, and having multiple concurrent cycles where each drone is equipped with
multiple lights, perhaps of different colors.

In considering this example one may also think of analogies to human behav-
ior: replacing the programmer or designer with a show director, the drones with
people, perhaps children, who play roles in the show, and the computerized
scenarios or programs (as well as the underlying SBP infrastructure), with the
instructions given by the director to the participants about what they should do,
and when. The autonomous starting of a new cycle at arbitrarily-selected drones
may also be considered as reacting to an uncontrolled environment event, e.g.,
when the show-director decides on their own and unpredictably, at run time,
which drone will be the first in the next cycle, and then signals it to do so.

4 Distributing a Centralized SBP Execution: Success
Criteria

4.1 Success Criteria

In order to assess the properties of a distributed execution of a specification that
was originally written with centralized-execution semantics assumptions, we first
discuss (a) formalization assumptions, namely: which physical properties of the
distributed environment will be reflected in the formal solution and which will
be abstracted away, and (b) criteria for what constitutes a correct, desirable, or
perhaps just acceptable, distributed execution.

In a centralized system the concept of a run is well defined and intuitive as the
sequence of system states and generated events. In a distributed environment,
especially one that includes replication, this very definition is no longer without
question. E.g., is the distributed run the collection of local runs as executed and
observed in each component? Or perhaps it is a sequence of only the triggered
events, without state transitions, ordered according to the occurrence of events
in the real world, e.g., according to a time order as defined by fully synchronized
component-specific clocks? Or should yet another definition be applied?

Once defined, what would be the desired properties of such a distributed run?
Clearly, our goal is that it be materially different from a run where all distributed
components fully synchronize before every event, and that some independent
local progress will be allowed in each component. So the question we are facing
is this: how much should the execution of the various components be allowed to
vary from each other?

In subsequent sections we offer a particular set of principles for the sought-
for solution, and a distribution mechanism that satisfies them. But beforehand
we first discuss a broader list of candidate principles from which the above
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were chosen. Some of these can be formally defined and then examined both by
model-checking and by run-time monitoring. Each of the candidate principles
is accompanied by two examples - one demonstrating its desirability, and one
showing that acceptable distributed executions exist that do not satisfy this
principle, and hence it cannot be required of all distributed executions.

Constant Composite-State Consistency. This principle assumes that all
scenarios are replicated in all components (as proposed in the present paper),
and requires that the all components go through exactly the same orchestrated
state transitions, and hence observe the same runs (even if not exactly at the
same time). The replicated run is also a legal run of a centralized or fully syn-
chronized execution. This could be desired and applicable, for example, in an
application that has only pre-programmed actuation (as in the most basic drone
light show example). Clearly this could not be demanded in a case of a reactive
application with distributed input sensors, where two environment events can
occur in two distinct components, one after the other, but with a time difference
that is smaller than the inter-component communication delay, and where the
sensing component has to acknowledge the event receipt even before all other
components learned about it. As a result, the runs of the two sensing compo-
nents will be different—each having a state where its own sensing scenario has
sensed the event and changed its state, but none of the others have done so.

Always Eventually Reaching Composite-State Consistency. Under this
principle, the entire specification is replicated as before, but components’ runs
are allowed to diverge as long as there is at least one composite state that
each component reaches infinitely often. In other words, the components may
diverge, as long as sooner or later they maintain the same view of reality (not
necessarily at the same time). An example of such an application can be seen in
a distributed application of industrial robots performing manufacturing tasks in
parallel on a large piece of sheet metal, where the order of events across robots
is not critical as long as all components are occasionally synchronized and are at
the same state (e.g., when releasing the finished piece of sheet metal and moving
on to the next one). This however will not satisfy what is needed for a highly
orchestrated robotic collaboration (and not even for the basic drone light show).

Distinguishing What and How Scenarios. This principle views specifica-
tions as being divided into scenarios that specify the criteria for success of the
system’s operation, i.e., what the system should accomplish, and scenarios that
specify how the system should accomplish these goals. In classical programming
the what scenarios appear in requirements documents and test plans, and the
how instructions constitute the application. Research in areas such as automated
program synthesis attempts to automatically generate the details of the how from
the specification of the what. Here we propose to specify and retain both sets
of scenarios, but require that only the what scenarios must be complied with
in the distributed run, while the how scenarios can be violated in the distribu-
tion process. In the light-show example, the show director wants to achieve the
appearance of cycles, or perhaps even just the appearance of pretty patterns. He
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or she may not care if certain drones flash their lights out of order, especially if
they are in close proximity, the successive inter-drone flash delays are short, and
the duration of each flash is much longer than this inter-drone delay; a drone
that misses its cue may also be allowed to avoid flashing altogether in a given
cycle; a drone whose battery runs out may leave the show altogether; and, neigh-
bors of a failing drone may change their behavior as well. Thus, the divergence
of runs among various components may be unbounded, while the show goes on
successfully.

An example of when this approach cannot be applied can be seen in the
following: a show director and an engineer created an elaborate show whose
specification contains many scenarios. For testing purposes the show was imple-
mented on a single computing component with multiple physical lights. The
show is elaborate and its specification gradually evolved to have many scenarios.
The director has now left, and the engineer has been tasked with distributing
the implementation to the separate drones. As far as the engineer is concerned,
the entire specification is the what, everything that was done in the centralized
execution should be done in the same way in the distributed version—he or she
does not know which of properties were considered essential by the director, and
which can be compromised.

Language Equivalence. Under this principle we do not care about run vari-
ation among the components. Instead, we only look at the sequence of events
produced (triggered) by the system, in all components, as ordered in the real
world, according to some global time stamp. In this case, we do not require
that a particular run of the distributed environment, defined in this manner, be
equivalent to a particular run of the single-component system, but assume that
there is some nondeterminism in both implementations, and simply require that
the two languages, each containing all runs of the implementation, be equal.
Thus the nondeterminism implied by the underspecification that is already built
into the original requirements will be exploited by the variation imposed by the
non-synchronized, sometimes-delayed, distributed execution. This can indeed be
viewed as a variant of the previous principle, where the existence (in the central-
ized execution) of synchronization points where more than one event is enabled,
is taken to be an explicit specification that selecting any of them would be
acceptable. (We assume that the event selection strategy is random, and that
the application was verified with all possible combinations of event selection.)

4.2 Semantic Consideration

It goes without saying that a success criteria to be added to the above is that
the execution should comply with the basic BP semantics, in that, e.g., only
requested events are triggered, and events that are blocked are not to be trig-
gered. The solution that we propose in the coming sections satisfies this basic
requirement with one exception: There is no reliance on cross-component block-
ing of already-enabled events. Clearly, when an event is triggered, two b-threads
may change their states, where one will start requesting a particular event e1,
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and another will start blocking that same e1. The effect of such blocking is imme-
diate. This semantics is generally preserved in the solution we will describe, e.g.,
when these two b-threads change states together, in response to a single event,
within a single component. However, we introduce an assumption that relaxes
this requirement in that it allows event blocking to not take hold in the following
case: An event e0 causes a b-thread BT1 to change states and start requesting
event e1. An event e2 is then triggered, and causes b-thread BT2 to change
state and start blocking e1. If after event e2 occurred in one component, but
before this event reaches a component requesting e1, e1 is already triggered in
that component, we do not consider it a violation of the specification or of the
BP semantics. Another way to look at this relaxation of the semantics is that
it assumes that the application does not rely on the ability of one component
to force the blocking of already-enabled, not-previously blocked events in other
components, in time, before they are triggered.

For illustration, consider the following example: a robot-driven car is
approaching an intersection, and in order to avoid collisions it must communicate
with other cars. However, if the communication happens just before entering the
intersection, any delay or missed messages could result in an accident.

In order to avoid this kind of issue, programs designed for distribution should
employ design patterns and methods that take a realistic communication delay
into account. E.g., checking for other cars early, while approaching the intersec-
tion, rather than, say, relying on scenarios to block all events of cars entering the
intersection following the occurrence of an event reporting that one car already
entered that intersection. We feel that this is a valid assumption in designing
distributed systems and does not contradict or make redundant the advantages
of BP.

This assumption, formalized in Sect. 5, can thus be seen as a restriction on
how the application should be coded, or on features that must be added to the
application if not already written in this manner.

4.3 Additional Considerations

As distributed implementations introduce new risks, additional responsibilities
have to be imposed both on the distribution mechanism and on the application
scenarios themselves.

Robustness. There is a desire to minimize the probability of error and of fail-
ure. First, we would like the scenarios governing the behavior to be as simple
as possible. Second, ‘the show must go on’ even if one of the participants made
a mistake or missed their cue. For the latter, specific scenarios can probably be
added. In the light show example, we could add “when a drone observes that
a predecessor drone has failed or is delayed, it should nevertheless continue the
cycle.”. Efficiency. Often, the joint operation should also be required to be effi-
cient. Consider for example the case when many bricks have to be moved from
point A to point B over a narrow passage. A group of robots may be arranged
in a row—passing bricks from one to the next, rather than each one travel-
ing the entire distance. The scenarios should be designed so that inter-scenario
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synchronization and coordination is minimized, or decreased, and both scenario
progression and the physical motion of bricks occur in parallel, asynchronously.
Such measures of efficiency are evaluated in the example in Sect. 7

5 Distribution via Replicate-and-Project

The execution of a classical BP model, as described in Sect. 2, is highly syn-
chronized and centralized by nature: at every step along the execution, the ESM
gathers the sets of requested and blocked events from each individual b-thread,
selects an enabled event (i.e., requested by some b-thread but blocked by none),
and broadcasts it back to the b-threads. While this underlies some of the bene-
fits of BP [27], it also results in limited scalability and distributability. Excessive
synchronization tends to add unnecessary complexity, impact performance, and
create inter-component dependencies that reduce robustness. For example, hav-
ing a scenario wait for an event that is supposed to be requested by a scenario
running on a separate, failed component might result in deadlock. Furthermore,
synchronization forces b-threads to execute in lockstep, which can be undesirable
if they are to model phenomena that occur at different timescales.

In this section we propose a distribution process that, given a centralized
(undistributed) behavioral model, generates a distributed one: It creates multiple
component models—subsets of the original, centralized behavioral model—each
a behavioral program, designed to be run on a separate machine. Run simul-
taneously, these behavioral component models (or simply, component models)
mimic the behavior of the original system, but require much less synchroniza-
tion. Below we elaborate on the abstract concepts and formal definitions of the
proposed process.

Each of the component models produced by our distribution process is a
behavioral model in its own right, intended to be responsible for a certain subset
of the events of the original model, which are uniquely owned and controlled by
it—meaning that no other component can request or block them. The behavioral
component models are intended to be executed in an asynchronous manner in
a distributed system, resulting in a natural, robust and simple extension of the
scenario-based paradigm.

The main difficulty in this approach is to ensure that the distributed com-
ponents behave in the same way as the original model although they are not
synchronized at every step. In mitigating this difficulty, the crux of our distri-
bution process is the replication of the entire set of original scenarios in each of
the distributed components, granting the components the ability to follow what
other components are doing, but avoiding synchronization whenever possible.
First, there is no central, coordinating ESM. Every component runs a separate,
local, ESM, which by default, performs local event selection without synchro-
nizing with other components. However, at every synchronization point where
multiple components have to agree on the particular event to select, the ESMs
of these components do synchronize.

The communication between components is asynchronous, and they notify
each other about chosen events as they progress through the scenarios. Keeping
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track of each scenario state is simply a matter of listening to incoming broadcasts
and updating the current state. This asynchrony is a cornerstone of the process,
allowing us to generate true concurrent distributed models.

The classical problem of multicasting or broadcasting a message efficiently in
a distributed network is well studied (for example, the authors of [33] present an
approach for minimum-energy-broadcasts in distributed networks with limited
resources and unknown topology). However it is beyond the scope of this paper.
For simplicity we assume that the cost of those broadcasts and bookkeeping
is small. Note that even in systems with a large number of components and
scenarios, a component often needs to keep track of only a small subset of the
other components; for example, an autonomous car considers other cars only
when they are in its immediate vicinity, and does not have to keep track of all
the vehicles in the world. Still, this dynamic registering and unregistering of
components is also beyond the scope of this paper and is left for future work.

In the remainder of the section we formalize these notions and the distribution
process itself.

5.1 Defining Event Components

Let M denote a behavioral model over event set Σ. An event component E is
a subset of the global event set, E ⊆ Σ. Intuitively, each subset E reflects (or
is implicitly defined by) a physical component of the distributed system and its
responsibility in terms of physical capabilities and/or environment interfaces,
i.e., sensors and actuators, that this component has. An event e ∈ E is said to
be a local event of E; otherwise, if e /∈ E then e is external to E.

A collection of event components {E1, . . . , Ek} is an event separation of Σ if⋃k
i=1 Ei = Σ. An event separation is strict if it also forms a partition of Σ:

∀ i, j, 1 ≤ i 	= j ≤ k =⇒ Ei ∩ Ej = ∅.

In the remainder of the paper we will only deal with strict event separations and
assume that they are provided by the user. Automated ways of generating an
event separation are discussed in Sect. 8.

5.2 Creating Behavioral Component Models by Replication
and Projection

Given a behavioral model M = {BT 1, . . . , BTn} over event set Σ and a strict
event separation {E1, . . . , Ek}, each event component E gives rise to a behav-
ioral component model C, in the following way. C is the behavioral model
C = {BT 1

E , . . . , BTn
E}, obtained by projecting each of the original b-threads onto

event component E. The projection operation, denoted as C = project(M,E),
transforms each of the original b-threads as follows. If BT i = 〈Qi, qi0, δ

i, Ri, Bi〉
then

BT i
E = 〈Qi, qi0, δ

i, Ri
E , Bi

E〉
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is defined as follows: The state set Qi, the initial state qi0 and, most importantly,
the transition function δi which specifies how events cause state transitions,
are replicated by the projection process without change. The original labeling
functions Ri and Bi, namely the sets of requested and blocked events in each
state, are projected onto the respective Ri

E and Bi
E according to the rules:

Ri
E(q) = Ri(q) ∩ E

Bi
E(q) = Bi(q) ∩ E

That is, the projected b-threads are modified to request and block only events
that are in E; but because δi is unchanged they continue to respond in the same
way to the triggering of all events, including those not in E. Consequently, where
an external event is requested in a b-thread, it is modified to only be waited-for.

Now, given a (strict) event separation {E1, . . . , Ek}, our distribution process
entails projecting the model M onto each of the event components, producing a
set of component models {C1, . . . , Ck} such that

∀i 1 ≤ i ≤ k, Ci = project(M,Ei)

By treating each component Ci as a separate behavioral model that per-
forms event selection and scenario advancement (i.e., state transition) locally,
the components can be run independently and in a distributed manner. This
is, however, qualified by the fact that, in order to keep the execution consis-
tent between components, at certain points two or more components need to
synchronize with each other. This is discussed in detail in the next subsection.

The following useful corollary is a direct conclusion that arises from the
definition of the distribution process, when applied in the context of strict event
separations.

Corollary 1. An event e ∈ Σ can be selected by at most one component.

Proof. {E1, . . . , Ek} is a strict event separation, hence there is only one value of
i such that e ∈ Ei. Only Ci can request e, since, by the definition, in all other
components Cj , j 	= i, the requests for e are replaced by waiting for it. Therefore
only Ci can select e. �

5.3 Distributed Execution of Replicated-and-Projected Component
Models

As discussed in Sect. 4, despite their parallel asynchronous execution, it is our
goal that component-model execution be consistent with each other and with
that of the original model. Since in the specification more than one event may
be requested at a given state, occasionally these distributed runs need to be
synchronized. In this subsection and the next we describe the mechanics of par-
allel distributed execution of component models, and the specific synchronization
constraints this execution is subjected to.
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The R&P approach includes using in each component a modified BP execu-
tion infrastructure. The component’s ESM is different from the one described
in Sect. 2, in that it broadcasts to other components its local independent deci-
sions, it processes similar messages received from other components, and, when
required, it synchronizes with other components to make a joint decision.

Specifically, the following rules govern each component’s ESM and the dis-
tributed execution.

1. Each component has an event queue, to the end of which the component’s
ESM can push (i.e., add) events, and from the front of which it can pop (i.e.,
remove and process) events.

2. When a b-thread enters a new state, the execution infrastructure determines
whether or not it is an inter-component decision point (ICDP), i.e., whether or
not it should induce synchronization with certain other components (ICDPs
are defined in the next subsection).

3. When a component’s ESM receives an event that was broadcast by another
component, the event is pushed to the end of the component’s event queue.

4. When a component enters a new state (either initially, or following re-
synchronization of all b-threads following the triggering of an event that
affected at least one b-thread), the ESM does the following:
(a) If the component’s event queue has at least one event, the ESM pops the

first event from the queue, and triggers it (i.e., notifies affected b-threads,
who then change states and re-synchronize).

(b) If the queue is empty, then
i. If one of the b-threads is in an ICDP, the ESM waits for the compo-

nents specified in the ICDP to reach the corresponding ICDP and/or
confirms that they are already at that point (note that no compo-
nent goes past an ICDP without synchronizing with the others). If
two ICDPs are in effect concurrently, they are handled, separately,
in arbitrary order. Hence, all the components involved in an inter-
component decision consider the same sets of requested and blocked
events. The components then synchronize and mutually agree upon
the triggered event. This event is then broadcast to all components
(including the ones involved in the decision itself). Note that the cho-
sen event may or may not be one of those that induced the need
for inter-component decision. In the latter case, the b-threads that
induced the ICDP will not react to the chosen event, and the compo-
nent will be at an ICDP at the next synchronization point as well.

ii. If there is an event that is in the local requested event set and not in
the local blocked event set (for the current composite, synchronized
state of all b-threads in the specification as modified locally under
R&P), the ESM triggers that event, and broadcasts it to all other
components.

iii. If the event queue is empty and there is no event that is locally
enabled, the ESM waits for external events to arrive via broadcast
from other components.
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iv. Otherwise, that is, if the event queue is empty and there is no event
that is locally enabled, the ESM waits for external events to arrive
via broadcast from other components.

5. When b-threads are notified of selected events they change their states accord-
ing to their local state-transition function (which is identical in all components
and is the same as in the original non-distributed specification).

We observe that deadlock-detection needs to be treated differently in the
distributed case compared to the centralized case. According to the semantics
given in Sect. 2, the system can detect a deadlock if the ESM determines at
some point that all requested events are blocked, so that none can be selected.
This, of course, holds only in the case of static scenarios, and where simulation
of environment behavior is already included in the model. By contrast, in the
distributed case this is no longer the case, as components begin to serve as
each other’s environment: If one of the local b-threads waits for an event that
is external to the component, another component might broadcast that event.
Thus, the component should just be stalled until such a broadcast arrives.

Definition 2. A distributed model produced from a behavioral model M , with
respect to a strict event separation, S = {E1, . . . , Ek}, denoted as D(M,S),
is defined to be the set of projections of M along the components of the event
separation:

D(M,S) = {project(M,E1), . . . , project(M,Ek)}.

Executing a distributed model means executing the component models (i.e., the
projections) according to the operational semantics defined in this section.

5.4 Conditions for Inter-component Synchronization

The following definition is useful in identifying the points during the execution
in which multiple components need to synchronize:

Definition 3. Given a component model Cj = project(M,Ej), a b-thread BT i

and some state q ∈ Qi. We say that BT i is controlled by Cj at state q if one
or more of Ej’s local events is requested or waited-for in q; i.e., if ∃e ∈ Ej such
that δi(q, e) 	= q or e ∈ Ri(q).

Definition 4. Given a component model Cj = project(M,Ej), we call a state
q ∈ Qi in a component’s b-thread BT i an inter-component decision point (ICDP)
if and only if q is controlled by multiple components and ∃e ∈ Ej such that
e ∈ Ri(q).

The R&P distribution process dynamically determines when a b-thread is in
a state that is an inter-component decision point per Definition 4.

For example, assume that in the original specification for a four-wheel vehicle
a single b-thread requests two events (e.g., steerRight and steerLeft), allowing
the ESM to non-deterministically choose one, as would be the case if a ‘random



464 S. Steinberg et al.

walk’ were desired. Then, in the distributed implementation, if the two events
end up in a single physical component, this will not be an ICDP. But, if they
are in separate components, coordination will be required, naturally, and this
will be an ICDP. Consider also the case where these two events are requested
by two separate b-threads. In a centralized implementation this will be valid,
especially if each of the two b-threads also waits at this point for the other b-
thread’s event and stops requesting its own if it sees that the other’s request is
selected. Moreover, if the two events are in distinct components as before, then
the requesting and waiting (in a single b-thread) would cause the corresponding
state, which appears in the replicated b-thread in both components, to be marked
as an ICDP, yielding the same sets of runs. Alternatively, if the events are indeed
in physically independent components, as would be the case when steerRight is
implemented by advancing (rolling forward) the left front wheel, (and steerLeft,
respectively, by advancing the right wheel), then the developer has the option
of removing the waiting-for-the-other-event from the bSync call in that state.
In this case, these states will no longer be ICDPs, and one of the possible runs
is that both requested events will be selected (one after the other), both front
wheels will be advanced, and the vehicle will advance forward rather than turn.
We note however, that here the specification and the set of runs has changed
dramatically to accommodate, or take advantage of, some new capabilities of
the distributed environment, and we no longer attempt to preserve the set of
original runs.

It is important to note that the properties that induce the existence of an
ICDP are properties of a single state of a single b-thread and not of the entire
specification: the set of a all b-threads may, at the same time (i.e., at a given
synchronization point), request and/or wait for events controlled by multiple
components, but if no single b-thread is controlled by two components, this
will not force an inter-component decision. However, at any synchronization
point in any component (which means synchronization of all b-threads in that
component), if a single b-thread is in an ICDP, the ESM will synchronize the
entire component with the other affected components.

When at an ICDP, the actual joint decision of multiple, already-synchonized
ESMs, can be performed, e.g., via a distributed leader election protocol [10].
Once a specific ESM is selected as the leader, it chooses the next triggered event
based on the local requested and blocked events in its current state.

Note that Definition 4 mandates that the requested-events set not be empty.
This restriction reduces the scope of when an ICDP is called for. Consider for
example a logger scenario that, obliviously to any synchronization implications,
waits for all possible events in the system and writes the relevant data to a log
file (without requesting any behavioral event). Without the requirement that at
least one event be requested by the b-thread causing the ICDP, such a simple
logger would cause the entire execution to synchronize at every event selection.
However, this feature, which enables more asynchronous execution, has its price.
E.g., two such simple logger scenarios running in two separate components may
observe differently the order of a given sequence of events. The issue of seeing
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different orders may be resolved either by programming the application such that
it induces an ICDP only when it is called for explicitly by the requirements, or by
order-enforcing infrastructure, such as the one as described below in Subsect. 5.5
and Assumption 1.

5.5 Equivalence to Centralized Executions

As described above, given a centralized behavioral model M over an event set
Σ and a strict event separation {E1, . . . , Ek}, our distribution process produces
a set of component models {C1, . . . , Ck}, whose execution then follows a very
particular protocol. We would like to prove that, under certain assumptions, this
distributed model behaves like the centralized model, i.e. the set of all possible
executions of the distributed model is identical to those of the centralized model.

First, we present the following assumptions.

Assumption 1 (Strict and Total Event Ordering). Given D (M,S) (Defi-
nition 2), we assume that there exists a strict total ordering of all selected events,
and this ordering is global and visible to all components (see Sect. 4). I.e., for
any pair of events a, b selected by any one or two components, exactly one of the
following is true:

– a happened before b, or
– b happened before a

and, all components observe these events in the same order.
Stating the above more formally, we assume that in each component model

Ci = project(M,Ei), the event queue described in the R&P execution seman-
tics is subsumed by a virtual queue, termed VQueue and denoted Q̂i, with the
following properties as well as communication and execution semantics. After
an event e is selected by a component C, the event is pushed atomically and
simultaneously onto all VQueues of all components (including the one where it
was selected). Notice that the atomicity here regards all pushes onto all queues,
and any event selection or other important behavioral processing action (includ-
ing another collective push) occurs either before or after such a collective-push
action of one selected event. Each component processes events by popping them,
one at a time, from its VQueue, and announcing the event to the b-threads
running in that component (which are, in fact, all the b-threads in the specifica-
tion, as modified/projected locally by R&P). The b-threads then change states
according to BP semantics and resynchronize locally. The next event selection
at this component can occur at any time during this process as long as all events
previously selected by this component (and pushed onto its VQueue and onto
the VQueues of all the other components), have been popped from the local
VQueue Q̂i and fully processed. However, the local VQueue does not need to
be empty when the event selection occurs, i.e., it may contain events that were
pushed onto it by other components, since the previous local event selection.

One may consider this assumption as limiting the class of applications covered
by the formal argument to those where notification of events to components is
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serialized by some virtual central controller, and, where each component waits
for the arrival of all events that were triggered in any component after its own
last event selection, before the next event selection. In Sects. 8 and 9 we discuss
why these limitations are not of great concern and do not diminish from the
power of R&P and of reduction of synchronization requirements.

Assumption 2 (No Reliance on Cross-component Blocking
of Already-enabled Events). Let D(M,S) be a distributed model that is
being executed. For a given component Cj , let Q̂i be the totally ordered set
{e1, e2, . . . em}, i.e., these are the pending events in its VQueue. Let r =
〈q1, . . . , qn〉 be the component’s current program cut (Definition 1). The com-
ponent’s enabled events are:

Er =

(⋃
i

Ri
j(q

i)

)
\

(⋃
i

Bi
j(q

i)

)

We assume that popping events from the queue does not remove elements from
Er, i.e.,

∀l ≤ m, Let q̇il = δi(. . . δi(δi(qi, e1), e2) . . . , el) and

Er

⋂ (⋃
i

Bi
j(q̇

i
l)

)
= ∅ (1)

This is in line with the discussion of not relying on cross-component blocking
of already-enabled events in Subsect. 4.2. In other words, we assume blocking is
done sufficiently in advance to avoid race conditions.

Lemma 1. Under Assumptions 1 and 2, the set of all possible executions (the
language) of M is identical to the set of all possible executions produced by the
component models {C1, . . . , Ck} when run jointly in a distributed fashion.

This lemma, which is the main proven result of this work, is of practical
importance, as it implies that the proposed R&P distribution process will not
cause the model to behave in unexpected ways. As discussed under the Language
Equivalence principle in Subsect. 4.1, note that the lemma is about the collection
of all runs, and does not claim that if the distributed and centralized models are
run side-by-side, they will always produce the same run. The main reason is that
in a cut where more than one event is enabled, we cannot guarantee that two
side-by-side runs of the executable specification will make the same choice; and,
this holds independently of whether either of them is centralized or distributed.
Given the language equivalence result, one can study and analyze the centralized
version of the model (which is far easier for humans to grasp and comprehend,
and for tools to analyze) and the conclusions will apply to the distributed setting
too. We will discuss some of the implications of this result in Sect. 9.

Note that for the lemma to hold we also implicitly assume that each enabled
event has a positive probability of being selected. If the event selection is unfair,
in the sense that it always selects certain events and not others in particular
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situations, then the lemma will not hold. We do not consider this assumption to
be a major constraint on the kind of applications supported by R&P.

Proof of Lemma 1. Assumptions 1 and 2 shape the rest of the proof. Compo-
nents select events based on standard BP execution semantics applied to the
replicated-and-projected specification. Those selected events are immediately
pushed into all the event queues of all components. This operation is instan-
taneous and defines some global order among the selected events. We do not
define when components pop, announce, and process events from their event
queue, but simply assume that they do so at some point, and soon enough as to
not violate Assumption 2.

Claim 1. In a distributed execution of D(M,S), if at any point in time all
components empty their event queues Q̂i (processing the events), then the cuts
of all component models are at the same state.

Proof. Given a component model Ci = project(M,Ei) and its event queue Q̂i,
let {el1 , el2 , . . . , elm} be all the events, in order, popped from the queue and
processed by the component since the execution started. By Assumption 1, the
indices {l1, l2, . . . } are identical for all components. And, since we assume that
selected events are pushed into all event queues instantly, once components
empty their queue the total count of processed events is also the same for all
components.

While it may be obvious that at any instance at most one event will be
selected, in exactly one component (and all components will eventually see this
event), when considering possible causes of divergence it is useful to notice that:

1. Given that components are, in general, not synchronized, their event selec-
tions are always strictly ordered. The event selection in one component is
always before or after any event selection in any other component.

2. In a given cut in a given component, if (after R&P) multiple events are
enabled, then:
(a) If these enabled events are controlled by this same component, then this

is the only component in which they can be enabled. The one event that
will be chosen by this component from this set will be visible identically
to all components.

(b) If the enabled events are controlled by multiple components, then the cut
meets the requirements for ICDP, and all the relevant components are
also synchronized at the cut at hand; a single event will be chosen via a
an agreed-upon decision, made for all of them.

Therefore, all components process the same totally ordered set of events
{el1 , el2 , . . . , elm}.

Observe that in the execution of D(M,S) all components begin at the same
initial program cut 〈q10 , . . . , qn0 〉, and after m steps a projected b-thread BT i

j in
component Cj transitions to some state q̇im = δi(. . . δi(δi(qi0, el1), el2) . . . , elm).
By definition of the projection process, the δi functions are identical across
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components, and hence all projections of each thread proceed to the same state,
∀i, r : q̇rm = q̇im. Therefore all component end up in the same cut. The claim
follows. �
Corollary 2. Given a distributed model D(M,S), all the components process
the same totally ordered set of events.

Proof. Follows immediately from Claim 1. �
Using Corollary 2 we can talk about the sequence of events processed by

D(M,S), as all its components process the same sequence (albeit they might do
so at different speeds).

We now define what the formal language generated by a behavioral model is,
and prove that the languages of the distributed model and of the undistributed
model are the same.

Recall that for an undistributed model M an enabled event at some program
cut is an event that is requested by some b-thread and is not blocked by any of
the b-threads. Recall also that under R&P all components run all b-threads but
requesting and blocking of events take place only in components that control
these events. We thus extend the enabled event term to a distributed system
D(M,S) as follows:

Definition 5. In a distributed model D(M,S), an enabled event is one that is
requested by some b-thread of some component in which all b-threads are presently
synchronized (i.e., a component that is at a cut), and, is not blocked by any b-
thread in that component.

Definition 6. Let Δ(r, e) denote the program cut transition function, where
r is a program cut and e ∈ Σ is an event. Δ is fully defined by the b-
threads state transition function δi as follows: for r = 〈q1, . . . , qn〉,Δ(r, e) =
〈δi(q1, e), . . . , δi(qn, e)〉.
Definition 7. The language L of a behavioral model M denoted L(M) is a set
of words defined over the alphabet Σ. A word w = e1e2 . . . is in L(M) if its
letters constitute a legal run of M ; i.e., if we begin in the initial cut and apply
Δ according to the sequence of events in w, the next event is always enabled in
the current cut.

The language of the distributed model D (M) is defined similarly. A word
w is in L(D(M,S)) if and only if there exists a run of L(D(M,S)) where the
components select the totally ordered set of events in w. (We assume that the
environment is incorporated into the behavioral model as b-threads that non-
deterministically request environment events.)

The equality between L(M) and L(D(M,S)) will follow from the following
claim:

Claim 2. L(D(M,S)) ⊆ L(M)
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Proof. At any time during the execution of distributed model D(M,S), the
enabled events are as determined by the cuts of those components that are
presently in a cut (in fact, one can also conveniently assume that a cut transition
in a component is always atomic in the sense that a component can only be
observed when in a cut, yet not all components may be in the same cut at the
same instance of time). As components cannot block external events, the set of
enabled events at a given instance is the union of sets of enabled events of all
components which are in a cut.

We will denote by EM
m the set of enabled events of a centralized model after

selecting m ≥ 0 events. Likewise, we denote E
Dj
m the set of enabled events of

component Cj in the distributed model D(M,S) after m events have occurred.
We do not specify the number of events l ≤ m that were actually popped and
processed by the component. ED

m = ∪jE
Dj
m is defined as the set of enabled events

in the distributed model after m events were selected and each component Cj

has processed lj ≤ m events. By definition, the set of initial enabled events of
M is

EM
0 = (

⋃
i

Ri(qi0)) \ (
⋃
i

Bi(qi0)) (2)

and after m steps the set of enabled events of M is

EM
m = (

⋃
i

Ri(qi)) \ (
⋃
i

Bi(qi)) (3)

where 〈q1, . . . , qn〉 is M ’s program cut after m events have occurred.
The set of initial enabled events in the distributed model D(M,S) is ED

0 .
Clearly ED

0 = EM
0 .

Consider the distributed model D(M,S) after m steps, i.e., after selection
and VQueue-ing of exactly m events as counted collectively in the entire model,
and examine an arbitrary component Cj . The component has processed l events,
where l ≤ m, and has m − l events in its VQueue. Specifically, it has processed
the sequence of events defined by the totally ordered set {e1, e2, . . . , el} , and
Q̂j = {el+1, . . . , em}.

Let r = 〈q1j , . . . , qnj 〉 be the current program cut of Cj and let ξl be the set
of enabled events of Cj after processing l ≤ m events.

By Assumption 1, if Q̂j contains an event selected by Cj then the compo-
nent will not attempt to select another event, until processing that event, and
therefore, effectively, ξl = ∅. Otherwise, at this stage the set of enabled events is
defined by:

ξl =

[(⋃
i

Ri(qi)

)
\

(⋃
i

Bi(qi)

)]
∩ Cj =

(⋃
i

Ri
j(q

i
j)

)
\

(⋃
i

Bi
j(q

i
j)

)
. (4)



470 S. Steinberg et al.

Whenever Cj processes any number of the m − l events in Q̂j , no enabled
events will removed from ξl for the following reasons:

– No b-thread will change into a state where it blocks events in E
Dj

l . This
is due to Assumption 2 which claims that the application does not rely on
instantaneous blocking.

– No b-thread that requested an event will change into a state where it no longer
requests this event as this would imply that this b-thread was simultaneously
requesting a local event and waiting for an external one which would then
require an ICDP. As discussed before, an event chosen by an inter-component
decision is considered as selected by all participating components, and we had
assumed that Q̂j contains no event selected by Cj .

Therefore

∀0 ≤ l ≤ m : ξl ⊆ ξm.

By definition, ξm is the set of enabled events in component Cj after processing
all the m events from the VQueue, therefore, as the VQueue is empty, ξm is
simply:

ξm =

[(⋃
i

Ri(qi)

)
\

(⋃
i

Bi(qi)

)]
∩ Cj ⊆

(⋃
i

Ri(qi)

)
\

(⋃
i

Bi(qi)

)
= EM

m

By the way we defined E
Dj
m the following holds: E

Dj
m = ξl for some l ≤ m,

but as we saw ∀0 ≤ l ≤ m : ξl ⊆ EM
m , therefore E

Dj
m ⊆ EM

m and the following
holds:

∀m ≥ 0 : ED
m = ∪jE

Dj
m ⊆ EM

m .

Therefore L(D(M,S)) ⊆ L(M). �
Claim 3. The language of a behavioral model L(M) is equal to the language
of its distributed version L(D(M,S)).

Proof. We need to show that L(M) ⊆ L(D(M,S)). That is trivial: Assume
that a run of D(M,S) always empties its VQueues instantly as soon as events
are pushed. In this case the distributed model would behave identically to the
centralized version. Ergo L(M) ⊆ L(D(M,S)).

As L(D(M,S)) ⊆ L(M) by Claim 2 it immediately follows that

L(D(M,S)) = L(M)

�
This concludes the proof of Lemma 1, which also implies that the distributed

model behaves correctly, i.e., produces executions that are allowed under BP
semantics.
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6 Per-component Timescales

As explained earlier, in a centralized behavioral model, all b-threads must syn-
chronize in order for the ESM to announce the selected event. The b-thread that
takes the longest to reach its synchronization point (e.g., because it performs
slow local calculations or writes to a file) forces the rest of the b-threads to wait
until it synchronizes. This lockstep execution thus results in the slowest b-thread
dictating the timescale for the whole system. This is a common issue in behav-
ioral models that involve multiple scenarios operating on different timescales
(see, e.g., [17]), and it also applies to our distributed variant of BP: for example,
a slower component might experience delays before broadcasting events that a
faster component depends on, forcing the latter to wait. Furthermore, external
events can “pile up”, increasing the processing time of future event selections
and delaying the selection of potentially crucial events.

In this section we discuss how to allow the generated components to operate
efficiently on different timescales.

Previous work [17] has tackled this difficulty in a variety of ways. One app-
roach in [17] introduced an eager execution mechanism for behavioral mod-
els. This technique lessened the severity of the problem by sometimes allowing
the ESM to trigger an event even when some of the b-threads have not yet
synchronized. Our distribution technique lends itself naturally to this kind of
idea, because within a given component, we know that b-threads controlled by
other components, which have not synchonized yet, cannot block local requested
events. Thus, by applying a method similar to eager execution, the ESM does not
have to wait for b-threads which wait only for external events (such b-threads
may be in the original specification, or they may be the projected version of
b-threads with event requests changed to waiting for events).

In our distributed setting, eager execution can be applied as follows. Given a
behavioral model M = {BT 1, . . . , BTn} and its distributed component models
{C1, . . . , Ck}, let q ∈ Qi be a state in which b-thread BT i is not controlled
by component Cj . Observe BT i

j , i.e., the copy of BT i that is running in com-
ponent Cj . Because BT i

j is not controlled by Cj , it does not request or wait
for any local events and must be waiting for an external event e controlled by
some other component Cm. In other words, until such time as e is triggered by
Cm, thread BT i

j will not affect local event selection in component Cj . In such
situations we propose to temporarily detach thread BT i

j from its local ESM,
effectively allowing event selection in component Cj without considering BT i

j .
This allows component Cj to operate in its own pace, while BT i

j can be regarded
as temporarily operating in the same time scale as Cm. Whenever e is finally
triggered and BT i

j reaches a new state q̄ in which it is controlled by Cj , it is reat-
tached to the local ESM. This technique readily enables different components to
simultaneously operate at different timescales.



472 S. Steinberg et al.

To support eager execution within our distributed framework, the external
event queue within each component model needs to be decoupled from the dis-
tributed ESM. Instead, each b-thread in the component receives its own external-
event queue, and at each synchronization point pops all external events and
selects them one at a time. The changes in the BP execution engine are summa-
rized as follows:

– Each b-thread should flag itself as synchronized or unsynchronized with each
bSync call, depending on the state.

– A separate event queue is created in each b-thread, thus allowing b-threads
to process external events independently of the local ESM. A b-thread that
arrives at a state first empties its event queue by repeatedly popping and
selecting an event.

– External events received at a given component are injected into all the b-
thread event queues by the component’s BP execution engine. B-threads that
are already awaiting the local ESM are notified to handle the external events.

7 Example and Evaluation

We now describe in more detail the distributed application upon which we carried
out our evaluation. Specifically, and as introduced in Sect. 3, we implement a
drone-based light show as follows. Each of four drones has a green light and a
red light. Initially, the drones “do the wave”, each flashing its green light briefly,
in turn. This is implemented by the scenario in Algorithm1. The scenario in
Algorithm 2 shows the projection of the scenario in Algorithm1 to Drone1.

i=0;
while true do

bSync(R = {FlashGreen((0 + i)%4)});
bSync(R = {FlashGreen((1 + i)%4)});
bSync(R = {FlashGreen((2 + i)%4)});
bSync(R = {FlashGreen((3 + i)%4)});
nextEvent = bSync(R = {NW0, NW1, NW2, NW3});
i = indexOfWave(nextEvent);

end
Algorithm 1: Pseudocode of a BP scenario demonstrating a simple undistributed

wave example. For each bSync synchronization point, R is set requested events. The

events NW0 through NW3 indicate a request the start a new wave at the corre-

sponding component. These events are requested after each full cycle, and BP event

selection then decides which component starts the new wave. The method index-

OfWave translates an event NWi to the index i.
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i=0;
while true do

bSync(W = {FlashGreen((0 + i)%4)});
bSync(R = {FlashGreen((1 + i)%4)});
bSync(W = {FlashGreen((2 + i)%4)});
bSync(W = {FlashGreen((3 + i)%4)});
nextEvent = bSync(R = {NW1},W = {NW0, NW2, NW3});
i = indexOfWave(nextEvent);

end
Algorithm 2: Projection of the scenario of Algorithm 1 onto the component

Drone1. Notice that requested events controlled by other components become waited-

for (represented by the W sets).

Our example is a slightly richer scenario, coded as a behavioral program
written in C++. The four drones (labeled Drone0 through Drone3) participate
in “a green wave”, starting with Drone0. After the conclusion of two full cycles,
the drones jointly decide which of the drones will start the next wave. The
next wave will, again, last for two full cycles, and the entire process repeats
five times. For now, the entire specification consists of a single scenario. In this
implementation, the light-flashing events are labeled as FlashGreen0 through
FlashGreen3, each representing the flashing of the light in the respective drone,
in either a centralized or distributed implementation. The selection of the drone
that will start the next wave is carried out by the scenarios requesting four
“new wave” events, NW0 through NW3, and the BP event-selection mechanism
arbitrarily selecting one of these events. We then associate each of the FlashGreen
and the NW events with the corresponding component. In this simplified example
the duration of the flashing of each light is implemented in a delay (sleep) of 250
msec in the b-thread that is about the request a FlashGreen event.

For simplicity, this implementation uses a centralizer component and does
not implement a leader-election mechanism. The centralizer is an infrastructure
component which is responsible for: (i) receiving notifications of events triggered
in any behavior components, and broadcasting this information to all other com-
ponents, and (ii) managing joint decisions, by receiving notices from any com-
ponent ESM that wishes to synchronize, which include the sets of requested and
blocked events, waiting for all other components to reach their corresponding
state, selecting an event which is requested and not blocked, and notifying all
components of the selection. Note that the centralizer serves only in simulations
and studies of the approach, and that in real distributed implementations broad-
casting can be performed by a vartiety of techniques (including the above), and
joint decisions can be reached by classical distributed-processing solutions, such
as leader election.

At this point it is important to distinguish between the concepts of classes
and objects and the concept of components as used here. Events may be self-
standing entities, or they may be associated with objects. In our example, each
drone is a component, and objects may reside within a component, or may span
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multiple component. Such objects can be, e.g., a drone controller, a drone light,
a wave effect (which can have a beginning and end events, or a color property)
or an entire light show. As can be seen in the example given in Algorithm2, each
component executes “the entire specification”, in this case, this one scenario. In
the distributed implementation, when scenarios request or wait for FlashGreen
events, they do not synchronize, but when they request the four new wave events,
they all synchronize. This results in a partially synchronized execution, which
mimics the centralized execution but does so with less inter-component synchro-
nization.

We compare our target, partially synchronized execution of a specification
created with the replicate-and-project implementation (R&P), with a fully syn-
chronized distributed execution (abbr. FS), where each component executes the
same specification, and they synchronize with every event selection. The deci-
sion in each component whether to actually turn on its own light following
its respective FlashGreen event is left as a small implementation detail, i.e.,
the light-switch actuation method skips the operation if there is no direct con-
nection with the device. Both implementations execute the same one-scenario
specification, replicated over four components. The total number of events that
occurred, all of which were broadcast to all components, is 44—the same for FS
and for R&P (five repetitions of two four-event cycles, and four joint decisions).
In the R&P however, only four of these required synchronization. The total exe-
cution time was the same in both cases, dominated by the duration of the light
flashes, but if synchronization delay is artificially increased, total execution time
is increased accordingly (e.g., a 100 msec delay purely due to synchronization,
in addition to any ordinary communication delay, would add 400 msec to the
duration of each cycle of this single wave).

We now extend our mini-light-show example with another wave of flashing
lights. We add a scenario in which, starting with Drone2, each of the drones
briefly flashes a red light, in its turn. This multi-cycle wave continues uninter-
rupted and with no change until the ten cycles of the green wave terminate. The
delay (sleep) before requesting a FlashRed event is 1000 msec. When multiple
events are requested e.g., both a FlashRed together with FlashGreen or NW,
the ESM selects an event at random. The forty FlashGreen events in the ten-
cycles determine the beginning and end of the run, and the number of FlashRed
events selected during this time varies. Since we are presently more interested
in understanding the underlying effects than in measuring improvements over a
large number of runs, we suffice with this artificial example. To highlight these
effects we show in Table 1 a comparison of the two cases when in both FS and
R&P, 44 FlashGreen events were triggered.

The basic communication delay in these experiments is set to 50 msec, result-
ing in 100 msec delay for broadcasting an event occurence via the centralizer.

Some interesting explanations and observations include:

– In FS, at every synhcronization point, both a FlashRed event, and, either a
FlashGreen or NW events are enabled. This is true regardless of sleep delays
and number of components. Hence in such runs, on average, half of the events
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will be FlashRed. By contrast in R&P, FlashRed is enabled in a component
together with one of the other two events in a way that depends on lengths of
sleep delays and on the number of components in the cycle, yielding, in our
case fewer FlashRed events during the run.

– Common to all runs is a 40 ∗ 250 msec taken by the FlashGreen events, plus
4 ∗ 100 msec minimum number of joint decisions, plus about 3 s of overhead
(total of 13–14 s).

– The 41 s duration of R&P is the result of adding to the above ∼13 s 28∗1000
msec FlashRed events.

– The 67 s duration of FS is the result of adding to the above 41 s of R&P
17∗1000 msec of additional FlashRed events and 85∗100 msec communication
delays due the additional synchronizations, all of which had to occur during
the same ten cycles of the green wave.

– Even though the total number of events triggered in R&P is less than in FS,
the per-second event rate is higher.

– In the worst case, the performance of a distributed system resulting from an
R&P distribution process will be the same as when a replicated specification
executes without local changes in all components, with full synchronization
at every event selection.

Table 1. Comparing an execution of a fully synchronized (FS) implementation of a
two-scenario specification in a four-component configuration, to an execution of the
partially synchronized replicate-and-project implementation (R&P). See discussion in
the Sect. 7 [37].

Measure FS R&P

Number of FlashGreen event notification broadcast 40 40

Number of FlashRed event notification broadcast∗ 45 28

Number of “new wave” event notification broadcast 4 4

Total number of events 89 72

Total number of Inter-component synchronizations 89 4

Run duration (in seconds) 67 41

Events per second 1.32 1.75

While the above examples illustrate and quantify the kind of savings result-
ing from reduced synchronization, we must note that the synchronization delay
itself is sometimes not the main issue. For example, if we were to replace the
FlashGreen event(s) in our design with, e.g., pairs of TurnGreenLightOn and
TurnGreenLightOff events, all scenarios might have had enough time to syn-
chronize with each other following the event TurnGreenLightOn, in parallel to
waiting for the time ticks that would signal the end of the shining of the light. A
relaxed synchronization approach, separating the scenarios of the two waves into
separate modules within each component, would further streamline an otherwise
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fully synchronized implementation. Nevertheless, the reduced inter-component
synchronization still helps in simplifying the designs, and in enhancing system
robustness. For example, consider recovering from loss of a drone, due to bat-
tery running out, while “the show must go on”. It is much easier for all drones
to observe and react to delays in other drones’ behavior, when they are fully
functional as opposed to waiting in a global synchronization point (even when
the latter is enhanced with timeout facilities as in [18]).

8 Related Work and Comparison

Distributed system have been the subject of extensive research and studies;
see, e.g., [3,32]. In general most approaches that aim to distribute a centralized
system fall into one of the following classes:

1. The distribution process employs a kind of orthogonalization (or partition-
ing) process that decomposes the system into independent, orthogonal parti-
tions that form the distributed system. This might be done with some user
intervention and input or using a fully automatic process. The resulting exe-
cutable partitions model parts of the system which can be ran, in parallel, as
a distributed system without ever requiring to synchronize. Typical examples
include the parallelization of an abstract computation, or the execution of a
multi-agent system where an agent may wait for another agent’s messages, or
may even coordinate a joint application decision, but they cannot in any way
depend on synchronizing with each other their own internal computations
and processes.

2. The executable partitions that form the distributed system are given in
advance, and they do not map to logically-orthogonal parts of the specifica-
tion. Instead, they are formed to satisfy other constraints (physical properties,
performance, etc.) Unlike systems with orthogonal partitioning, some syn-
chronization might be required to ensure the distributed system has largely
the same function as the original one. A typical example would be a dis-
tributed database whose components are defined by physical machine capac-
ities and boundaries. The component synchronize as part of their underlying
computation, to ensure properties such as atomicity, consistency, isolation
and durability (ACID).

Each class has a unique difficulty: Orthogonalization or synchronization. In
terms of system design synchronizing distributed systems enjoy a larger degree
of freedom in the way the distributed partitions can be chosen. Behavioral spec-
ifications generally do not expose orthogonal partitions that map to the physical
parts or properties of the system, or at times, none at all. Performance-wise, the
trade-off between an orthogonal and a non-orthogonal approach can be seen as
the trade-off between distribution performance as opposed to execution perfor-
mance.

Within the realm of behavioral programming, the research in [28] suggests
an approach for orthogonal distribution, where the distributed system consists
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of multiple, manually design, independent programs, termed behavior nodes (b-
nodes), each with its own set of internal events. As this is an orthogonal approach,
those b-nodes never need to synchronize with each other. Similar to our app-
roach the b-nodes communicate by external events, however those events require
manual translation to and from internal events. While in [28] the distributed sys-
tem is generated by a manual partitioning of a model into multiple b-programs,
[15] proposes a synchronizing approach for distributing BP models by manually
partitioning the b-threads of a single b-program into modules, where each mod-
ule runs its set of b-threads and synchronizes with other modules upon choosing
events that might matter to other modules. The set of events that require syn-
chronization as well as which modules each events needs to synchronize with
is known a priori. The research in [15,28] contains examples of an orthogonal
distribution approach and a synchronizing one, respectively, in behavioral pro-
gramming. However, in both approaches the component structure is dynamic
and implied by the specification, in contrast to the present paper where the
component structure is dictated by the physical structure of the system and
external events emerge naturally and automatically from internal events. Fur-
thermore our approach supports more general designs, inter-component scenarios
and fine-grained synchronizations when scenarios give rise to inter-component
decisions.

A different framework for the distributed execution of scenarios is presented
in [12]. The approach there is similar to the one in this paper in that the dis-
tributed components can each choose to execute events that they are responsible
for, and selected events are broadcast to all other components. Further, a coor-
dinator component in [12] forces the situation where, as in Assumption 1, all
components observe a single event order. The main issues with this implemen-
tation relative to R&P are that it requires that individual scenarios are written
to not have states where events of multiple components are enabled. By con-
trast, R&P automatically coordinates all components when reaching a state
where a joint decision is required, and it allows components to advance asyn-
chronously when possible, and in particular, after locally selecting an event. An
advantage, though, of the implementation of always enforcing a common event
order in [12] is that it avoids the risk of sensitivity to different event orders.
While Lemma 1 relies on such enforcement for the proof, R&P in general allows
also for applications that forego this requirement, and solve order-dependencies
in application-specific means. However, we must note that the actual reliance
in the implementation on a physical centralized coordinator for the entire dis-
tributed system carries many disadvantages both in performance and robustness.
The introduction of single order assumption in the proof of Lemma 1, can be
seen more as an abstraction—a requirement that is either guaranteed by some
efficient and robust means or by application-specific properties.

A more general, automatic handling of event-order dependencies in R&P,
and possible generation of additional ICDPs, is left for future research, e.g. using
formal methods, as discussed in Sect. 4.
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The research in [14] describes (though without an implementation) a mech-
anism for the distributed execution of scenarios with dynamic role bindings.
There, synchronization is done only among relevant components, as determined
dynamically.

There has also been work on synthesizing scarcely-synchronizing distributed
controllers from scenario-based specifications [4]. Distributed finite automaton
controllers can be synthesized from scenario specifications in a way that greatly
reduces communication overhead compared to previous approaches, especially
compared to the broadcasts of events as also suggested in this work. However,
the synthesis procedure is computationally complex and does not scale well as
specification and system size increase. In [9], the authors study a similar prob-
lem and present an approach for synthesizing executable implementations from
specifications given in a distributed variant of LSC, termed dLSC.

Another work related to distribution of centralized scenario-based models
(but outside of the realm of BP) is [34], which presents a synchronizing app-
roach for distributing workflow specifications. This work exposes domain-specific
knowledge in order to be able to generate automatically distributed partitions
and synchronization semantics such that the resulting distributed system pre-
serves the execution semantics of the original centralized version.

Outside the scope of scenario-based modeling [7] is an example of distribution
of systems modeled using Petri Nets, specifically High Level Timed Petri Nets
(HLTPN). This research uses the orthogonalization approach where the HLTPN
is decomposed into subnets connected by shared places, nodes that are common
to multiple subnets. Arcs are not allowed to cross subnet boundaries, ensuring
that the decomposing is an orthogonal partitioning of the net. The shared places
can be seen as global memory, shared between multiple subnets, used to control
firing of transitions, however there is no synchronization between the subnets.

Further non-scenario-based research discusses the trade-off between perfor-
mance optimization and communication minimization in parallel and distributed
settings has been studied extensively. These two conflicting goals are discussed,
e.g., in [5,39]. In [38] the author suggests imposing certain limitations on the
communication between the components, thus allowing for execution-time opti-
mization to be performed during compilation.

It is interesting to note that distribution approaches that rely on scenario-
based specifications typically exploit the execution semantics of the model-
ing language to generate synchronized distributed systems. Meanwhile, non-
scenario-based approaches generally employ a form of orthogonalization, and
usually rely on domain-specific knowledge or on high-level temporal specifi-
cations to facilitate the distribution. As discussed above, orthogonalization
approaches are more rigid and are not always possible, feasible or applicable.
To our knowledge there is scarcely any research that involves generating a non-
orthogonal distributed system from a generic non-scenario-based specifications.
It appears that despite (and perhaps due to) the simplicity of behavioral pro-
gramming and of scenario-based specifications in general, it is generally amenable
automated decomposition and distribution.
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9 Discussion and Future Work

Previous research on scenario based programming has shown the great impor-
tance of formal methods and tools in ensuring that the resulting models, com-
posed of many individual scenarios, perform as intended as a whole. Past
efforts have yielded a large portfolio of tools for model checking [24], automatic
repair [21,30] and compositional verification [16,31], and have even indicated
that scenario-based programming may be more amenable to formal analysis
than other modeling approaches [19,22].

Given the above, applying formal analysis in the distributed case seems even
more vital, as distributed models are inherently more difficult for humans to
comprehend than centralized ones. Fortunately, Lemma1 enables us to immedi-
ately apply existing tools in our setting. Because the centralized and distributed
models present the same behavior, it is possible to apply existing approaches
to the centralized version and use them to draw conclusions regarding the dis-
tributed case.

Future research on new applications of formal methods to distributed imple-
mentations can also distill situations and “critical states” where special handling
is needed. E.g., identify when there are special dependencies on observing a par-
ticular event order, and devise solutions that are automatic, reduce synchroniza-
tion, and reduce the need for a total strict event order, and where the equivalence
of the resulting distributed execution to the centralized one can be proven. For
example, in the present implementation, an application that waits for two events
from two different components in any order, and then transitions into the same
final state, depends on guaranteed event order, and/or on two ICDPs, where, in
fact, neither is required. This research will also include proofs for correctness of
different distribution procedures—e.g., that in cases where the application does
not depend on particular event order, a particular distribution method which
does not guarantee Assumption 1 still works correctly. For example, cars arriv-
ing at an intersection, each detecting all other cars in their environment, do not
have to rely on observing identical event orders. We wish to devise a distribution
methods for scenario-based specifications for handling such situations, and prove
their correctness, namely, that the cars executing these scenarios in a distributed
manner indeed cross the intersection safely.

Nonetheless, in a distributed environment there are some hazards that do not
appear in the fully-synchronized model, and may thus be overlooked by existing
tools:

– Inter-component Deadlock. An inter-component deadlock occurs when
a component C has no enabled local events that it can trigger, and is thus
waiting for certain external event(s). However due to various reasons, these
external events may never arrive. For example, the reason might be that
another component is actually waiting for an event that C needs to trigger.
Note that a situation where a component is waiting for events local to a
crashed component is not an inter-component deadlock, but a soft deadlock,
as restarting the failed component might resolve the issue.
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– External Event Queue Overflow. When a component repeatedly takes
longer to process external events than it takes the other components to trigger
and broadcast these events, could result in exceeding the memory available
for the external event queue. An example of this could be a logger component
that takes too long to post its log entries to a remote location.

– Latency. Communication delays can cause poorly-designed systems to
exhibit undesired behavior. As we discussed in Sect. 5.5, Lemma 1 does not
hold when latency is too high, and so such errors cannot be detected by
existing tools.

We are working on extending the presently available techniques to handle the
issues listed above. For instance, in the latency case an improved model-checking
algorithm might simulate a realistic latency for external event communication,
depending on the communication method used (e.g., wired communications over
a local network will have a much lower latency than a satellite connection). We
are also exploring the use of quantitative approaches to formal verification to
attempt and derive bounds on the maximal size a queue can reach, given certain
constraints on the broadcast and processing times of system components.

In the context of inter-component deadlock, one approach for recovering
from component failure or missed messages could be adding state information
to the external events, permitting components that missed a transition to “fast-
forward” to the correct state in a scenario. Another direction could involve having
multiple instances of critical components, for redundancy.

As an additional future work direction, we would like to study approaches
to choosing a strict event separation. While the components are usually derived
manually from physical system requirements, at times it might be desired to
delineate their boundaries automatically based on other criteria. One approach
is to use clustering algorithms that take as input a function f that assigns,
for every two events e1, e2 ∈ Σ a correlation value f (e1, e2) ∈ [−1,+1]. The
clustering algorithms then attempt to partition the events into a strict separation
into k components (with k either known or unknown beforehand), such that two
events are in the same component if their correlation is high and are in separate
components if their correlation is low. While this problem is known to be NP-
Complete, it can be approximated up to a log-factor [2].

10 Conclusion

The replicate-and-project approach transforms a centralized scenario-based spec-
ification so that it can be executed in a distributed configuration, by creating
component-specific variations, based on each component’s capabilities. We have
shown that the resulting distributed models behave similarly to the centralized
model from which they originated. This important property allows us to carry
out most of the modeling work, including testing and analysis, in the central-
ized setting, which is easier to model-check and reason about. The projected
models retain the naturalness and incrementality traits of behavioral program-
ming. In their avoidance of excessive synchronization, they improve robustness



Efficient Distributed Execution of Multi-component Scenario-Based Models 481

and the ability to model systems with multiple time scales. In addition to the
advantages of this approach in streamlining design and improving performance,
it captures the more general fact that distributed operations that are robust and
efficient often involve the sharing of knowledge between components, such that
each of them knows at least some of the rules that control the behavior of the
others - a concept whose applicability me go beyond scenario-based/behavioral
programming.
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