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Abstract—Deep neural networks (DNNs) are increasingly being
used as controllers in reactive systems. However, DNNs are highly
opaque, which renders it difficult to explain and justify their
actions. To mitigate this issue, there has been a surge of interest
in explainable AI (XAI) techniques, capable of pinpointing the
input features that caused the DNN to act as it did. Existing XAI
techniques typically face two limitations: (i) they are heuristic,
and do not provide formal guarantees that the explanations
are correct; and (ii) they often apply to “one-shot” systems,
where the DNN is invoked independently of past invocations,
as opposed to reactive systems. Here, we begin bridging this gap,
and propose a formal DNN-verification-based XAI technique for
reasoning about multi-step, reactive systems. We suggest methods
for efficiently calculating succinct explanations, by exploiting the
system’s transition constraints in order to curtail the search space
explored by the underlying verifier. We evaluate our approach
on two popular benchmarks from the domain of automated
navigation; and observe that our methods allow the efficient
computation of minimal and minimum explanations, significantly
outperforming the state of the art. We also demonstrate that our
methods produce formal explanations that are more reliable than
competing, non-verification-based XAI techniques.

I. INTRODUCTION

Deep neural networks (DNNs) [56] are used in numerous
key domains, such as computer vision [54], natural language
processing [24], computational biology [9], and more [23].
However, despite their tremendous success, DNNs remain
“black boxes”, uninterpretable by humans. This issue is con-
cerning, as DNNs are prone to critical errors [19], [96] and
unexpected behaviors [10], [28].

DNN opacity has prompted significant research on ex-
plainable AI (XAI) techniques [62], [77], [78], aimed at
explaining the decisions made by DNNs, in order to increase
their trustworthiness and reliability. Modern XAI methods
are useful and scalable, but they are typically heuristic; i.e.,
there is no provable guarantee that the produced explanation
is correct [20], [45]. This hinders the applicability of these
approaches to critical systems, where regulatory bars are
high [66].

These limitations provide ample motivation for formally
explaining DNN decisions [20], [33], [39], [66]. And indeed,
the formal verification community has suggested harnessing
recent developments in DNN verification [13], [22], [26],
[29], [36], [67], [69]–[71], [81], [86], [91], [92] to produce
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provable explanations for DNNs [17], [39], [44]. Typically,
such approaches consider a particular input to the DNN,
and return a subset of its features that caused the DNN to
classify the input as it did. These subsets are called abductive
explanations, prime implicants or PI-explanations [17], [44],
[84]. This line of work constitutes a promising step towards
more reliable XAI; but so far, existing work has focused on
explaining decisions of “one-shot” DNNs, such as image and
tabular data classifiers [17], [43], [44], and has not addressed
more complex systems.

Modern DNNs are often used as controllers within elaborate
reactive systems, where a DNN’s decisions affect its future
invocations. A prime example is deep reinforcement learning
(DRL) [59], where DNNs learn control policies for complex
systems [11], [18], [57], [63], [72], [85], [95]. Explaining the
decisions of DRL agents (XRL) [32], [50], [64], [74] is an
important domain within XAI; but here too, modern XRL
techniques are heuristic, and do not provide formally correct
explanations.

In this work, we make a first attempt at formally defining
abductive explanations for multi-step decision processes. We
propose novel methods for computing such explanations and
supply the theoretical groundwork for justifying the soundness
of these methods. Our framework is model-agnostic, and could
be applied to diverse kinds of models; but here, we focus on
DNNs, where producing abductive explanations is known to be
quite challenging [14], [17], [44]. With DNNs, our technique
allows us to reduce the number of times a network has to
be unrolled, circumventing a potential exponential blow-up in
runtime; and also allows us to exploit the reactive system’s
transition constraints, as well as the DNN’s sensitivity to small
input perturbations, to curtail the search space even further.

For evaluation purposes, we implemented our approach
as a proof-of-concept tool, which is publicly available as
an artifact accompanying this paper [16]. We used this
tool to automatically generate explanations for two popular
DRL benchmarks: a navigation system on an abstract, two-
dimensional grid, and a real-world robotic navigation system.
Our evaluation demonstrates that our methods significantly
outperform state-of-the-art, rigorous methods for generating
abductive explanations, both in terms of efficiency and in
the size of the explanation generated. When comparing our
approach to modern, heuristic-based XAI approaches, our

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 9 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_9
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_9
https://creativecommons.org/licenses/by/4.0/


explanations were found to be significantly more precise. We
regard these results as strong evidence of the usefulness of
applying verification in the context of XAI.

The rest of this paper is organized as follows: Sec. II
contains background on DNNs, their verification, and their
formal explainability. Sec. III contains our definitions for
formal abductive explanations and contrastive examples for
reactive systems. In Sec. IV we propose different methods
for computing such abductive explanations. We then evaluate
these approaches in Sec. V, followed by a discussion of related
work in Sec. VI; and we conclude in Sec. VII.

II. BACKGROUND

DNNs. Deep neural networks (DNNs) [56] are directed, lay-
ered graphs, whose nodes are referred to as neurons. They
propagate data from the first (input) layer, through intermedi-
ate (hidden) layers, and finally onto an output layer. A DNN’s
output is calculated by assigning values (representing input
features) to the input layer, and then iteratively calculating the
neurons’ values in subsequent layers. In classification, each
output neuron corresponds to a class, and the input is classified
as the class matching the greatest output. Fig. 1 depicts a toy
DNN. The input layer has three neurons and is followed by a
weighted-sum layer that calculates an affine transformation of
the input values. For example, given input V1 = [1,1,1]T , the
second layer evaluates to V2 = [7,8,11]T . This is followed
by a ReLU layer, which applies the ReLU(x) = max(0, x)
function to each value in the previous layer, resulting in
V3 = [7,8,11]T . The output layer computes the weighted sum
V4 = [15,−4]T . Because the first output neuron has the great-
est value, V1 is classified as the output class corresponding to
that neuron.
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Fig. 1: A toy DNN.

DNN Verification. We define a DNN verification query as
a tuple ⟨P,N,Q⟩, where N is a DNN that maps an input
vector x to an output vector y = N(x), P is a predicate
over x, and Q is a predicate over y [51]. A DNN verifier
needs to answer whether there exists some input x′ that
satisfies P (x′)∧Q(N(x′)) (a SAT result) or not (an UNSAT
result). It is common to express P and Q in the logic of real
arithmetic [61]. The problem of verifying DNNs is known to
be NP-Complete [51].

Formal Explanations for Classification DNNs. A classifica-
tion problem is a tuple ⟨F,D,K,N⟩, where (i) F = {1, . . . ,m}

is the feature set; (ii) D = {D1,D2, . . . ,Dm} are the domains
of individual features, and the entire feature space is F =
(D1 ×D2 × . . . ×Dm); (iii) K = {c1, c2, . . . , cn} represents
the set of all classes; and (iv) N ∶ F→K is the classification
function, represented by a neural network. A classification
instance is a pair (v, c), where v ∈ F, c ∈ K, and c = N(v).
Intuitively, this means that N maps the input v to class c.

Formally explaining the instance (v, c) entails determining
why v is classified as c. An explanation (also known as an
abductive explanation) is defined as a subset of features,
E ⊆ F , such that fixing these features to their values in
v guarantees that the input is classified as c, regardless of
features in F ∖E. The features not part of the explanation are
“free” to take on any arbitrary value, but cannot affect the
classification. Formally, given an input v = (v1, . . . , vm) ∈ F
classified by the neural network to N(v) = c, we define an
explanation as a subset of features E ⊆ F , such that:

∀x ∈ F. ⋀
i∈E
(xi = vi)→ (N(x) = c) (1)

We demonstrate formal explanations using the running ex-
ample from Fig. 1. For simplicity, assume that each input can
only take the values 0 or 1. Fig. 2 shows that the set {v11 , v21}
is an explanation for the input vector V1 = [1,1,1]T : setting
the first two features in V1 to 1 ensures that the classification
is unchanged, regardless of the values the third feature takes.
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Fig. 2: {v11 , v21} is an explanation for input V1 = [1,1,1]T .

A candidate explanation E can be verified through a verifi-
cation query ⟨P,N,Q⟩ = ⟨E = v,N,Q¬c⟩, where E = v means
that all of the features in E are set to their corresponding
values in v, and Q¬c implies that the classification of this
query is not c. If this query is UNSAT, then E is a valid
explanation for the instance (v, c).

It is straightforward to show that the set of all features is
a trivial explanation. However, smaller explanations typically
provide more meaningful information regarding the decision
of the classifier; and we thus focus on finding minimal and
minimum explanations. A minimal explanation is an expla-
nation E ⊆ F that ceases to be an explanation if any of its
features are removed:

(∀x ∈ F. ⋀
i∈E
(xi = vi)→ (N(x) = c)) ∧

(∀j ∈ E. ∃y ∈ F. ⋀
i∈E∖j

(yi = vi) ∧ (N(y) ≠ c))
(2)

A minimal explanation for our running example, {v11 , v21}, is
depicted in Fig. 15 in the extended version of this paper [15].
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A minimum explanation is a subset E ⊆ F which is a
minimal explanation of minimum size; i.e., there is no other
minimal explanation E′ ≠ E such that ∣E′∣ < ∣E∣. Fig. 16 in
the extended version of this paper [15] shows that {v31} is a
minimal explanation of minimal cardinality, and is hence a
minimum explanation in our example.

Contrastive Examples. We define a contrastive example (also
known as a contrastive explanation (CXP)) as a subset of
features C ⊆ F , whose alteration may cause the classification
of v to change. More formally:

∃x ∈ F. ⋀
i∈F∖C

(xi = vi) ∧ (N(x) ≠ c) (3)

A contrastive example for our running example appears in
Fig. 3.
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Fig. 3: {v21 , v31} is a contrastive example for V1 = [1,1,1]T .

Checking whether C is a contrastive example can be per-
formed using the query ⟨P,N,Q⟩ = ⟨(F ∖ C) = v,N,Q¬c⟩:
C is contrastive iff the quest is SAT. Any set containing a
contrastive example is contrastive, and so we consider only
contrastive examples that are minimal, i.e., which do not
contain any smaller contrastive examples.

Contrastive examples have an important property: every ex-
planation contains at least one element from every contrastive
example [17], [43]. This can be used for showing that a min-
imum hitting set (MHS; see [15]) of all contrastive examples
is a minimum explanation [41], [76]. In addition, there exists
a duality between contrastive examples and explanations [43],
[47]: minimal hitting sets of all contrastive examples are min-
imal explanations, and minimal hitting sets of all explanations
are minimal contrastive examples. This relation can be proved
by reducing explanations and contrastive examples to minimal
unsatisfiable sets and minimal correction sets, respectively,
where this duality is known to hold [43]. Calculating an MHS
is NP-hard, but can be performed in practice using modern
MaxSAT or MILP solvers [38], [58]. The duality is thus useful
since computing contrastive examples and calculating their
MHS is often more efficient than directly computing minimum
explanations [17], [43], [44].

III. K-STEP FORMAL EXPLANATIONS

A reactive system is a tuple R = ⟨S,A, I, T ⟩, where S is a
set of states, A is a set of actions, I is a predicate over the
states of S that indicates initial states, and T ⊆ S ×A × S is
a transition relation. In our context, a reactive system has an
associated neural network N ∶ S → A. A k-step execution E of

Fig. 4: ({s3},∅) is a (minimum) multi-step explanation for
E .

R is a sequence of k states (s1, . . . , sk), such that I(s1) holds,
and for all 1 ≤ i ≤ k−1 it holds that T (si,N(si), si+1). We use
ES = (s1, . . . , sk) to denote the sequence of k states visited in
E , and EA = (a1, . . . , ak) to denote the sequence of k actions
selected in these states. More broadly, a reactive system can
be considered as a deterministic, finite-state transducer Mealy
automaton [82]. Our goal is to better understand E , by finding
abductive explanations and contrastive examples that explain
why N selected the actions in EA.

K-Step Abductive Explanations. Informally, we define an
explanation E for a k-step execution E as a subset of features
of each of the visited states in ES , such that fixing these
features (while freeing all other features) is sufficient for
forcing the DNN to select the actions in EA. More formally,
E = (E1, . . . ,Ek), such that ∀x1, x2, . . . , xk ∈ F,

(
k−1
⋀
i=1

T (xi,N(xi), xi+1) ∧
k

⋀
i=1
⋀
j∈Ei

(xj
i = s

j
i ))→

k

⋀
i=1

N(xi) = ai
(4)

We continue with our running example. Consider the tran-
sition relation T = {(s, a, s′) ∣ s3 = s′3}; i.e., we can
transition from state s to state s′ provided that the third
input neuron has the same value in both states, regardless
of the action selected in s. Observe the 2-step execution
E ∶ s1 = (1,1,1)

c1→ s2 = (1,0,1)
c1→, depicted in Fig. 4

(for simplicity, we omit the network’s hidden neurons), and
suppose we wish to explain EA = {c1, c1}. Because {s3} is
an explanation for the first step, and because fixing s31 also
fixes the value of s32, it follows that fixing s31 is sufficient to
guarantee that action c1 is selected twice — i.e., ({s3},∅) is
a multi-step explanation for E .

Given a candidate k-step explanation, we can check its
validity by encoding Eq. 4 as a DNN verification query. This is
achieved by unrolling the network N for k subsequent steps;
i.e., by encoding a network that is k times larger than N ,
with input and output vectors that are k times larger than the
original. We must also encode the transition relation T as a
set of constraints involving the input values, to mimic k time-
steps within a single feed-forward pass. We use N[i] to denote
an unrolling of the neural network N for i steps, for 1 ≤ i ≤ k.

Using the unrolled network N[k], we encode the negation of
Eq. 4 as the query ⟨P,N,Q⟩ = ⟨E = ES ,N[k],Q¬EA⟩, where
E = ES means that we restrict the features in each subset
Ei ∈ E to their corresponding values in si; and Q¬EA indicates
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Fig. 5: ({s3},{s3}) is a multi-step contrastive example for E .

that in some step i, an action that is not ai was selected by the
DNN. An UNSAT result for this query indicates that E is an
explanation for E , because fixing E’s features to their values
forces the given sequence of actions to occur.

We can naturally define a minimal k-step explanation as a k-
step explanation that ceases to be a k-step explanation when
we remove any of its features. A minimum k-step explana-
tion is a minimal k-step explanation of the lowest possible
cardinality; i.e., there does not exist a k-step explanation
E′ = (E′

1,E
′
2, . . . ,E

′
k) such that ∑k

i=1 ∣E′
i∣ < ∑

k
i=1 ∣Ei∣.

K-Step Contrastive Examples. A contrastive example C for
an execution E is a subset of features whose alteration can
cause the selection of an action not in EA. A k-step contrastive
example is depicted in Fig. 5: altering the features s31 and
s32 may cause action c2 to be chosen instead of c1 in the
second step. Formally, C is an ordered set of (possibly empty)
subsets C = (C1,C2, . . . ,Ck), such that Ci ⊆ F , and for which
∃x1, x2, . . . , xk ∈ F such that

(
k−1
⋀
i=1

T (xi,N(xi), xi+1))∧

(
k

⋀
i=1

⋀
j∈F∖Ci

(xj
i = s

j
i )) ∧ (

k

⋁
i=1

N(xi) ≠ ai)
(5)

Similarly to multi-step explanations, C is a multi-step con-
trastive example iff the verification query: ⟨P,N,Q⟩ = ⟨(F ∖
C1, F ∖C2, . . . , F ∖Ck) = ES ,N[k],Q¬EA⟩ is SAT.

IV. COMPUTING FORMAL K-STEP EXPLANATIONS

We now propose four different methods for computing
formal k-step explanations, focusing on minimal and minimum
explanations. All four methods use an underlying DNN verifier
to check candidate explanations, but differ in how they enu-
merate different explanation candidates until ultimately con-
verging to an answer. We begin with the more straightforward
methods.

Method 1: A Single, K-Sized Step. The first method is
to encode the negation of Eq. 4 by unrolling all k steps of
the network, as described in Sec. III. This transforms the
problem into explaining a non-reactive, single-step system
(e.g., a “one-shot” classifier). We can then use any existing
abductive explanation algorithm for explaining the unrolled
DNN (e.g., [17], [43], [44]).

This method is likely to produce small explanation sets but
is extremely inefficient. Encoding N[k] results in an input

space roughly k times the size of any single-step encoding.
Such an unrolling for our running example is depicted in
Fig. 6. Due to the NP-completeness of DNN verification,
this may cause an exponential growth in the verification time
of each query. Since finding minimal explanations requires a
linear number of queries (and for minimum explanations — a
worst-case exponential number), this may cause a substantial
increase in runtime.

-

Fig. 6: Finding explanations using a 2-step unrolling.

Method 2: Combining Independent, Single-Step Explana-
tions. Here, we dismantle any k-step execution into k individ-
ual steps. Then, we independently compute an explanation for
each step, using any existing algorithm, and without taking
the transition relation into account. Finally, we concatenate
these explanations to form a multi-step explanation. Fixing
the features of the explanation in each step ensures that the
ensuing action remains the same, guaranteeing the soundness
of the combined explanation.

The downside of this method is that the resulting E need not
be minimal or minimum, even if its constituent Ei explana-
tions are minimal or minimum themselves; see Fig. 7. In this
instance, finding a minimum explanation for each step results
in the 2-step explanation ({s3},{s3}), which is not minimal
— even though its components are minimum explanations for
their respective steps. The reason for this phenomenon is that
this method ignores the transition constraints and information
flow across time-steps. This can result in larger and less
meaningful explanations, as we later show in Sec. V.

Method 3: Incremental Explanation Enumeration. We now
suggest a scheme that takes into consideration the transition

Fig. 7: Explaining each step individually.
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constraints between steps (unlike Method 2), but which en-
codes the verification queries for validating explanations in a
more efficient manner than Method 1. The scheme relies on
the following lemma:

Lemma 1. Let E = (E1,E2, . . . ,Ek) be a k-step explanation
for execution E , and let 1 ≤ i ≤ k such that ∀j > i it holds
that Ej = F . Let E′ be the set obtained by removing a set
of features F ′ ⊆ Ei from Ei, i.e., E′ = (E1, . . . ,Ei−1,Ei ∖
F ′,Ei+1, . . . ,Ek). In this case, fixing the features in E′

prevents any changes in the first i − 1 actions (a1, . . . , ai−1);
and if any of the last k − i + 1 actions (ai, . . . , ak) change,
then ai must also change.

A proof appears in the extended version of this paper [15].
The lemma states that “breaking” an explanation E of E at
some step i (by removing features from the i’th step), given
that the features in steps i + 1, . . . , k are fixed, causes ai
to change before any other action. In this scenario, we can
determine whether E explains E using a simplified verification
query: we can check whether (E1, . . . ,Ei) explains the first i
steps of E , regardless of steps i+1, ..., k. If so, then ai cannot
change; and from Lemma 1, no action in EA can change, and
(E1, . . . ,Ek) is an explanation for E . Otherwise, E allows an
action in EA to change, and it does not explain E . We can
leverage this property to efficiently enumerate candidates as
part of a search for a minimal/minimum explanation for E , as
explained next.

Finding Minimal Explanations with Method 3. A common
approach for finding minimal explanations for a “one-shot”
classification instance is via a greedy algorithm, which dis-
patches a linear number of queries to the underlying veri-
fier [44]. Such an algorithm can start with the explanation set
to be the entire feature space, and then iteratively attempt to re-
move features. If removing a feature allows misclassification,
the algorithm keeps it as part of the explanation; otherwise,
it removes the feature and continues. A pseudo-code for this
approach appears in Alg. 1.

Algorithm 1 Greedy-Minimal-Explanation

Input N (DNN), F (N ’s features), v (values), c (predicted
class)

1: Explanation ← F
2: for each f ∈ F do
3: if verify ((Explanation∖{f})=v,N,Q¬c) is UNSAT

then
4: Explanation ← Explanation ∖{f}
5: return Explanation

We suggest performing a similar process for explaining E .
We start by fixing all features in all states of E to their values;
i.e., we start with E = (E1, . . . ,Ek) where Ei = F for all i,
and then perform the following steps:

First, we iteratively remove individual features from E1,
each time checking whether the modified E remains an
explanation for E . Since all features in steps 2, . . . , k are fixed,

it follows from Lemma 1 that checking whether the modified
E explains E is equivalent to checking whether the modified
E1 explains the selection of a1. Thus, we perform a process
that is identical to the one in the greedy Alg. 1 for finding
a minimal explanation for a “one-shot” classification DNN.
At the end of this phase, we are left with E = (E1, . . . ,Ek)
where Ei = F for all i > 1 and E1 was reduced by removing
features from it. We keep all current features in E fixed for
the following steps.

Second, we begin to iteratively remove features from E2,
each time checking whether the modified E still explains E .
Since the features in steps 3, . . . , k are entirely fixed, it suffices
(from Lemma 1) to check whether the modified (E1,E2)
explains the selection of the first two actions (a1, a2) of EA.
This is performed by checking whether

(∀x1, x2 ∈ F. T (x1, a1, x2) ∧ ⋀
j∈E1

(xj
1 = s

j
1)∧

⋀
j∈E2

(xj
2 = s

j
2))→ N(x2) = a2

(6)

We do not need to require that N(x1) = a1 (as in Method 1) —
this is guaranteed by Lemma 1. This is significant, because it
exempts us from encoding the neural network twice as part of
the verification query. We denote the negation of Eq. 6 for val-
idating (E1,E2) as: ⟨P,N,Q⟩ = ⟨(E1,E2) = ES[2] ,N,Q¬a2⟩.

Third, we continue this iterative process for all k steps of
E , and find the minimal explanation for each step separately.
In step i, for each query we encode i transitions and check
whether the modified E still explains the first i steps of E
(by encoding ⟨(E1, . . . ,Ei) = ES[i] ,N,Q¬ai⟩), which does not
require encoding the DNN i times. The correctness of each
step follows directly from Lemma 1.

The pseudo-code for this process appears in Alg. 2. The
minimality of the resulting explanation holds because remov-
ing any feature from this explanation would allow the action
in that step to change (since minimality is maintained in each
step of the algorithm). An example of the first two iterations of
this process on our running example appears in Fig. 8: in the
first iteration, we attempt to remove features from the first step,
until converging to an explanation E1. In the second iteration,
while the features in E1 remain fixed to their values, we
encode the constraints of the transition relation T (s1, a1, s2)
between the first two steps, and dispatch queries to verify
candidate explanations for the second step — until converging
to a minimal explanation (E1,E2). In this case, E2 = ∅, and
({s3},∅) is a valid explanation for the 2-step execution, since
fixing the value of s31 determines the value of s32 — which
forces the selection of a2 in the second step.

We emphasize that incrementally enumerating candidate
explanations for a k-step execution in this way is preferable to
simply finding a minimal explanation by encoding verification
queries that encompass all k-steps, à la Method 1: (i) in each
iteration, we dispatch a verification query involving only a
single invocation of the DNN, thus circumventing the linear
growth in the network’s size — which causes an exponential
worst-case increase in verification times; and (ii) in each
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(a) First iteration

(b) Second iteration

Fig. 8: Running Method 3 for finding minimal explanations,
for two iterations.

iteration, we do not need to encode the entire set of k disjuncts
(from the negation of Eq. 4), since we only need to validate
ai on the i’th iteration, and not all actions of EA.

Algorithm 2 Incremental-Minimal-Explanation
-Enumeration
Input N (DNN), F (N ’s features), E (execution of length k
to explain)

1: Explanation ← (E1, . . . ,Ek) where Ei = F for all 1 ≤ i ≤
k

2: for each i ∈ {1, ..., k} and f ∈ Ei do
3: if verify ((E1, . . . ,Ei ∖ f)=ES[i] ,N,Q¬ai ) is
UNSAT then

4: Ei ← Ei ∖ f
5: return Explanation

Finding Minimum Explanations with Method 3. We can
also use our proposed enumeration to efficiently find mini-
mum explanations, using a recursive approach. In each step
i = 1, . . . , k, we iterate over all the possible explanations,
each time considering a candidate explanation and recursively
invoking the procedure for step i + 1. In this way, we iterate
over all the possible multi-step explanation candidates and can
return the smallest one that we find. This process is described
in Alg. 3.

Finding a minimum explanation in this manner is superior
to using Method 1, for the same reasons noted before. In
addition, the exponential blowup here is in the number of
explanations in each step, and not in the entire number of
features in each step — which is substantially smaller in many
cases. Nevertheless, as the method advances through steps, it
is expected to be significantly harder to iterate over all the
candidate explanations. We discuss more efficient ways for
finding global minimum explanations in Method 4.

Algorithm 3 Incremental-Minimum-Explanation-
Enumeration
Input N (DNN), F (N ’s features), E (execution to explain)
▷ Global Variables

1: AllExplanations ← ALL-EXPLANATION-
2: RECURSIVE-SEARCH(∅, 1)
3: return E ∈ AllExplanations such that E is with minimum

cardinality

Algorithm 4 All-Explanation-Recursive-Search

Input E (explanation), i (step number)
1: if i = k then
2: return E
3: AllExplanations ← ∅
4: for each subset F ′ of F do
5: if verify (E ⋅ (F ′)=ES[i] ,N,Q¬ai ) is UNSAT then
6: Explanations ← All-Explanation-
7: Recursive-Search (E ⋅ (F ′), i+1)
8: AllExplanations ← AllExplanations ∪ Explana-

tions
9: return AllExplanations

Method 4: Multi-Step Contrastive Example Enumeration.
As mentioned earlier, a common approach for finding min-
imum explanations is to find all contrastive examples, and
then calculate their minimum hitting set (MHS). Because
DNNs tend to be sensitive to small input perturbations [87],
small contrastive examples are often easy to find, and this
can expedite the process significantly [17]. When performing
this procedure on a multi-step execution E , we show that it
is possible to enumerate contrastive example candidates in a
more efficient manner than simply using the encoding from
Method 1.

Lemma 2. Let E be a k-step execution, and let C =
(C1, . . . ,Ck) be a minimal contrastive example for E; i.e.,
altering the features in C can cause at least one action in EA
to change. Let 1 ≤ i ≤ k denote the index of the first action ai
that can be changed by features in C. It holds that: Ci ≠ ∅;
Cj = ∅ for all j > i; and if there exists some l < i such that
Cl ≠ ∅, then all sets {Cl,Cl+1, . . . ,Ci} are not empty.

The lemma gives rise to the following scheme. We examine
some contrastive example C ′ of a set of subsequent steps of E .
For simplicity, we discuss the case where C ′ = (C ′

i) involves
only a single step i; but the technique generalizes to subsets
of steps, as well. Such a C ′

i can be found using a “one-shot”
verification query on step i, without encoding the transition
relation or unrolling the network. Our goal is to use C ′ to find
many contrastive examples for E , and use them in computing
the MHS. We observe that there are three possible cases:

1) C = (∅, . . . ,∅,C ′
i,∅, . . . ,∅) already constitutes a con-

trastive example for E . In this case, we say that C ′ = (C ′
i)

is an independent contrastive example.
2) The features in C ′

i can cause a skew from E only
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when features from preceding steps l, . . . , i − 1 (for
some l < i) are also altered. In this case, we say
that C ′ is a dependent contrastive example, and that it
depends on steps l, . . . , i − 1; and together, the features
from all these steps form the contrastive example C =
(∅, . . . ,∅,Cl, . . . ,Ci−1,C

′
i,∅, . . . ,∅) for E .

3) C ′ is a spurious contrastive example: the first i−1 steps in
E , and the constraints that the transition relation imposes,
prevent the features freed by C ′

i from causing any action
besides ai to be selected in step i.

Fig. 9 illustrates the three cases. The first case is identical to
the one from Fig. 5, where ({s3}) is a dependent contrastive
example of the second step, which depends on the previous
step and is part of a larger contrastive example: ({s3},{s3}).
In the second case, assume that T requires that s13 + s23 ≠ 1
for any feasible transition. Thus, the assignment for s32 which
may cause the second action in the sequence to change is
not reachable from the previous step, and hence ({s3}) is a
spurious contrastive example of the second step. In the third
case, assume that T allows all transitions, and hence ({s3}) is
an independent contrastive example for the second step; and
so (∅,{s3}) is a contrastive example of the entire execution.

It follows from Lemma 2 that one of these three cases must
always apply. We next explain how verification can be used to
classify each contrastive example of a subset of steps into one
of these three categories. If C ′ is independent, it can be used
as-is in computing the MHS; and if it is spurious, it should
be ignored. In the case where C ′ is dependent, our goal is to
find all multi-step contrastive examples that contain it, for the
purpose of computing the MHS. We next describe a recursive
algorithm, termed reverse incremental enumeration (RIE), that
achieves this.

Reverse Incremental Enumeration. Given a contrastive ex-
ample C ′ containing features from a set of subsequent steps
of E , we propose to classify it into one of the three categories
by iteratively dispatching queries that check the reachability
of C ′ from the previous steps of the sequence. We execute this
procedure by recursively enumerating contrastive examples in
previous steps. For simplicity, we assume again that C ′ = (C ′

i)
is a single-step contrastive example of step i.

1) For checking whether C ′ is an independent contrastive
example of E , we set Ci−1 = ∅ and Ci = C ′

i , and check
whether C = (Ci−1,Ci) is a contrastive example for steps
i−1 and i. This is achieved by dispatching the following
query: ∃xi−1, xi ∈ F such that:

T (xi−1,N(xi−1), xi)∧

(
i

⋀
l=i−1

⋀
j∈F∖Cl

(xj
l = s

j
l )) ∧ (N(xi) ≠ ai)

(7)

If the verifier returns SAT, C ′
i is independent of step i−1,

and hence independent of all steps 1, . . . , i−1. Hence, C ′

is an independent contrastive example of E .
2) If the query from Eq. 7 returns UNSAT, we now attempt to

decide whether C ′ is dependent. We achieve this through
additional verification queries, again setting Ci = C ′

i , but

now setting Ci−1 to a non empty set of features — once
for every possible set of features, separately. We again
generate a query using the encoding from Eq. 7, and if
the verifier returns SAT it follows that C ′ is dependent
on step i − 1, and that C ′′ = (Ci−1,Ci) is a contrastive
example for steps i − 1 and i. We recursively continue
with this enumeration process, to determine whether C ′′

is independent, dependent of step i − 2, or a spurious
contrastive example.

3) In case the previous phases determine that C ′ is neither
independent nor part of a larger contrastive example, we
conclude that it is spurious.

An example of a single reverse incremental enumeration
step on a contrastive example C ′ in our running example is
depicted in Fig. 10, and its recursive call is shown in Alg. 5
(Cxps denotes the set of all multi-step contrastive examples
containing the initial C ′).

Algorithm 5 Reverse Incremental Enumeration
(RIE)
Input i (starting index), j (reversed index), C ′ = (C ′

j , . . . ,C
′
i)

1: if j=1 then
2: return C’ ▷ C’ is trivially independent of steps j < 1
3: if (∅,C ′

j , . . . ,C
′
i) is a contrastive example of steps j −

1 . . . i then
4: return (Cl ∣ ∀1 ≤ l ≤ j − 1, Cl = ∅) ⋅C ′ ▷ C’ is

independent of step j − 1
5: Cxps ← ∅
6: for each subset Cf of F do
7: if (Cf ,C

′
j , . . . ,C

′
i) is a contrastive example of steps

j − 1 . . . i then
8: Cxps ← Cxps ∪ RIE(i, j − 1,Cf ) ▷ C’ is

dependent of step j − 1
9: return Cxps ▷ if Cxps is empty, C’ is spurious

Using reverse incremental enumeration, we can find all
multi-step contrastive examples of E :

1) First, we find all contrastive examples for the first step
of E . This is again the same as finding contrastive
examples of a “one-shot” classification problem, and can
be performed efficiently [17], via Alg. 7. We first enu-
merate all contrastive examples of size 1 (i.e., contrastive
singletons); then all contrastive examples of size 2 that do
not contain contrastive singletons within them; and then
continue this process for all 1 ≤ i ≤ ∣F ∣ (“skipping” all
non-minimal cases).

2) Next, we search for all contrastive examples for the
second step of E , in the same manner. We perform
a reverse incremental enumeration on each contrastive
example found, obtaining all contrastive examples for
steps 1 and 2.

3) We continue iteratively, each time visiting a new step i
and reversely enumerating all contrastive examples that
affect steps 1, . . . , i. We stop when we reach the final
step, i = k.
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(a) Dependent (b) Spurious (c) Independent

Fig. 9: ({s3}) as a dependent, spurious and independent contrastive example.

(a) First iteration (b) Second iteration

(c) Third iteration

Fig. 10: An illustration of reverse incremental enumeration. We start with a single-step contrastive example, C ′
3 = {s3} for the

third step of the execution. In the second iteration, we find that (C ′
3) is dependent on the previous step, and that ({s3},{s3})

constitutes a contrastive example for steps 2 and 3. In the third iteration, ({s3},{s3}) is found to be independent of the first
step, and hence (∅,{s3},{s3}) is a contrastive example for E .

The full enumeration process for finding all contrastive exam-
ples of E is described fully in Alg. 6, which invokes Alg. 7.

Algorithm 6 Enumerate-All-Cxps

Input N (DNN), F (N ’s features), E (execution to explain)
▷ Global Variables

1: Cxps ← ∅
2: for each i ∈ {1, ..., k} do
3: CxpCandidates ← ENUMERATE-ALL-CXPS-IN-
4: SINGLE-STEP(i)
5: for each Cxp ∈ CxpCandidates do
6: Cxps ← Cxps ∪ RIE((Cxp), i, i)
7: return Cxps

We also make the following observation: we can further
expedite the enumeration process by discarding sets that con-
tain contrastive examples within them since we are specifically
searching for minimal contrastive examples. For instance, in
the given example in Fig. 10, if we find (∅, s1,∅) as a
contrastive example for the entire multi-step instance, we no
longer need to consider sets in step 2 that contain s1 when

Algorithm 7 Enumerate-All-Cxps-In-Single-Step
Input N (DNN), F (N ’s features), E (execution to explain),
i (step number)

1: Cxps ← ∅ ▷ denotes the set of all contrastive examples
2: for each 1 ≤ i ≤ ∣F ∣ do
3: for each subset c of F of length i not containing sets

from Cxps do
4: if verify (F ∖ c = si,N ,Q¬ai ) is SAT then
5: Cxps ← Cxps ∪ c
6: return Cxps

iterating in reverse from step 3 to step 2. Our evaluation shows
that this approach can significantly improve performance as the
increasing number of contrastive examples found in previous
steps greatly reduces the search space.

Of course, our approach’s worst-case complexity is still
exponential in the number of steps, k, because each dependent
contrastive example requires a recursive call that potentially
enumerates all contrastive examples for the previous step.
However, the number of recursive iterations is limited by

17



the dependency between steps. For instance, if contrastive
examples in step i are only dependent on step i − 1 and
not on step i − 2, the recursive iterations will be limited
to 2. Additionally, skipping the verification of candidates
containing contrastive examples found in previous steps can
also significantly reduce runtime.

V. EVALUATION

Implementation and Setup. We created a proof-of-concept
implementation of all aforementioned approaches and bench-
marks [16]. To search for explanations, our tool [16] dispatches
verification queries using a backend DNN verifier (we use
Marabou [52], previously employed in additional studies [2]–
[7], [21], [75], although other engines may also be used). The
queries encode the architecture of the DNN in question, the
transition constraints between consecutive steps of the reactive
system, and the candidate explanation or contrastive example
being checked. Calculating the MHS, when relevant, was done
using RC-2, a MaxSAT-based tool of the PySat toolkit [42].

Benchmarks. We trained DRL agents for two well-known re-
active system benchmarks: GridWorld [88] and TurtleBot [89]
(see Fig. 11). GridWorld involves an agent moving in a
2D grid, while TurtleBot is a real-world robotic navigation
platform. These benchmarks have been extensively studied
in the DRL literature. GridWorld has 8 input features per
state, including agent coordinates, target coordinates, and
sensor readings for obstacle detection. The agent can take
4 possible actions: UP, DOWN, LEFT, or RIGHT. TurtleBot
has 9 input features per state, including lidar sensor readings,
target distance, and target angle. The agent has 3 possible
actions: LEFT, RIGHT, or FORWARD. We trained our DRL
agents with the state-of-the-art PPO algorithm [79]. Additional
details appear in the extended version of this paper [15].

Fig. 11: Benchmarks: (A) GridWorld; and (B) TurtleBot.

Generating Executions. We generated 200 unique multi-step
executions of our two benchmarks: 100 GridWorld executions
(using 10 agents, each producing 10 unique executions of
lengths 6 ≤ k ≤ 14), and 100 TurtleBot executions (using 100
agents, each producing a single execution of length 6 ≤ k ≤ 8).
Next, from each k-step execution, we generated k unique sub-
executions, each representing the first i steps of the original
execution (1 ≤ i ≤ k). This resulted in a total of 931
GridWorld executions and 647 Turtlebot executions. We used

TABLE I: GridWorld: columns from left to right: experiment
type, method name (and number), time and size of returned ex-
planation (out of experiments that terminated), and the percent
of solved instances (the rest timed out). The bold highlighting
indicates the method that generated the explanation with the
optimal size.

setting experiment time (s) size solved
(%)avg. min avg. max

minimal
(local)

one-shot (1) 304 5 33 112 98
independent (2) 1 5 34 97 99.9
incremental (3) 1 5 18 78 99.7

minimum
(global)

one-shot (1) 405 5 14 32 29.8
independent (2) 4 5 35 98 98.3
incremental (3) 1,396 5 7 9 17.9

reversed (4) 39 5 7 16 99.7

these executions to assess the different methods for finding
minimal and minimum explanations. Each experiment ran with
a timeout value of 3 ⋅i hours, where i is the execution’s length.

Experiments. We begin by comparing the performance of the
four methods discussed in Sec. IV: (i) encoding the entire
network as a “one-shot” query; (ii) computing individual
explanations for each step; (iii) incrementally enumerating
explanations; and (iv) reversely enumerating contrastive exam-
ples and calculating their MHS. We note that we use Methods
1–3 to generate both minimal and minimum explanations,
whereas Method 4 is only used to generate minimum explana-
tions. To generate minimum explanations using the “one-shot”
encodings of Methods 1 and 2, we use the state-of-the-art
approach of Ignatiev et al. [44]. We use two common criteria
for comparison [17], [43], [44]: the size of the generated
explanations (small explanations tend to be more meaningful),
and the overall runtime and timeout ratios.

Results. Results for the GridWorld benchmark are presented
in Table I. These results clearly indicate that Method 2
(generating explanations in independent steps) was signifi-
cantly faster in all experiments, but generated drastically larger
explanations — about two times larger when searching for a
minimal explanation, and about five times larger for a minimum
explanation, on average. This is not surprising; as noted earlier,
the explanations produced by such an approach do not take the
transition constraints into account, and hence, may be quite
large. In addition, we note again that this approach does not
guarantee the minimality of the combined explanation, even
when combining minimal/minimum explanations for each
step. The corresponding results for TurtleBot appear in our
extended paper [15], and also demonstrate similar outcomes.

When comparing the three approaches that can guarantee
minimal explanations, the incremental enumeration approach
(Method 3) is clearly more efficient than the “one-shot”
scheme (running for about 1 second compared to above 5
minutes, on average, across all solved instances), as depicted in
Fig. 12. For the minimum explanation comparison, the results
show that the reversed-enumeration-based strategy (Method
4) ran significantly faster than all other methods that can
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Fig. 12: Minimal explanation: number of solved instances
depending on (accumulative) time, for the methods that guar-
antee minimality.
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Fig. 13: Minimum explanation: number of solved instances
depending on (accumulative) time, for the methods that guar-
antee minimality.

find guaranteed minimum explanations: on average, it ran for
39 seconds, while the other methods ran for more than 6
and 23 minutes. In addition, out of all methods guaranteed
to produce a minimum explanation, experiments that ran
with the “reversed” strategy hit significantly fewer timeouts.
The “reversed” strategy outperforms the competing methods
significantly, on both benchmarks (see Fig. 13).

Next, we analyzed the strategies at a higher resolution —
focusing on a step-wise level comparison, i.e., on analyzing
how the length of the execution affected runtime. The results
(see Figs. 17-20 in the the extended version of this paper [15])
demonstrate the drastic performance gain of our “reversed”
strategy as k increases: this strategy can efficiently find expla-
nations for longer executions, while the competing “one-shot”
strategy fails. This again is not surprising: when dealing with
large numbers of steps, the transition function, the unrolling of
the network, and the underlying enumeration scheme become
more taxing on the underlying verifier. A full analysis of both
benchmarks, and all explanation types, appears in [15].

Explanation Example. We provide a visual example of an
instance from our GridWorld experiment identified as a min-
imum explanation. The results (depicted in Fig. 14) include a
minimum explanation for an execution of 8 steps. They show
the following meaningful insight: fixing part of the agent’s
location sensors at the initial step, and a single sensor in the
sixth step, is sufficient for forcing the agent to move along the
original path, regardless of any other sensor reading.

Comparison to Heuristic XAI Methods. We also compared
our results to popular, non-verification-based, heuristic XAI

2

3

1

4

56

agent position
target position
right sensor
left sensor

78

down sensor

Fig. 14: GridWorld: a 5-sized explanation for an 8-step exe-
cution. The steps are numbered (in blue circles), the target is
the yellow square, and the obstacles are depicted in red.

methods. Although these methods proved scalable, they often
returned unsound explanations when compared to our ap-
proach. For additional details, see [15].

VI. RELATED WORK

This work joins recent efforts on utilizing formal verification
to explain the decisions of ML models [17], [25], [44], [55],
[83], [84], [93]. Prior studies primarily focused on formally
explaining classification over various domains [17], [44], [44],
[45], [55], [93] or specific model types [35], [40], [46],
[48], [65]. while others explored alternative ways of defining
explanations over classification tasks [8], [34], [49], [55], [68],
[73], [90], [93].

Methods closer to our own have focused on formally ex-
plaining DNNs [17], [37], [44], [55], [93], where the problem
is known to be complex [44], [60]. This work relies on the
rapid development of DNN verification [1], [12], [13], [27],
[30], [51], [53], [94]. There has also been ample work on
heuristic XAI [31], [62], [77], [78], [80], including approaches
for explaining the decisions of reinforcement-learning-based
reactive systems (XRL) [32], [50], [64], [74]. However, these
methods do not provide formal guarantees.

VII. CONCLUSION

Although DNNs are used extensively within reactive sys-
tems, they remain “black-box” models, uninterpretable to
humans. We seek to mitigate this concern by producing
formal explanations for executions of reactive systems. As
far as we are aware, we are the first to provide a formal
basis of explanations in this context, and to suggest methods
for efficiently producing such explanations — significantly
outperforming the competing approaches. We also note that
our approach is agnostic to the type of reactive system, and
can be generalized beyond DRL systems, to any k-step reactive
DNN system (including RNNs, LSTMs, GRUs, etc.). Moving
forward, a main extension could be scaling our method,
beyond the simple DRLs evaluated here, to larger systems of
higher complexity. Another interesting extension could include
evaluating the attribution of the hidden-layer features, rather
than just the input features.
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