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Abstract. Deep neural networks are revolutionizing the way complex
systems are designed. Consequently, there is a pressing need for tools and
techniques for network analysis and certification. To help in addressing
that need, we present Marabou, a framework for verifying deep neural
networks. Marabou is an SMT-based tool that can answer queries about
a network’s properties by transforming these queries into constraint sat-
isfaction problems. It can accommodate networks with different activa-
tion functions and topologies, and it performs high-level reasoning on the
network that can curtail the search space and improve performance. It
also supports parallel execution to further enhance scalability. Marabou
accepts multiple input formats, including protocol buffer files generated
by the popular TensorFlow framework for neural networks. We describe
the system architecture and main components, evaluate the technique
and discuss ongoing work.

1 Introduction

Recent years have brought about a major change in the way complex systems are
being developed. Instead of spending long hours hand-crafting complex software,
many engineers now opt to use deep neural networks (DNNs) [6,19]. DNNs are
machine learning models, created by training algorithms that generalize from a
finite set of examples to previously unseen inputs. Their performance can often
surpass that of manually created software as demonstrated in fields such as image
classification [16], speech recognition [8], and game playing [21].

Despite their overall success, the opacity of DNNs is a cause for concern,
and there is an urgent need for certification procedures that can provide rig-
orous guarantees about network behavior. The formal methods community has
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taken initial steps in this direction, by developing algorithms and tools for neural
network verification [5,9,10,12,18,20,23,24]. A DNN verification query consists
of two parts: (i) a neural network, and (ii) a property to be checked; and its
result is either a formal guarantee that the network satisfies the property, or a
concrete input for which the property is violated (a counter-example). A verifica-
tion query can encode the fact, e.g., that a network is robust to small adversarial
perturbations in its input [22].

A neural network is comprised of neurons, organized in layers. The network
is evaluated by assigning values to the neurons in the input layer, and then using
these values to iteratively compute the assignments of neurons in each succeeding
layer. Finally, the values of neurons in the last layer are computed, and this is the
network’s output. A neuron’s assignment is determined by computing a weighted
sum of the assignments of neurons from the preceding layer, and then applying
to the result a non-linear activation function, such as the Rectified Linear Unit
(ReLU) function, ReLU(x) = max (0, x). Thus, a network can be regarded as a
set of linear constraints (the weighted sums), and a set of non-linear constraints
(the activation functions). In addition to a neural network, a verification query
includes a property to be checked, which is given in the form of linear or non-
linear constraints on the network’s inputs and outputs. The verification problem
thus reduces to finding an assignment of neuron values that satisfies all the
constraints simultaneously, or determining that no such assignment exists.

This paper presents a new tool for DNN verification and analysis, called
Marabou. The Marabou project builds upon our previous work on the Reluplex
project [2,7,12,13,15,17], which focused on applying SMT-based techniques to
the verification of DNNs. Marabou follows the Reluplex spirit in that it applies an
SMT-based, lazy search technique: it iteratively searches for an assignment that
satisfies all given constraints, but treats the non-linear constraints lazily in the
hope that many of them will prove irrelevant to the property under consideration,
and will not need to be addressed at all. In addition to search, Marabou performs
deduction aimed at learning new facts about the non-linear constraints in order
to simplify them.

The Marabou framework is a significant improvement over its predecessor,
Reluplex. Specifically, it includes the following enhancements and modifications:

– Native support for fully connected and convolutional DNNs with arbitrary
piecewise-linear activation functions. This extends the Reluplex algorithm,
which was originally designed to support only ReLU activation functions.

– Built-in support for a divide-and-conquer solving mode, in which the solver is
run with an initial (small) timeout. If the timeout is reached, the solver par-
titions its input query into simpler sub-queries, increases the timeout value,
and repeats the process on each sub-query. This mode naturally lends itself
to parallel execution by running sub-queries on separate nodes; however, it
can yield significant speed-ups even when used with a single node.

– A complete simplex-based linear programming core that replaces the exter-
nal solver (GLPK) that was previously used in Reluplex. The new simplex
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core was tailored for a smooth integration with the Marabou framework and
eliminates much of the overhead in Reluplex due to the use of GLPK.

– Multiple interfaces for feeding queries into the solver. A query’s neural net-
work can be provided in a textual format or as a protocol buffer (protobuf )
file containing a TensorFlow model; and the property can be either compiled
into the solver, provided in Python, or stored in a textual format. We expect
these interfaces will simplify usage of the tool for many users.

– Support for network-level reasoning and deduction. The earlier Reluplex tool
performed deductions at the level of single constraints, ignoring the input
network’s topology. In Marabou, we retain this functionality but also include
support for reasoning based on the network topology, such as symbolic bound
tightening [23]. This allows for efficient curtailment of the search space.

Marabou is available online [14] under the permissive modified BSD license.
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Fig. 1. The main components of Marabou.

2 Design of Marabou

Marabou regards each neuron in the network as a variable and searches for a
variable assignment that simultaneously satisfies the query’s linear constraints
and non-linear constraints. At any given point, Marabou maintains the current
variable assignment, lower and upper bounds for every variable, and the set of
current constraints. In each iteration, it then changes the variable assignment
in order to (1) correct a violated linear constraint, or (2) correct a violated
non-linear constraint.

The Marabou verification procedure is sound and complete, i.e. the afore-
mentioned loop eventually terminates. This can be shown via a straightforward
extension of the soundness and completeness proof for Reluplex [12]. However,
in order to guarantee termination, Marabou only supports activation functions
that are piecewise-linear. The tool already has built-in support for the ReLU
function and the Max function max (x1, . . . , xn), and it is modular in the sense
that additional piecewise-linear functions can be added easily.
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Another important aspect of Marabou’s verification strategy is deduction—
specifically, the derivation of tighter lower and upper variable bounds. The moti-
vation is that such bounds may transform piecewise-linear constraints into lin-
ear constraints, by restricting them to one of their linear segments. To achieve
this, Marabou repeatedly examines linear and non-linear constraints, and also
performs network-level reasoning, with the goal of discovering tighter variable
bounds.

Next, we describe Marabou’s main components (see also Fig. 1).

2.1 Simplex Core (Tableau and BasisFactorization Classes)

The simplex core is the part of the system responsible for making the variable
assignment satisfy the linear constraints. It does so by implementing a variant
of the simplex algorithm [3]. In each iteration, it changes the assignment of some
variable x, and consequently the assignment of any variable y that is connected
to x by a linear equation. Selecting x and determining its new assignment is
performed using standard algorithms—specifically, the revised simplex method
in which the various linear constraints are kept in implicit matrix form, and the
steepest-edge and Harris’ ratio test strategies for variable selection.

Creating an efficient simplex solver is complicated. In Reluplex, we delegated
the linear constraints to an external solver, GLPK. Our motivation for imple-
menting a new custom solver in Marabou was twofold: first, we observed in
Reluplex that the repeated translation of queries into GLPK and extraction of
results from GLPK was a limiting factor on performance; and second, a black
box simplex solver did not afford the flexibility we needed in the context of DNN
verification. For example, in a standard simplex solver, variable assignments are
typically pressed against their upper or lower bounds, whereas in the context of
a DNN, other assignments might be needed to satisfy the non-linear constraints.
Another example is the deduction capability, which is crucial for efficiently ver-
ifying a DNN and whose effectiveness might depend on the internal state of the
simplex solver.

2.2 Piecewise-Linear Constraints (PiecewiseLinearConstraint
Class)

Throughout its execution, Marabou maintains a set of piecewise-linear con-
straints that represent the DNN’s non-linear functions. In iterations devoted to
satisfying these constraints, Marabou looks for any constraints that are not sat-
isfied by the current assignment. If such a constraint is found, Marabou changes
the assignment in a way that makes that constraint satisfied. Alternatively, in
order to guarantee eventual termination, if Marabou detects that a certain con-
straint is repeatedly not satisfied, it may perform a case-split on that constraint:
a process in which the piecewise-linear constraint ϕ is replaced by an equivalent
disjunction of linear constraints c1 ∨ . . . ∨ cn. Marabou considers these disjuncts
one at a time and checks for satisfiability. If the problem is satisfiable when ϕ is
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replaced by some ci, then the original problem is also satisfiable; otherwise, the
original problem is unsatisfiable.

In our implementation, piecewise-linear constraints are represented by
objects of classes that inherit from the PiecewiseLinearConstraint abstract class.
Currently the two supported instances are ReLU and Max, but the design is mod-
ular in the sense that new constraint types can easily be added. PiecewiseLin-
earConstraint defines the interface methods that each supported piecewise-linear
constraint needs to implement. Some of the key interface methods are:

– satisfied(): the constraint object needs to answer whether or not it is satisfied
given the current assignment. For example, for a constraint y = ReLU(x) and
assignment x = y = 3, satisfied() would return true; whereas for assignment
x = −5, y = 3, it would return false.

– getPossibleFixes(): if the constraint is not satisfied by the current assignment,
this method returns possible changes to the assignment that would correct the
violation. For example, for x = −5, y = 3, the ReLU constraint from before
might propose two possible changes to the assignment, x ← 3 or y ← 0, as
either would satisfy y = ReLU(x).

– getCaseSplits(): this method asks the piecewise-linear constraint ϕ to return
a list of linear constraints c1, . . . , cn, such that ϕ is equivalent to c1 ∨ . . .∨ cn.
For example, when invoked for a constraint y = max (x1, x2), getCaseSplits()
would return the linear constraints c1 : (y = x1 ∧ x1 ≥ x2) and c2 : (y =
x2 ∧ x2 ≥ x1). These constraints satisfy the requirement that the original
constraint is equivalent to c1 ∨ c2.

– getEntailedTightenings(): as part of Marabou’s deduction of tighter variable
bounds, piecewise-linear constraints are repeatedly informed of changes to the
lower and upper bounds of variables they affect. Invoking getEntailedTight-
enings() queries the constraint for tighter variable bounds, based on current
information. For example, suppose a constraint y = ReLU(x) is informed of
the upper bounds x ≤ 5 and y ≤ 7; in this case, getEntailedTightenings()
would return the tighter bound y ≤ 5.

2.3 Constraint- and Network-Level Reasoning
(RowBoundTightener, ConstraintBoundTightener
and SymbolicBoundTightener Classes)

Effective deduction of tighter variable bounds is crucial for Marabou’s perfor-
mance. Deduction is performed at the constraint level, by repeatedly examin-
ing linear and piecewise-linear constraints to see if they imply tighter variable
bounds; and also at the DNN-level, by leveraging the network’s topology.

Constraint-level bound tightening is performed by querying the piecewise-
linear constraints for tighter bounds using the getEntailedTightenings() method.
Similarly, linear equations can also be used to deduce tighter bounds. For exam-
ple, the equation x = y + z and lower bounds x ≥ 0, y ≥ 1 and z ≥ 1
together imply the tighter bound x ≥ 2. As part of the simplex-based search,
Marabou repeatedly encounters many linear equations and uses them for bound
tightening.
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Several recent papers have proposed verification schemes that rely on DNN-
level reasoning [5,23]. Marabou supports this kind of reasoning as well, by stor-
ing the initial network topology and performing deduction steps that use this
information as part of its iterative search. DNN-level reasoning is seamlessly
integrated into the search procedure by (1) initializing the DNN-level reasoners
with the most up-to-date information discovered during the search, such as vari-
able bounds and the state of piecewise-linear constraints; and (2) feeding any
new information that is discovered back into the search procedure. Presently
Marabou implements a symbolic bound tightening procedure [23]: based on net-
work topology, upper and lower bounds for each hidden neuron are expressed
as a linear combination of the input neurons. Then, if the bounds on the input
neurons are sufficiently tight (e.g., as a result of past deductions), these expres-
sions for upper and lower bounds may imply that some of the hidden neurons’
piecewise-linear activation functions are now restricted to one of their linear
segments. Implementing additional DNN-level reasoning operations is work in
progress.

2.4 The Engine (Engine and SmtCore Classes)

The main class of Marabou, in which the main loop resides, is called the Engine.
The engine stores and coordinates the various solution components, including
the simplex core and the piecewise-linear constraints. The main loop consists,
roughly, of the following steps (the first rule that applies is used):

1. If a piecewise-linear constraint had to be fixed more than a certain number
of times, perform a case split on that constraint.

2. If the problem has become unsatisfiable, e.g. because for some variable a
lower bound has been deduced that is greater than its upper bound, undo a
previous case split (or return UNSAT if no such case split exists).

3. If there is a violated linear constraint, perform a simplex step.
4. If there is a violated piecewise-linear constraint, attempt to fix it.
5. Return SAT (all constraints are satisfied).

The engine also triggers deduction steps, both at the neuron level and at the
network level, according to various heuristics.

2.5 The Divide-and-Conquer Mode and Concurrency (DnC.py)

Marabou supports a divide-and-conquer (D&C ) solving mode, in which the
input region specified in the original query is partitioned into sub-regions. The
desired property is checked on these sub-regions independently. The D&C mode
naturally lends itself to parallel execution, by having each sub-query checked
on a separate node. Moreover, the D&C mode can improve Marabou’s overall
performance even when running sequentially: the total time of solving the sub-
queries is often less than the time of solving the original query, as the smaller
input regions allow for more effective deduction steps.
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Given a query φ, the solver maintains a queue Q of 〈query, timeout〉 pairs. Q is
initialized with one element 〈φ, T 〉, where T , the initial timeout, is a configurable
parameter. To solve φ, the solver loops through the following steps:

1. Pop a pair 〈φ′, t′〉 from Q and attempt to solve φ′ with a timeout of t′.
2. If the problem is UNSAT and Q is empty, return UNSAT.
3. If the problem is UNSAT and Q is not empty, return to step 1.
4. If the problem is SAT, return SAT.
5. If a timeout occurred, split φ′ into k sub-queries φ′

1, . . . , φ
′
k by partitioning

its input region. For each sub-query φ′
i, push 〈φ′

i,m · t′〉 into Q.

The timeout factor m and the splitting factor k are configurable parameters.
Splitting the query’s input region is performed heuristically.

2.6 Input Interfaces (AcasParser class, maraboupy Folder)

Marabou supports verification queries provided through the following interfaces:

– Native Marabou format: a user prepares a query using the Marabou C++
interface, compiles the query into the tool, and runs it. This format is useful
for integrating Marabou into a larger framework.

– Marabou executable: a user runs a Marabou executable, and passes to it
command-line parameters indicating the network and property files to be
checked. Currently, network files are encoded using the NNet format [11],
and the properties are given in a simple textual format.

– Python/TensorFlow interface: the query is passed to Marabou through
Python constructs. The python interface can also handle DNNs stored as
TensorFlow protobuf files.

3 Evaluation

For our evaluation we used the ACAS Xu [12], CollisionDetection [4] and
TwinStream [1] families of benchmarks. Tool-wise, we considered the Reluplex
tool which is the most closely related to Marabou, and also ReluVal [23] and
Planet [4]. The version of Marabou used for the evaluation is available online [14].

The top left plot in Fig. 3 compares the execution times of Marabou and Relu-
plex on 180 ACAS Xu benchmarks with a 1 hour timeout. We used Marabou in
D&C mode with 4 cores and with T = 5, k = 4, and m = 1.5. The remaining
three plots depict an execution time comparison between Marabou D&C (con-
figuration as above), ReluVal and Planet, using 4 cores and a 1 hour timeout.
Marabou and Reluval are evaluated over 180 ACAS Xu benchmarks (top right
plot), and Marabou and Planet are evaluated on those 180 benchmarks (bottom
left plot) and also on 500 CollisionDetection and 81 TwinStream benchmarks
(bottom right plot). Due to technical difficulties, ReluVal was not run on the
CollisionDetection and TwinStream benchmarks. The results show that in a
4 cores setting Marabou generally outperforms Planet, but generally does not
outperform ReluVal (though it does better on some benchmarks). These results
highlight the need for additional DNN-level reasoning in Marabou, which is a
key ingredient in ReluVal’s verification procedure.



450 G. Katz et al.

Fig. 2. A scalability comparison of
Marabou and ReluVal on ACAS
Xu.

Figure 2 shows the average runtime of
Marabou and ReluVal on the ACAS Xu prop-
erties, as a function of the number of avail-
able cores. We see that as the number of cores
increases, Marabou (solid) is able to close
the gap, and sometimes outperform, ReluVal
(dotted). With 64 cores, Marabou outper-
forms ReluVal on average, and both solvers
were able to solve all ACAS Xu benchmarks
within 2 hours (except for a few segfaults by
ReluVal).

Fig. 3. A comparison of Marabou with Reluplex, ReluVal and Planet.

4 Conclusion

DNN analysis is an emerging field, and Marabou is a step towards a more mature,
stable verification platform. Moving forward, we plan to improve Marabou in sev-
eral dimensions. Part of our motivation in implementing a custom simplex solver
was to obtain the needed flexibility for fusing together the solving process for lin-
ear and non-linear constraints. Currently, this flexibility has not been leveraged
much, as these pieces are solved relatively separately. We expect that by tackling
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both kinds of constraints simultaneously, we will be able to improve performance
significantly. Other enhancements we wish to add include: additional network-
level reasoning techniques based on abstract interpretation; better heuristics for
both the linear and non-linear constraint solving engines; and additional engi-
neering improvements, specifically within the simplex engine.
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