
On the Succinctness of Idioms for Concurrent
Programming: Supplementary Material
David Harel1, Guy Katz1, Robby Lampert2, Assaf Marron1, and
Gera Weiss3

1 Weizmann Institute of Science, Rehovot, Israel
2 Mobileye Vision Technologies Ltd., Jerusalem, Israel
3 Ben Gurion University, Beer-Sheva, Israel

A Proof of Proposition 1

We wish to show that RWB p→ C.
Consider an RWB-automaton A with threads T1, . . . , Tn, each described by a tuple

Ti = 〈Qi,Σi, δi, qi
0, R

i, Bi〉. This naturally gives rise to a C-automaton M , in the following
manner. The alphabet Σ ofM is the set of all thread events, Σ = ∪Σi. M has n components
M1, . . . ,Mn, each corresponding to a single thread. Component M i has the same states
and initial state as its corresponding thread, Qi and qi

0.
The transition relation of M i is defined as follows: For every e ∈ Σ, let

R(e) = {q | ∃i, q ∈ Qi, e ∈ Ri(q)}, B(e) = {q | ∃i, q ∈ Qi, e ∈ Bi(q)}

denote the set of states in which individual threads request/block event e. For every
event e ∈ Σ and every thread Ti, for each state q ∈ Qi we define a transition in M i by
〈q, e, (

∨
u∈R(e) u) ∧ (¬

∨
v∈B(e) v), q̂〉, where if e ∈ Σi then q̂ = δ̄i(q, e), and if e 6∈ Σi then

q̂ = q. Thus, the transitions imitate the operation of the RWBA, while their guards guaran-
tee that they are applicable iff the event is requested by at least one thread and is blocked
by none. Recall that for e ∈ Σi, qi and e uniquely determine q̂i — and so the definition
is sound. It is clear that both automata accept the same language. Further, the resulting
C-automaton is of size polynomial in the size of A. In particular, we introduce at most |A|2
edges and at most |A| guards, each of size at most |A|.

B Proof of Proposition 5

We show that for any two modelsM1,M2 ∈ {RWB,WB,RB,RW}, it holds thatM1
·→ M2.

Every RB- or RW-automaton is also an RWB-automaton, in which, at every synchron-
ization point, the waited-for or blocked events set are empty, respectively. AWB-automaton
can also be regarded as an RWB-automaton, where all threads request all events at each
synchronization point. Hence,M1

p→ RWB.
By Proposition 1, we know that RWB p→ C. By [1], we know that C ·→ DLA. Finally, a

DLA can be translated into anM2-automaton with a single thread that imitates the DLA,
as follows. The thread has the same states and transitions as the DLA, and:

For M2 = WB, in each state the thread blocks any events for which there are no
transitions, and waits for the events of all outgoing transitions.
ForM2 = RB,M2 = RW orM2 = RWB, in each state the thread only requests events
for which there are outgoing transitions, blocking no events.

It follows that DLA p→M2. Thus, putting these together yields:

M1
p→ C ·→ DLA p→M2

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 On the Succinctness of Idioms for Concurrent Programming: Supplementary Material

And soM1
·→ M2, as needed.

C Proof of Proposition 6

We wish to prove that RWB →· WB.
Let n ∈ N, and let k ∈ N be the smallest number such that the first k prime numbers,

p1, . . . , pk, satisfy
∏k

i=1 pi > n. Define the family of languages Ln = {`1`2 . . .} by:

`j =
{

0 or 1 ; ∃i such that pi | #0(`1 . . . `j−1)
0 ; otherwise

Here #0(`1, . . . , `j−1) is the number of 0s that have appeared in the word so far. The jth
event can be either 0 or 1 if there is a pi which divides this number.

In theRWB model, this language is accepted by an automaton with k threads, T1, . . . , Tk,
where Ti is given by:

0 1 2
0 0 0

· · · pi
0

0

1

R={0},B=∅ R={0},B=∅ R={0},B=∅ R={0, 1},B=∅

In state pi the thread requests 0 and 1, and in all other states it only requests 0. The
size analysis is the same as in the proof of Proposition 3, and the automaton is of size
O(log2 n · log logn).

Consider a WB-automaton that accepts this language and the word σ = 0ω ∈ Ln.
Assume that all threads have less than n states. By the pigeonhole principle they are
traversing cycles in their respective transition systems as the automaton reads σ.

There are infinitely many indices in which the triggering of 1 would result in a word
(either finite or infinite) that is not in Ln being accepted by the automaton. Hence, triggering
1 has to be prevented in these indices, which, in the WB model, means it has to be blocked
infinitely often. Therefore, there is at least one thread Tj whose cycle contains a state q
in which 1 is blocked. Let β denote the length of that cycle. By our assumption, β < n.
Consequently, there is at least one prime pi such that pi and β are coprime. By the Chinese
Remainder Theorem, the automaton will eventually reach a point in the run where pi divides
the number of zeroes encountered so far, and so 1 should be allowed, but in which thread
Tj is in state q, blocking 1 — thus preventing a word that is in the language from being
accepted by the automaton. Hence, there must be at least one thread with n or more states,
proving the claim.

D Proof of Proposition 7

We wish to prove that RWB →· RB.
Note that in the RB model, since threads do not wait for anything unless they explicitly

request it, if a thread has no requests at some synchronization point it remains in that state
forever, either blocking some events forever, or doing nothing at all.

Let n ∈ N, and consider the family of singleton languages Ln = 0n1ω. In Section 3.2 we
saw that there exists an RWB-automaton of size O(log2 n · log logn) that accepts Ln.

David Harel, Guy Katz, Robby Lampert, Assaf Marron, and Gera Weiss 3

Now, suppose that an RB-automaton accepts Ln, and that all its threads have less than
n states. Consider the automaton after reading the input 0n. As all threads have less than
n states, they are all traversing cycles in their transition systems where all the edges are
labeled 0. We call these cycles 0-cycles. In the RB model, these cycles can be of two kinds:
1. Single-state cycles, where the thread does not request 0; hence, a 0 event being triggered

leaves the thread in that state.
2. Cycles in which all states request 0; in these cycles, the thread moves to a new state

whenever 0 is triggered.
Neither kind of cycle can have a state that blocks 0 inside it; otherwise the 0n prefix would
already be rejected, although it is a prefix of a word in Ln. Also, there is at least one thread
in a cycle that requests 0s; otherwise the automaton would be stuck — again, rejecting a
word in Ln.

Let us see what happens when the automaton reads the word 0ω. After reading the 0n

prefix, the threads are already traversing their cycles, in which 0 is never blocked. At least
one thread is constantly requesting 0 in every state of its cycle. Hence, the threads will
continue to traverse their cycles indefinitely as they read 0ω, accepting the word although
it is not in Ln.

E Proof of Proposition 8

We wish to prove that RWB →· RW.
Let n ∈ N, and let k ∈ N be the smallest number such that the first k prime numbers,

p1, . . . , pk, satisfy
∏k

i=1 pi > n. We prove the claim using the family of languages Ln =
(0N−1(0 + 1))ω, where N =

∏k
i=1 pi. In the RWB model, this language is accepted by an

automaton with k threads T1, . . . , Tk, where Ti is given by:

1 2
0 0

· · · pi
0

0, 1

R={0},B={1} R={0},B={1} R={0, 1},B=∅

In state pi the thread requests both 0 and 1, and in the other states it requests 0 but blocks
1. Thus, 0 may always be triggered, but 1 may be triggered only when all threads are
in their respective pi states, as required. The size analysis is the same as in the proof of
Proposition 3, and the automaton is of size O(log2 n · log logn).

Assume we have an RW-automaton that accepts this language, and consider the word
0ω ∈ Ln. Again, by the pigeonhole principle, the threads will, during this run, indefinitely
traverse cycles within their respective transition systems. Clearly, event 1 has to be requested
infinitely often throughout the run, in order to allow all the words of Ln to be accepted.
Therefore, in at least one of the threads’ cycles, there will be a state in which 1 is requested.
Denote the length of that cycle by α.

In the RW model, threads cannot block events. Thus, every time 1 is requested it may
be triggered. Since there cannot exist two words in the language that have 1s in indices
that are less than N steps apart, it follows that α ≥ N > n. Thus, the total size of the
RW-automaton is at least n.

4 On the Succinctness of Idioms for Concurrent Programming: Supplementary Material

F A Rigorous Comparison between RBRBRB, WBWBWB and RWRWRW

I Proposition I. RB →· WB and WB p→ RB

Proof. First, observe that the proof of Proposition 6, showing that RWB →· WB, used an
RWB-automaton that did not utilize the waiting idiom; hence, the same proof applies here.

For the other direction, note that any WB-automaton can be trivially translated into an
RB-automaton. In WB, a thread can be regarded as constantly requesting all events, and
waiting for only some of them. Such a thread can be converted into an equivalent thread in
the RB model: it continues to request all events, and reacts (changes state) only to events
for which the original thread waited. The resulting automaton accepts the same language
as the original automaton, and has the same size. J

In light of Proposition I, Proposition 7 is particularly surprising. It shows that although
theWB model is a weaker than theRB model, their combination affords greater succinctness
than either of them affords separately.

I Proposition II. RW →· WB and WB →· RW

Proof. For the first direction: The proof of Proposition 6, showing that RWB →· WB, used
an RWB-automaton that did not utilize the blocking idiom; hence, the same proof applies
here.

For the other direction, we use the proof of Proposition 8, showing that RWB →· RW.
The original proof was based on an automaton in which all threads requested all the events
at every state, except those that they blocked. Hence, moving them to theWB model would
produce the same language. J

I Proposition III. RB →· RW and RW →· RB

Proof. For the first direction: The proof of Proposition 8, showing that RWB →· RW,
used an RWB-automaton that did not wait for any events (i.e., the state-changes of each
thread were caused solely by triggering events that the thread itself had requested). Hence,
the same proof applies here.

We now prove that RW →· RB. Let n ∈ N, and let k ∈ N be the smallest number such

that the first k prime numbers p1, . . . , pk satisfy
∏k

i=1 pi > n. Define the family of languages
Ln = {`1`2 . . .} by:

`j =
{

0 or 1 ; ∃i such that pi | j
0 ; otherwise

In the RW model, this language can be accepted by an automaton with k threads,
T1, . . . , Tk. Thread Ti corresponds to prime pi, and is given by:

1 2
0, 1 0, 1

· · · pi

0, 1

0, 1

R={0},B=∅ R={0},B=∅ R={0, 1},B=∅

David Harel, Guy Katz, Robby Lampert, Assaf Marron, and Gera Weiss 5

Here, in every state the thread requests 0, and in state pi (and only in that state) it also
requests 1. Observe that 0 is always requested, and that 1 is requested if and only if the
index is divisible by one of the primes. In the RW model there is no blocking, and so
requested events can always be triggered — generating the desired language. As in previous
proofs, the size of the automaton is O(log2 n · log logn).

Now, observe what happens in the RB model. Suppose towards contradiction that an
RB-automaton accepts the language Ln, and that all its threads have less than n states.
Denote N =

∏k
i=1 pi. We will show that there exists a sequence of N consecutive integers,

M,M + 1, . . . ,M +N − 1, such that for every M ≤ i ≤M +N − 1, there exists a run of the
automaton in which 1 is triggered at index i. This will form a contradiction to the definition
of Ln, proving the claim. The rest of the proof shows how to construct these runs.

Observe the RB-automaton as it reads the finite sequence 0n. By the pigeonhole prin-
ciple, this sequence causes all threads to traverse cycles where all the edges are labeled 0.
(0-cycles). Note that this is true regardless of the starting configuration of the automaton
— i.e., at any point during the run, reading a 0n sequence causes all threads to traverse
0-cycles.

We begin with the following observation regarding 0-cycles:

I Observation 1. When all threads are traversing 0-cycles, 1 cannot be blocked in any of
the cycles’ states.

Proof. Observe some thread Tj and the 0-cycle it is traversing. Let α denote the length
of that cycle. Since Tj has less than n states, and

∏k
i=1 pi > n, it follows that there exists

some i such that α and pi are coprime. Suppose the remainder of the input word is just an
infinite sequence of zeroes, 0ω. By the Chinese remainder theorem, if 1 was blocked in any
of the states of the 0-cycle, it would eventually get blocked at an index divisible by pi —
and the automaton would reject a word it is supposed to accept, which is a contradiction.
Hence, 1 is never blocked in any of the 0-cycles. J

Clearly, when all threads are traversing their 0-cycles, 1 has to be requested infinitely
often. This means that at least one thread has, within its cycle, a state that requests 1. We
now make the following observation:

I Observation 2. Suppose all threads are traversing 0-cycles, and let T be one of the threads
that request 1 infinitely often. Then eventually 1 will be requested by another thread when
T is at a state in which it does not request 1.

Proof. Suppose towards contradiction that this is not the case; i.e. that T requests 1
whenever the index is divisible by one of the primes. Denote T ’s cycle length by α. Because
T has less than n states, there is some i such that α and pi are coprime. By the Chinese
remainder theorem, if the stream of 0s continues, every state in T ’s cycle will eventually be
reached when pi divides the run index. Hence, since T must request 1 whenever the index is
divisible by pi, every state in its cycle must request 1. Consequently, as 1 is never blocked
within the 0-cycles (Observation 1) there exists a finite index ` such that for every `′ > `

the word 0`′1 is a prefix of a word accepted by the automaton — which is a contradiction.
Hence, there must be a time in which 1 is requested, but T does not request it. J

We now use these two observations in order to construct the aforementioned N runs.
The first run we examine, denoted ρ0, is the one associated with input word 0ω. All

threads eventually traverse 0-cycles. Observe a fixed thread T that requests 1 infinitely

6 On the Succinctness of Idioms for Concurrent Programming: Supplementary Material

often. Let β denote the first index, after entering its cycle, in which T requests 1, and let α
denote its cycle length. Then T will request 1 at all indices β + α · t, for all t ∈ N.

The second run, ρ1, is constructed as follows. The input word starts with 0n, in order to
have all threads traverse 0-cycles. We now apply Observation 2: we “feed” the automaton
more 0s, until reaching an index in which 1 is requested by some thread and not by T .
We then trigger 1, and afterwards continue with 0ω. Since there is no waiting in the RB
model, and since T did not request the triggered 1, T is oblivious to the fact that 1 has
been triggered. For the remainder of the run, the thread T is delayed by one index position.
This implies that there is some constant T1, such that, in run ρ1, for every t > T1, thread T
requests 1s at indices β + α · t+ 1.

We continue iteratively. Run ρ2 is produced as follows. Up to the 1 triggered in ρ1 the
prefixes of the two runs are identical. We then feed more 0s, trigger 1 again at an index
divisible by a prime when T does not request 1, and continue with 0ω. This results in a
constant T2, such that in run ρ2 for every t > T2, thread T requests 1s at indices β+α · t+2.

The process is repeated N times, where each ρk is identical to ρk−1 up to the last 1, and
a 1 is then added where T does not request it. We get a series of constants TN−1 > TN−2 >

. . . > T2 > T1 > 0, such that for every t > Ti, there exists a run in which T requests 1 at
indices β + α · t+ i, and 1 is not blocked.

Set t = TN−1 + 1, so that it is larger than all the constants T1, . . . , TN−1 above. For
every 1 ≤ i ≤ N , there is some run of the automaton, in which thread T requests 1 at
index β + α · t + i, and 1 is not blocked at that index. This implies that there are N
consecutive integers that are each divisible by at least one of the primes p1, . . . , pn, which is
a contradiction. It follows that our initial assumption is false; i.e. that there is some thread
with at least n states, proving the gap in succinctness as needed. J

Note that the above proof that RW →· RB also constitutes a stronger proof for Proposi-

tion 7, i.e. that RWB →· RB.
From Propositions I, II and III we also obtain the following corollary:

I Corollary 1. WB →· DLA, RB →· DLA and RW →· DLA.

Proof. By using Propositions I, II and III, we get that for every M1 ∈ {WB,RB,RW}
there exists aM2 ∈ {WB,RB,RW} such thatM1 6=M2 and thatM1 →· M2. Further,
the DFA model is directly embeddable in modelM2 (see explanation in Appendix B). The
claim follows. J

References
1 D. Drusinsky and D. Harel. On the Power of Bounded Concurrency I: Finite Automata.

J. Assoc. Comput. Mach., 41:517–539, 1994.

	Proof of Proposition 1
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	A Rigorous Comparison between RB-.4, WB-.4 and RW-.4

