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Abstract. Deep neural networks (DNNs) are becoming widespread, and
can often outperform manually-created systems. However, these net-
works are typically opaque to humans, and may demonstrate undesir-
able behavior in corner cases that were not encountered previously. In
order to mitigate this risk, one approach calls for augmenting DNNs
with hand-crafted override rules. These override rules serve to prevent
the DNN from making certain decisions, when certain criteria are met.
Here, we build on this approach and propose to bring together DNNs and
the well-studied scenario-based modeling paradigm, by encoding over-
ride rules as simple and intuitive scenarios. We demonstrate that the
scenario-based paradigm can render override rules more comprehensible
to humans, while keeping them sufficiently powerful and expressive to
increase the overall safety of the model. We propose a method for apply-
ing scenario-based modeling to this new setting, and apply it to mul-
tiple DNN models. (This paper substantially extends the paper titled
“Guarded Deep Learning using Scenario-Based Modeling”, published in
Modelsward 2020 [47]. Most notably, it includes an additional case study,
extends the approach to recurrent neural networks, and discusses various
aspects of the proposed paradigm more thoroughly).

Keywords: Scenario-based modeling - Behavioral programming -
Machine learning - Deep neural networks

1 Introduction

Deep learning technology [20] is bringing about dramatic changes in the world,
by allowing engineers to use automated learning algorithms to create complex
models [21]. Deep learning algorithms can generalize examples of how a desired
system should behave into an artifact called a deep neural network (DNN). The
DNN is then capable of correctly handling new inputs—including inputs that it
had not encountered previously. In many cases, DNNs have been shown to sig-
nificantly outperform manually-crafted software. Notable examples include the
AlphaGO Go player [64], which defeated some of the world’s strongest human Go
players; systems for image recognition with DNN components that achieve super-
human precision [65]; and systems in various other domains, including recom-
mender systems [16], natural language processing [12], and bioinformatics [10].
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As DNNs are becoming more accurate and easier to create than manually-crafted
systems, their use is expected to grow and intensify in the coming decades.
Recently it has even been proposed to incorporate DNNs in highly critical sys-
tems, such as autonomous cars and unmanned aircraft [7,45].

Although DNNs have been demonstrating extraordinary performance, their
use poses new challenges [1]. A notable difficulty is the extreme opacity of DNNs:
because DNNs are generated by computers and not by humans, we can empir-
ically determine that they perform well, but fully understanding their inter-
nal decision making is highly difficult. As a result, it is nearly impossible for
humans to manually reason about the correctness of DNNs. For example, in
many state-of-the-art systems for image recognition, which appeared highly accu-
rate, it has been observed that slight input perturbations could cause DNN to
make problematic misclassifications [69]. This phenomenon raises serious con-
cerns about these networks’ reliability and safety. In recent years initial attempts
have been made to automatically reason about DNNs using formal methods
(e.g., [19,41,48,50,54,71]), but these approaches currently afford only limited
scalability. Moreover, DNN verification approaches typically focus on detecting
erroneous DNN behaviors, but do not specify how to correct such behaviors after
their discovery—which is also a difficult task.

As an illustrative example, consider the DeepRM system [57]. The goal of
DeepRM is to perform resource allocation: the system has certain available
resources (e.g., memory and CPUs), and also a queue of pending jobs. In each
time step, the system needs to either schedule a pending job and allocate some
of the available resources to this job; or perform a “pass” action, which means
that no new jobs are assigned resources while the system waits for executing
jobs to terminate and free up resources. DeepRM’s goal is to perform scheduling
in a way that maximizes job throughput. In order to achieve this goal, the sys-
tem maintains a model that contains information about resource allocation and
pending jobs, and uses a pre-trained DNN to choose which action to perform in
each step. When compared to manually created state-of-the-art solutions that
tackle the same problem, DeepRM has been shown to perform very well [57].

In spite of its overall satisfactory performance, it has been observed that
the DeepRM system may sometimes behave in undesirable ways. For example,
DeepRM'’s creators reported that its DNN controller might sometimes request
that a job z be allocated resources, even though no job z exists in the job
queue. In order to address this issue, override rule were added to DeepRM'’s
implementation [58]. An override rule is a small piece of code that can examine
the current state of the system, and then overrides the decision of the DNN
controller when certain conditions are detected. In the case described above, the
override rule will change the controller’s selection to “pass” whenever the DNN
requests to allocate resources to a job that is non-existent. There are additional
override rules included within the DeepRM implementation [58], and also in
implementations of other systems that use DNN controllers (e.g., the Pensieve
system [59]). Further, additional undesirable behaviors have been discovered
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in DeepRM since its release [52]; and removing these behaviors might require
augmenting the system with yet additional override rules.

These cases, and others like them, demonstrate the integral role that override
rules are beginning to play in DNN-based models. Because erroneous behaviors
may be discovered after such models are deployed, override rules may need to
be added, extended, refactored and enhanced at many points throughout the
system’s lifetime. In this paper, we argue that this situation calls for leveraging
suitable modeling techniques, in order to facilitate the creation and maintenance
of override rules—in a way that would increase the system’s overall reliability.

As part of this work we advocate using the scenario-based modeling (SBM)
framework [13,40] in creating override rules. In SBM, the individual behaviors
of a system are modeled as independent scenarios, which are then automatically
interwoven when the model is executed—in a way that produces cohesive sys-
tem behavior. SBM has been shown to afford multiple benefits in the design
and automated maintenance of systems. In addition, it is particularly suited for
incremental development, which is a desirable trait when dealing with override
rules. We propose here an approach and a method for applying SBM to systems
with DNN components, in a way that allows engineers to specify override rules as
SBM scenarios. We discuss the benefits that this approach affords (for example,
through the amenability of SBM to automated analysis [38]), and demonstrate
its applicability on three recently proposed systems. Although we focus here on
systems with DNN components, our proposed approach could be adjusted to
also accommodate systems with additional kinds of opaque components.

The rest of this paper is organized as follows. In Sect. 2 we provide the neces-
sary background on SBM, DNNs and override rules. Next, in Sect. 3 we present
our method for applying SBM to systems with DNN components. In Sect. 4
we describe how the proposed approach is applied to three case-studies. Next,
in Sect.5 we extend the proposed technique to recurrent neural networks. A
discussion of related work appears in Sect. 6, and we conclude in Sect. 7.

2 Background

2.1 Scenario-Based Modeling

Scenario-based modeling [40] is a modeling approach for creating complex reac-
tive systems. The basic notion at the core of this approach is that of a scenario
object: an object that describes a single behavior, either desirable or undesir-
able, of the system being modeled. Each scenario object is created separately
and independently of other scenarios, and does not directly interact with them;
instead, it only interacts with a global execution mechanism. This global execu-
tion mechanism is the component in charge of managing the execution of a set
of scenario objects, in a way that produces cohesive system behavior.

Several flavors of scenario-based modeling have been proposed, which differ
from each other primarily in the idioms that a scenario object uses to interact
with the execution mechanism, and thus to affect the overall system execution.



150 G. Katz

Our work here focuses on the most commonly used idioms, namely the request-
ing, waiting-for and blocking of events [40]. When the system is executed, each
scenario object may declare that it has reached a synchronization point, in which
the global execution mechanism must trigger an event. The object then specifies
three sets of events: events that it requests be triggered; events that it blocks
from being triggered; and events that it does not actively request, but should be
notified in case they are triggered by the global execution mechanism (waited-for
events). The execution mechanism waits for all the individual scenario objects
to synchronize (or, alternatively, just for a subset thereof—depending on the
semantics in use [27]). Then, it selects an event e that is requested and not
blocked for triggering, and informs any relevant scenario object that e has been
triggered.

An example of a small, scenario-based model appears in Fig. 1. This model
belongs to a system that controls the water level in a tank that has hot and
cold water taps. Each of the model’s scenario objects is depicted as a transition
system, whose nodes represent the (predetermined) synchronization points. The
ADDHOTWATER scenario object repeatedly waits for WATERLOW events, and
requests three times the event ADDHOT; and the ADDCOLDWATER scenario
object performs a symmetrical operation with cold water. When a model that
includes only the ADDHOTWATER and ADDCOLDWATER objects is executed,
three ADDHOT events and three ADDCOLD events may be triggered in any
order. If an additional requirement is added that the water temperature in the
tank be kept stable, the scenario object STABILITY may be used to enforce
the interleaving of ADDHOT and ADDCOLD events through the use of event
blocking. The execution trace that is generated by the resulting model appears
in the event log.

ADDHOTWATER  ADDCOLDWATER STABILITY EVENT LOG
\ ¥
wait for » wait for - + i
WATERLOW WATERLOW wait for e
¥ ¥ ADDHOT WATERLOW
request request while blocking ADDHOT
ADDHOT ADDCOLD ADDCOLD ADDCOLD
¥ ¥ ¥ ADDHOT
request request wait for ADDCOLD
ADDHOT ADDCOLD ADDCOLD ADDHOT
Y ¥ while blocking ADDCOLD
request request ADDHOT 200
AppHor | | AppCoLp |

Fig. 1. (From [37]) A scenario-based model of a system that controls the water level
in a tank with hot and cold water taps.

Scenario-based modeling has been implemented on top of a variety of pro-
gramming languages, such as JavsScript [4], Java [39], ScenarioTools [22] and
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C++ [30]. The SBM methodology has been successfully applied to model com-
plex systems, such as robotic controllers [25], cache coherence protocols [32]
and web-servers [30]. For simplicity, in the rest of this paper, we often describe
scenario objects in terms of transitions systems.

We take after the definitions given in [46], and formalize the SBM frame-
work as follows. A scenario object O over event set E is defined as tuple
0 = (Q, 9, qo, R, B), which is comprised of the following components:

— (@ is a set of states, each representing one of the predetermined synchroniza-
tion points;

— qo is the initial state;

~ R:Q — 2¥ and B : Q — 2F map states to the sets of events requested and
blocked at these states (respectively); and

~§:Q x E — 29 is a transition function, indicating how the object reacts
when an event is triggered.

Two scenario objects can be composed into a single, combined sce-
nario object, as follows. For objects O' = (Q!,d',¢}, R, B!) and O? =
(Q?, 6%, ¢3, R%, B?) over a common event set E, we define the composite sce-
nario object O || 0% as O || O? = (Q' x Q?%,4,(q,q3), R* U R?, Bt U B?),
where:

—{q',3*) € ({q*,¢%),e) if and only if ¢* € 6*(¢',e) and ¢* € §%(¢?, €); and
— The union of the labeling functions is defined in the natural way; e.g. e € (R'U

R*)({¢*,¢*)) if and only if e € R'(¢*) U R*(¢?), and e € (B' U B?)({(¢", ¢?)) if

and only if e € B!(¢') U B2(¢?).

The composition operator can be applied repeatedly to compose any number of
scenario objects into a single scenario object.

We define a behavioral model M to be a collection of scenario objects,
O',02?,...,0". The executions of M are defined to be the executions of the
composite scenario object, O = O! || O? || ... || O™. Each execution of M starts
from the initial state of O; and in each state g visited throughout the execu-
tion an enabled event e is chosen for triggering, if such an event exists (i.e.,
e € R(q) — B(q)). Then, the execution proceeds to a state ¢ € §(g, e), and so on.

Several extensions have been proposed for the basic variant of SBM described
above. In one such extension, which will be particularly useful in our context,
events are treated as typed variables [51]. For example, an event e can be declared
to be of type integer, allowing a scenario object to request e > 5. Another scenario
object might block e > 7. In this setting, the execution framework employs a
constraint solver, such as an SMT solver [5], in order to resolve the various
constraints and find a value assignment for e. In this case, the event e = 6
might be triggered. We omit here the formal definition of this extension, which
is straightforward; the interested reader is referred to [51].

2.2 Deep Neural Networks and Override Rules

Deep, feed-forward neural networks (DNNs) are directed, weighted graphs, in
which the nodes (also known as neurons) are organized into layers. The first
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and last layers are the input and output layers, respectively, and the multiple
remaining layers are referred to as hidden layers. Each neuron in the network
(except for input neurons) is connected to neurons from the preceding layer, and
each edge is assigned a predetermined weight value (an illustration appears in
Fig. 2). The selection of appropriate weight values is key; this is performed when
the DNN is created during the training phase, which goes beyond the scope of
this paper (for additional details, see [20]). In order to evaluate the DNN, values
are first assigned to its input neurons, and then propagated forward through the
network in an iterative process. In each iteration, values for another layer are
computed using the values assigned to neurons in its predecessor. Eventually,
the values of the output neurons are computed, and these values constitute the
outputs of the DNN which are returned to the user. It is typical for DNNs to
be used as controllers or classifiers, in which case the user usually cares about
which output neuron received the highest value—as this neuron represents the
action, or classification, that the DNN has selected among the possible options.

Input #1 —

Input #2 —

Input #3 —

Input #4 —

Input #5 —

Fig. 2. (From [47]) A fully connected DNN with 5 input nodes (in green), 5 output
nodes (in red), and 4 hidden layers containing a total of 36 hidden nodes (in blue).
(Color figure online)

For our purpose here, it is usually sufficient to treat DNNs as black boxes,
that transform an input into an output in some unknown way. However, for
completeness, we briefly describe the evaluation procedure of a DNN. After the
input neurons are assigned values, the value of each hidden node is computed
in two steps: first, we compute a weighted sum of the node values from the
previous layer, according to the predetermined edge weights. Then, we apply
a non-linear activation function to this weighted sum [20], and the output of
this activation function becomes the value of the node being computed. One
common activation function is the Rectified Linear Unit (ReLU) [61], computed
by ReLU(z) = max (0, ). Thus, when a neuron’s value is computed using the
ReLU activation function, it is taken to be the maximum between the linear
combination of node values from the previous layer and 0.

Figure 3 depicts a small DNN (with 7 neurons in total), which will serve as a
running example. This DNN acts as a controller: it takes two inputs, x; and xo,
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computes values for its three hidden neurons vy, vs and vz, and then computes
its output values y; and yo, which represent scores for two possible actions. The
hidden nodes v1,v2 and wvs all use the ReLU activation function. We slightly
abuse notation here, and use y; and y» to denote both the neurons and the
actions/classes represented by these neurons. The action that is assigned the
higher score is the one selected by the DNN. For example, the input assignment
x1 = 1,22 = 0 results in output values y; = 1,yo = 0, which mean that action
y1 is selected. In contrast, the input assignment x; = 0,22 = 1 leads to y; =
0,y2 = 3, and so action y, is selected.

Input layer Hidden layer Output layer

Fig. 3. (From [47]) A small neural network with a single hidden layer.

We formalize the notion of an override rule as a triple (P, @, «), where: (i)
P is a predicate over the inputs of the network; (ii) @ is a predicate over the
outputs of the network; and (iii) « is an override action. The semantics of an
override rule (P, @, a) is that whenever P and @ hold for a network’s evaluation,
then output action a should be the one selected, regardless of the actual output
of the DNN. For example, consider the following override rule

(1 > 0 A zg < 21, true, ya).

As we saw previously, for input values 1 = 1, z5 = 0 the DNN normally selects
y1; but, with this override rule, the selection would be changed instead to ys.
Note that this is so because this particular input satisfies the input condition,
i.e. it holds that z; > 0 and 2 < x1. Our choice of setting @ to true means that
this override rule only examines the DNN’s inputs, and does not depend on its
outputs. If we were to set @, e.g., to yo > 10, then the override rule would not
be triggered for x1 = 1,5 = 0. By adjusting P and @ as needed, this definition
is sufficient for expressing many common override rules, such as those in the
DeepRM example described in Sect. 1.

3 Modeling Override Scenarios

In the case of DeepRM, engineers have added override rules as unrestricted
Python code that resides within the code module that invokes the DNN con-
troller, and then processes its result [58]. Thus, while the DNN component itself



154 G. Katz

is clearly structured and well defined, the more recently added override rules
are expressed as arbitrary pieces of code. This coding convention could lead to
several undesirable issues: (i) if the number of override rules was to increase sig-
nificantly, they could become convoluted and difficult to comprehend, maintain
and extend; (ii) the semantics of existing override rules might, in time, become
unclear. For example, does a more recent override rule supersede a previous rule
if both can be applied? Is there a particular order in which override rules should
be checked? Can multiple rules interact with one another? etc; and (iii) the con-
ditions encoded within override rules might, in time, become more complex than
originally intended, thus hiding away some of the model’s logic where engineers
might not know to look for it.

Here, we advocate the modeling of override rules using SBM, in a way
that is designed to mitigate the aforementioned difficulties. SBM is particularly
geared towards incremental modeling, which is a likely scenario when DNNs are
involved: because DNNs are opaque, some of their undesirable behaviors are
likely to be detected only post-deployment, thus requiring that new override
rules be added. Moreover, SBM’s simple semantics serve to guarantee that all
interactions between the override rules are well defined. Finally, a substantial
amount of work has been carried out on automatically analyzing, verifying and
optimizing SBM models; and building on top of this work could prove useful
in simplifying override rules and in detecting conflicts between them, as their
numbers increase.

3.1 Modeling DNNs and Override Rules in SBM

We now propose a method for creating SBM models, in a way that combines
scenario objects with a DNN controller. The core idea is to use a dedicated
scenario object, Opyy, to abstractly represent the DNN within the scenario-
based model. This Opypy is a non-deterministic scenario that models the DNN
controller, and allows it to interact with other scenario objects which are present
in the system. For the sake of simplicity, for now we assume that the set of
possible inputs to the DNN, denoted I, is finite (we relax this limitation later).
Let O denote the set of possible actions from which the DNN chooses. We add
the following new events to our event set E: an input event e; for every i € I, and
an output event e, for every o € 0. We introduce the convention that our new
scenario object Opyy repeatedly waits for all input events e;, and then request
all output events e,. This behavior represents the black-box nature of the neural
network component, at least as far as the rest of the model is concerned: engineers
only know that after an input event is triggered, one of the output events will
be selected, without knowing which. However, when the model is deployed, the
execution infrastructure resolves the non-determinism of Opyn by invoking the
actual DNN and triggering precisely the output event that corresponds to the
DNN’s selection. For example, assuming there are only precisely two possible
inputs, e.g. i1 = (1,0) and is = (0,1), the DNN depicted in Fig.3 would be
represented by the Opyy scenario object that appears in Fig. 4.
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€y15 €y,

—

request ey, , ey, and
block all other events

ei”eiz/'

Fig. 4. (From [47]) A scenario Opnn for the neural network in Fig. 3. Events e;; and
ei, represent the inputs to the neural network, and events ey, and ey, represent its
outputs.

start —| wait for ¢; ,e;,

In order to render the resulting model compatible with the actual DNN, we
introduce a convention that states that other scenario objects in the system
may not block any input event e;. These scenario objects may, however, wait-for
these events. A single dedicated scenario object, called a sensor, is responsible
for requesting an input event when it is time for the DNN needs to be evaluated
(e.g., following some user action). By another convention that we introduce, no
scenario object besides Opyn may request any output event e,; however, other
scenario objects in the system may wait-for, or block, these events. During system
execution, it is possible for the neural network to assign the highest output
score to an event that is currently blocked by another scenario object. When
this happens, we resolve the non-determinism of Opyy by selecting another
output event, which represents the output with the next-to-highest score, etc.
If no output events are left unblocked, then the system is deadlocked—and the
execution terminates.

The motivation that underlies our definitions is to allow various scenario
objects to monitor the inputs and outputs of the neural network controller,
by waiting for the input and output events associated with them; and then to
interfere with the DNN’s recommendation by blocking certain output events.
This is precisely the use-case of a typical override rule. We note that a scenario
object may force the neural network to produce some specific output, by blocking
all other possible outputs; alternatively, it may interfere more subtly, by blocking
some events while allowing the DNN to choose among the remaining, unblocked
events.

Recall our earlier assumption that the sets I and O of possible DNN inputs
and outputs, respectively, are finite. In practice, this assumption might become a
limiting factor: for example, considering the override rule described in Sect. 2.2,
the triggering of the override rule was affected by the values assigned to x; and
9, and so it is desirable to express these exact values in our model. Of course,
in this case the number of possible value assignments is infinite. To overcome
this limitation we again turn to an extension of the SBM semantics [51], which
allows engineers to treat events as typed variables. We adjust our formulation
slightly: we allow scenario objects in the system to wait-for a single, composite
event, whose triggering indicates that values have been assigned to (all of) the
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neural network’s inputs or outputs. Scenario objects may then access the fields
of this composite event, which indicate the individual values assigned to each
input or output neuron, and act according to these values.

With this extension in place, the override rule from Sect. 2.2 can be expressed
as the scenario object in Fig.5. This scenario enforces the following override
rule: whenever z; > 0 and z2 < z71, output event y, (and not y;) should be
triggered. Here, the tuple (e,,,e.,) represents a single event, whose triggering
indicates that values have been assigned to the neural network’s inputs. This is
a composite event that contains two real values, x; and xo, that the override
scenario can access and use in order to determine its next state. Output event
ey, indicates, as before, that the override scenario forbids the neural network
from selecting y; as its output action.

x1 <0Vxy >x

5

start —>| wait for (ey,,ey,) | | block ey,

_—

x1 > 0AxX <xg

Fig. 5. (From [47]) A scenario object enforcing the override rule that whenever z1 > 0
and z2 < x1, output event y2 should be triggered.

3.2 Liveness Properties

Override rules are most often used to enforce safety properties. These proper-
ties state that “bad things never happen”. However, sometimes there is a need
to enforce also liveness properties, which state that “good things eventually
happen”. Specifically, this need can arise in the context of online reinforcement
learning [68], in which the DNN controller changes over time. In this context
we may wish to ensure, for example, that the DNN controller eventually tries
out new output actions. If these output actions prove beneficial, the online RL
mechanism will ensure that the neural network controller repeats them in the
future. Liveness properties are relevant also when there are fairness constraints;
for example, we may wish to ensure that in a resource management system, every
pending job is eventually scheduled.

An example in which we wish to enforce liveness properties appears in [52],
where the authors describe the Custard system: a congestion control system,
which uses a neural network controller. Custard monitors the conditions of a
computer network, and then select a bitrate for sending information across
this network—with the goal of minimizing congestion while maintaining high
throughput [43]. In [52], the authors examine Custard in order to determine
whether there exist cases in which the DNN controller chooses a sub-optimal
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sending rate, i.e. a sending rate that does not utilize all available bandwidth,
and never attempts to increase this bitrate. Clearly, such behavior constitutes a
liveness violation, which can be corrected using an override rule.

Using SBM, we can encode the fact that one (or multiple) DNN output
actions should eventually be blocked. Because blocking some actions forces the
DNN controller to pick a different action, it can be used to enforce a liveness
property. In practice, this blocking can be performed by having a scenario object
wait for a sequence of n consecutive rounds in which a particular output event
is triggered, and then block it in round n + 1. An example for n = 3 appears in
Fig. 6: the scenario therein looks for 3 consecutive DNN evaluations where event
yo is triggered, after which it blocks y2 once, forcing the neural network to select
another output action. An alternative approach is to have the override scenario
block a particular output event with a very low probability [37], thus eventually
blocking that event with probability 1.

wait for wait for wait for
start —|
eX] >exz eX] 7€x2 e)([ 7exz
€y, €y,
€y, * * *
€y,
wait for wait for wait for e
— )
ey €y1.y2 €y, €y,
1
€y,
block ey,, * wait for
wait for ey, ex 1

Fig. 6. (From [47]) A scenario object that enforces a liveness property for the network
from Fig. 4.

3.3 Automated Analysis

Various studies indicate that using scenario-based modeling may serve to facil-
itate automated formal analysis (e.g., [38]). More specifically, the simple syn-
chronization constructs employed by SBM scenario objects to communicate with
each other render tasks such as automated repair [46], compositional verifica-
tion [28] and model checking [49] simpler than they would be for less restricted
models. We argue that the amenability of SBM to formal analysis adds to its
attractiveness as a formalism for expressing override rules.

We illustrate this claim through one particular use case that involves dead-
lock freedom. As a DNN-based system is deployed and additional override rules
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are slowly added to it, potentially by different engineers, we run the risk that
a certain sequence of inputs to the DNN controller could cause a deadlock. A
simple illustrative example appears in Fig. 5: this figure depicts an override rule
that enforces that whenever x; > 0 and zo < z1, output yo should be selected.
Suppose now that at some later point in time, a different engineer is concerned
about the possibility that the DNN might always advise yo. This engineer then
creates a new override rule, depicted in Fig. 6, to the effect that after 3 consec-
utive yo events, a different event must be triggered. When run simultaneously,
these two override rules could produce a deadlock: for example, if the neural net-
work is given the inputs 21 = 2,22 = 1 three consecutive times, both override
rules would be triggered, causing output events e,, and e,, to be simultaneously
blocked.

The absence of such deadlocks can be guaranteed through the use of formal
verification. The verification process can be carried out, e.g., after the addition of
each new override rule, or on a periodic basis. Whenever a deadlock is detected,
the counter-example provided by the verification tool could help the modeler in
identifying and altering the conflicting override rules—after which verification
can be run again, in order to ensure that the system is now indeed deadlock free.
Clearly, additional system-specific properties, beyond deadlock freedom, could
also be formally verified.

4 Three Case-Studies

In order to evaluate our approach, we implemented it on top of the BPC frame-
work for scenario-based modeling in C++ [30] (other SBM frameworks could, of
course, be used instead). The BPC package allows engineers to leverage many of
the useful and expressive constructs of C++4, while enforcing that they adhere
to the SBM principles: i.e., each scenario is modeled using a separate object, and
inter-scenario interactions are performed strictly through the global execution
mechanism provided by BPC. Here, we used BPC to model override rules for the
DeepRM system for resource management [57], the Pensieve system for adaptive
bitrate selection [59], and the Custard system for congestion control [43].

4.1 Override Rules for DeepRM

The DeepRM system [57] (mentioned in Sect. 1) is a resource allocation system: it
assigns available resources to pending jobs, in order to maximize job throughput.
In order to evaluate our approach we implemented an override rule that prevents
DeepRM’s DNN controller from attempting to assign resources to non-existent
jobs, which is undesirable system behavior that occurs in practice [58].

The BPC code for an override rule that addresses this situation, implemented
as a scenario object, appears in Fig. 7. We assume here that the queue of pending
jobs is of length 5, and we use yg, y1, . . ., Y5 to denote the DNN’s output actions.
Output actions yi,...,ys indicate that the job in slot i of the queue should
be selected for resource allocation, whereas the special action yq is the “pass”
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action—which indicates that no job should be allocated resources at this time.
We denote by x an event that indicates that the neural network needs to be
evaluated on certain input values, which are available as parameters of x. The
job queue’s state is included in the input to the DNN controller. Specifically, we
use x[1],...,z[5] to denote Boolean values that indicate whether or not there is
currently a pending job in the corresponding slot of the queue.

Our override scenario object is implemented as a single class, which inherits
from BPC’s special BThread class. The override scenario object uses the spe-
cial bSync() method in order to indicate that it has reached a synchronization
point, and wishes to synchronize with the other scenarios in the model (including
Opn N, the special scenario object that models the DNN controller). The bSync()
method takes as input three Event vectors—the first with the set of requested
events, the second with the set of waited-for events, and the third with the set
of blocked events. The bSync() call then suspends the object’s execution, until
the BPC execution mechanism has selected and triggered an event. Then, if the
event that was triggered was requested or waited-for by a scenario object, that
scenario is woken up and resumes its execution. In that case, the scenario object
can also retrieve the triggered event using the lastEvent() method.

Our override scenario object runs in an infinite loop. In each iteration it
synchronizes and waits for the input event x to be triggered; and once that
triggering has occurred, the scenario examines = to determine which slots of the
job queue are occupied. Finally, it synchronizes once again, in order to block
event y; for any unoccupied slots. Note that this scenario object can never cause
a deadlock, because it never blocks the special “pass” event, yq.

4.2 Override Rules for Pensieve

In online video streaming, a client wishes to download a video from a server
and play it. The video is typically available in multiple levels of quality, known
as definitions, that the client can choose from. The typical client will attempt
to choose the highest definition that is reasonable for the current bandwidth
conditions—i.e., the highest definition for which the video can be viewed with-
out pauses for rebuffering, which are known to be detrimental to the viewer’s
experience. Further, bandwidth conditions might change while the video is being
downloaded and played (e.g., if additional users start using the same physical
link), in which case the choice of definition might need to be adjusted. An algo-
rithm for selecting the definition rates in which a video is to be downloaded
is called an adaptive bitrate (ABR) algorithm. Recently, DNN-based ABR algo-
rithms have been shown to perform exceedingly well when compared to manually
designed solutions [59].

The Pensieve system [59] is one such DNN-based ABR system. The system’s
goal is straightforward: given previous bitrate choices and statistics about how
successful they were (i.e., how quickly parts of the video, called chunks, have
previously been downloaded), the system selects the bitrate in which the next
chunk is to be downloaded. Internally, Pensieve employs a DNN controller that
takes as input: (i) a list of past bitrate selections; (ii) a list of past throughput
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class EnsureJobExists : public BThread {
void entryPoint () {
Vector<Event> emptySet = {};
Vector<Event> allInputs = { x };
Vector<Event> allOutputs = { Y0,---,Y5 };

while ( true ) {
bSync( emptySet, allInputs, emptySet );
lastInput = lastEvent();
Vector<Event> blocked = {};

for (dint i = 1; i <=5; ++i ) {
if ( !lastInput[i] )
blocked.append( y; )

bSync( emptySet, allOutputs, blocked )

Fig. 7. (From [47]) A scenario object for preventing the DeepRM DNN controller from
assigning resources to non-existing jobs.

rates (indicating how quickly past chunks were downloaded); (iii) the number
of remaining video chunks to be downloaded; and (iv) the current buffer size,
which indicates how many seconds of already-downloaded content are available
for playing, before rebuffering occurs. The DNN controller has a fixed number
of outputs (6, in our case study), each corresponding to a possible definition in
which the next chunk can be downloaded; and the definition associated with the
output to which the DNN assigns the highest score is the one selected for the
next video chunk.

Despite Pensieve’s overall excellent performance [59], formal verification of
this system has recently revealed many corner cases in which it makes undesirable
bitrate selections [52]. For example, consider the following properties:

— When there is a single video chunk left to download, the client’s buffer is
quite full, and all recently downloaded video chunks were downloaded in the
highest definition available (HD), the last chunk should be downloaded in
HD.

— When there is a single video chunk left to download, the client’s buffer is
nearly empty, and all recently downloaded video chunks were downloaded in
the lowest definition available (SD), the last chunk should be downloaded in
SD.

Both properties describe extreme cases, in which the correct choice of bitrate is
clear: either conditions are excellent and so the best definition should be used,
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or conditions are so poor that the worst definition should be used. However,
even for these simple properties, dozens of violations (i.e., cases where the DNN
selects some other definition) have been discovered [52].

As part of our evaluation, we use scenario-based override rules to enforce
correct system behavior in both of these cases. To this end, we introduce scenario
objects that wait until there are n chunks left in the video; and then monitor
whether they are all downloaded in a fixed definition d. Then, if all chunks
except for the very last one have been downloaded in definition d, the blocking
idiom is applied to enforce that definition d is selected also for the last chunk.
See Fig.8 for an illustration. Of course, this override rule may be enhanced to
include additional criteria (e.g., constraints on the client’s buffer size) before the
blocking is applied.

4.3 Override Rules for Custard

As we briefly mentioned in Sect. 3.2, Custard is a DNN-based system for con-
gestion control. Custard’s DNN controller receives as input various readings
about the current, and previous, state of the computer network (e.g., loss rates,
throughputs and latency readings). Then, it selects the next sending bit rate.
Custard is a reactive system, in the sense that it was designed to run contin-
uously and use the results of its past decisions (as they are reflected in past
network readings) in order to make its next choice of bitrate.

Due to the opacity of Custard’s DNN controller, one concern is that it might
make selections that are overly conservative. Specifically, we typically wish to
avoid a situation in which the state of the computer network is completely steady,
and yet Custard’s DNN controller never tries to increase the sending bitrate—
and consequently never finds out whether some of the available bandwidth is
currently unused.

Figure 9 depicts a scenario object that prevents the situation described above.
This scenario attempts to identify situations in which the DNN’s inputs and
outputs have been completely steady for the last n = 10 rounds. Once this
situation is detected, the scenario object blocks the previous output action from
being triggered again, forcing the DNN to try an alternative. Note that event x
represents here an input assignment (which is comprised of multiple input values)
on which the neural network has been evaluated; whereas event y represents
the DNN’s output selection. For simplicity, we do not examine here the actual
values of z, and instead only look for steady, repeating assignments (however, in
practice we may wish to apply this override rule only if the computer network’s
conditions are both steady and good, which serves to indicate that there may be
additional, unused bandwidth).

5 Recurrent Neural Networks

5.1 Memory Units

So far, we have focused on models that incorporate feed-forward neural net-
works. These networks, described in Sect. 2.2, are designed so that each of their
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const int n = 10;

class EnsureLastChunkDefinition : public BThread {
void entryPoint() {
Vector<Event> empty;
Vector<Event> allInputs = { x };
Vector<Event> allOutputs = { y };

Event lastInput;
Event lastOutput;

bool steadyState = false;
int d;

while ( true ) {
bSync( empty, allInputs, empty );
lastInput = lastEvent();

if ( lastInput.remainingChunks > n )
continue;

else if ( lastInput.remainingChunks == n ) {
steadyState = true;
bSync( empty, allOutputs, empty );
lastOutput = lastOutput();
d = lastOutput.definition;
continue;

else if ( lastInput.remainingChunks == 1 ) {
if ( steadyState ) {
bSync( empty, empty, allOutputs.erase( d ) );
steadyState = false;

}

continue;

}

else {
bSync( empty, allOutputs, empty );
lastOutput = lastOutput();
if ( steadyState && lastOutput.definition != d )
steadyState = false;

Fig. 8. A scenario object for forcing the Pensieve DNN to maintain the same definition
for the last chunk.
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const int n = 10;

class PreventSteadyState : public BThread {
void entryPoint () {
Vector<Event> empty;
Vector<Event> allInputs = { x };
Vector<Event> allOutputs = { y };

Event lastInput;
Event lastOutput;

while ( true ) {
bSync( empty, allInputs, empty );
lastInput = lastEvent();

bSync( empty, allOutputs, empty );
lastOutput = lastOutput();

bool steadyState = true;
int i = 1;
while ( i < n && steadyState ) {
bSync( empty, allInputs, empty );
if ( lastInput != lastEvent() )
steadyState = false;

bSync( empty, allOutputs, empty );
if ( lastOutput != lastEvent() )
steadyState = false;

++1;

if ( steadyState ) {
bSync( empty, allInputs, empty );
bSync( empty, allOutputs, lastOuptut );

}
}
}
}

Fig. 9. (From [47]) A scenario object for enforcing the Custard DNN to choose a
different action if the state has been steady for n = 10 iterations.

evaluations is independent of previous evaluations. This is suitable, for exam-
ple, in image recognition: each image is classified independently, regardless of
how images encountered previously were classified. However, this kind of neural
network might be ill-suited for certain tasks that require context. Consider, for
example, a DNN designed to interpret words that form a sentence, which are
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passed to the DNN one word at a time. As the DNN reads a word, it must
consider the previous words in the sentence in order to properly interpret its
meaning.

To address this need, the machine learning community has designed a variant
of deep neural networks called recurrent neural networks (RNNs) [20]. Much like
its feed-forward counterpart, an RNN is evaluated each time on a set of input
values and produces a set of output values. However, it also maintains, using
internal memory units, some aggregated information from the previous evalua-
tions. This stored information affects the future evaluations of the RNN. RNNs
have proven remarkably useful for a variety of tasks that involve context, such as
machine translation [15], health applications [56], and speaker recognition [70].

We demonstrate the concept of an RNN through a simple example, depicted
in Fig. 10. This network has two input nodes, 1 and xs, two output nodes, y;
and y-, and a single hidden node v. The new construct is the memory unit,
0, which is connected to v. When the network is evaluated on input (z1,xs), it
computes the output (y1, y2) using weighted sums and activation functions, same
as before. However, the value stored in the memory unit also participates in this
computation; and once the evaluation is performed, the value computed for node
v is stored in ¥, to be used in the next evaluation. By convention, we assume
that the memory unit is first initialized to 0. Suppose the network is initially
evaluated on input (x1,z2) = (1,0); for this input, v = 1 and (y1,y2) = (1,2).
The value v = 1 will now be stored in v for the next evaluation. Next, if the
network is again evaluated on (1, 0), the new value computed for v will be 2, and
now this value will be stored in 9; and the network’s outputs will be (2,4). Tt is
straightforward to show that the memory unit in this particular RNNs computes
the sum of the ReLUs of all previously received x; values.

Y

X2 y2

Fig. 10. A recurrent neural network.

5.2 Undesirable Behaviors in RINNs

Much like with feed-forward neural networks, various models that incorporate
RNN components have been shown to demonstrate undesirable behavior. One
common example is that of adversarial inputs—inputs that the network classi-
fies correctly, but which, when they are slightly perturbed in subtle ways, cause
the network to make severe misclassification errors [69]. Adversarial inputs are
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mostly known to plague feed-forward neural networks that perform image recog-
nition tasks [55,69], but recently they have also been shown to exist in RNNs; for
example, slight perturbations to audio files, which are inaudible to the human
ear, were shown to cause RNN misclassification [11].

These errors, and others, indicate that RNN-based models suffer from the
same intrinsic drawbacks of feed-forward networks: although they perform well
in general, they may behave in undesirable ways in some cases; and because they
are completely opaque to the human eye, manually maintaining, extending and
correcting them is impractical. The verification community has also observed
this and has begun devising techniques for RNN verification [42,74]. However,
just like in the feed-forward case, these techniques can detect a bug but do not
provide a framework for removing bugs after they are detected. It is thus highly
likely that as RNN-based models continue to be deployed in various systems,
override rules will need to be added to these models.

5.3 Override Rules for RNNNs

We extend our previous notion of an override rule to the RNN setting, as follows.
We define an RNN override rule as the quadruple (P, M, @, «), where: (i) P is a
predicate over the inputs of the network; (ii) M is a predicate over the memory
units of the network; (iii) @ is a predicate over the outputs of the network; and
(iv) « is an override action. The definitions of P,  and « are as before, but we
now include a fourth element, the predicate M, which can render the activation
of the override rule conditional on the state of the RNN’s memory units. The
semantics of an override rule (P, M, @, «) is that whenever P, M and @ hold
for a network’s evaluation, then output action « should be the one selected,
regardless of the actual output of the RNN.

We demonstrate with an example, Consider again the RNN depicted in
Fig. 10, and the following override rule:

(x1 > 0,0 > 0,true, y).

As we saw previously, for input values z; = 1,22 = 0 the RNN outputs y; =
1,92 = 2, and so ys is selected. At this point, the override rule is not triggered:
although ;1 > 0, the predicate M = (¥ > 0) does not initially hold, because
v = 0. If the network is again evaluated on ;1 = 1,z5 = 0, it would normally
compute y; = 2,y2 = 4 and select ys; however, now v = 1, the predicate M is
satisfied, and so the override rule is triggered and the network is forced to select
y1 instead.

5.4 Modeling RNN Override Rules in SBM

Similarly to the feed-forward case, we propose SBM as an attractive paradigm
for modeling RNN override rules. We achieve this by again representing the RNN
using a dedicated, non-deterministic scenario, Ogryn. This scenario repeatedly
waits for a composite event that represents an assignment to the RNN’s inputs
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and also to its memory units; and then it requests all possible composite events,
each of which represents a possible evaluation of the RNN’s outputs. The inten-
tion is, once more, to simulate the black-box nature of the RNN: we do not
allow the rest of the model to affect (i.e., block) the values of the RNN’s inputs
or memory units, but we allow it to observe (wait for) these values and affect
the RNN’s output values. When the system is deployed, the non-determinism of
Ogrnn is resolved using the actual input values that the RNN is given, and the
actual values stored in its memory units at that time.

Using this formulation, override rules for the RNN case can again be
expressed as scenario objects. We demonstrate this for the override rule dis-
cussed before, namely

(1 > 0,0 > 0,true,y1),

whose corresponding override scenario is depicted in Fig.11. The tuple
(€4, €x,,€5) TEpresents a single composite event, whose triggering indicates that
values have been assigned to the neural network’s inputs and memory unit. This
composite event contains three real values, x1, zo and 9, that the override sce-
nario can access and use in order to determine its next state. As before, the
blocking of output event e,, indicates that the override scenario forbids the
selection of yo as the RNN’s output action.

€y,
x <0OVF<0

start —>| wait for (ey,,ey,,ep) | | block ey,

_—

x1 >0AV>0

Fig.11. An override rule for an RNN.

The same desirable properties that we discussed for the feed-forward case
carry over to RNNs; i.e., (i) RNN override scenario can be used to encode both
safety and liveness override rules; and (ii) automated SBM analysis can be used
to ensure the consistency of override rules.

6 Related Work

Override rules, which are sometimes also referred to as shields, have been applied
ad-hoc in various DNN-enabled systems. Some examples, which we have already
mentioned, include DeepRM [57] and Pensieve [59]. Override rules, and related
forms of runtime monitors, are found also in drones [14], control systems for
robots [62], and in various other formalisms which are not directed particularly at
deep learning [18,26,44,63,73]. In recent years, the formal methods community
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has started studying override rules for systems with DNNs: for example, recent
papers have proposed techniques for synthesizing override rules that affect the
controller in minimal ways [3,72].

SBM and its various aspects, especially those pertaining to the formal analy-
sis of scenario-based models, have been thoroughly studied over the last decade.
These aspects include the automatic verification [31], repair [36], optimiza-
tion [24,29,35,66,67] and synthesis [23] of scenario-based models. SBM has also
played a key role in the Wise Computing initiative [33,34,60], which seeks to
make the computer a proactive team member, capable of developing complex
models hand-in-hand with human engineers.

In this work we focused on SBM as a possible formalism for expressing over-
ride rules. There exists other, related modeling schemes, which could also be used
for similar purposes. For example, the publish-subscribe framework for parallel
composition shares many traits with SBM [17], and could be applied in a sim-
ilar way. Aspect oriented programming [53] is another formalism, which allows
developers to specify and execute cross-cutting program instructions on top of
a base application. Both publish-subscribe and aspect oriented programming,
however, do not directly support the blocking idiom, which appears quite useful
for specifying override rules. Other behavior- and scenario-based models, such
as LEGO Mindstorms leJOS [2], Branicky’s behavioral programming [8], and
Brooks’s subsumption architecture [9], all suggest constructing systems from
individual behaviors. One advantage that the scenario-based approach affords
compared to these formalisms is that it is language-independent, and has been
implemented on top of multiple platforms. It can thus extend, in a variety of
ways, the arbitration and coordination mechanisms in use by these architectures.

Another related formalism is the BIP formalism (behavior, interaction, pri-
ority) [6]. BIP uses the notion of glue for assembling components into cohesive
systems. The goals that BIP pursues are similar to those of SBM, although BIP
focuses mostly on correct-by-construction systems. SBM, in contrast, is more
geared towards executing intuitively-specified scenarios, and resolving the con-
straints that they pose at run-time.

7 Discussion and Next Steps

As the use of DNNs is becoming widespread in multiple and varied systems,
ensuring the safety of these systems is quickly turning into an urgent need—
specifically by using override rules. We argue here that by using modeling
schemes that model together the DNN and its override rules, progress can be
made towards this important goal. We propose to use a scenario-based model-
ing approach for this purpose, explain how a basic scenario-based scheme can
be adjusted to incorporate DNNs, and demonstrate the approach on multiple,
recently-proposed DNNs.

Moving forward, we believe that applying a more structured methodology for
modeling override rules raises the following key question: as the number of over-
ride rules increases and as they become more complex, could they fully capture
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the DNN’s logic and eventually replace it? We believe that the answer is nega-
tive, because override rules typically forbid some specified behavior, but rely on
the DNN controller to prioritize among the remaining possible options. We thus
believe that a more realistic approach is to combine a DNN controller together
with appropriately crafted override rules, in a way that allows engineers to main-
tain, enhance and extend both components throughout the system’s lifetime.

We consider our work to date a first step, which we intend to extend. Specif-
ically, we plan to work on (i) leveraging the other advantages of scenario-based
modeling, specifically its amenability to automated analysis and verification, in
proving the overall correctness of DNN-based models; and (ii) customizing the
idioms of scenario-based modeling, or similar techniques, to better suit integra-
tion with deep neural networks, and guard them in more subtle ways. In the
longer run, we envision that work in this direction will eventually lead to the
creation of DNN-enabled systems that are more robust, reliable, and easier to
maintain and extend.
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