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Abstract

We show how, under certain conditions, programs written in the behavioral pro-

gramming approach can be modified (e.g., as result of new requirements or discov-

ered bugs) using automatically-generated code modules. Given a trace of undesired

behavior, one can generate a relatively small piece of code, whose execution is in-

terwoven at run time with the rest of the system and brings about the desired

changes without modifying existing code, and without introducing new bugs. At

the core of our approach is the ability of a thread of behavior to prevent the trig-

gering of events from other threads. Our repair algorithms apply model checking

to the program and transform the counterexamples produced by the model-checker

into corrective modules. Our work is supported by a proof-of-concept tool, which

creates understandable modules that can be further manually managed as part of

ongoing incremental system development.
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1 Introduction

Software maintenance is a difficult and error prone task. As errors (bugs) are discov-

ered, and requirements are added or changed, developers work hard to modify existing

code without introducing new errors. They are often constrained by limited knowledge

of possible side-effects, since undocumented interdependencies might be known only to a

different person (usually, the original developer) who is unavailable, or have been simply

forgotten. Research on automated program repair, and, more generally, program synthe-

sis from specifications, aims to address these and related challenges. Such automation

may prove particularly valuable for handling failure/bug reports from users who press the

“Send to Software Vendor” button. In such cases, the software engineer cannot discuss

with the user the broader context of the problem, or possible generalizations thereof.

In this thesis we focus on (a) non-intrusive incremental repair; i.e., large parts of the

system are already developed and are not modified by the repair process; (b) method-

ological integration of the repair process with standard, ongoing development during and

after the repair activity; and (c) practical techniques for dealing with the complexity of

the use of model-checking when creating local patches in the repair process.

2 Background

Our work is carried out within the behavioral programming approach [10, 12] — an exten-

sion and generalization of scenario-based programming, which was introduced with the

language of live sequence charts (LSCs) [4, 8], and is now implemented also in Java [12, 11]

and Erlang [24, 13].

b-thread

b-thread

b-thread

b-thread

Requested Events

Blocking

Selected Event

Figure 1: Behavioral programming execution cycle: all b-threads synchronize, declar-
ing requested and blocked events; a requested event that is not blocked is selected and
b-threads waiting for it are resumed.
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A behavioral program consists of independent threads of behavior that are interwoven

at run time. Each behavior thread (abbr. b-thread) specifies events and event sequences

which, from its own point of view must, may, or must not occur. As shown in Figure 1, the

infrastructure synchronizes and interweaves all behaviors, selecting events that constitute

integrated system behavior without requiring direct communication between b-threads.

Specifically, all b-threads declare events that should be considered for triggering (called

requested events) and events whose triggering they forbid (block), and then synchronize.

An event selection mechanism then triggers one event that is requested and not blocked,

and resumes all b-threads that requested the event. B-threads can also declare events

that they simply “listen-out for”, and they too are resumed when these waited-for events

occur.

This facilitates incremental non-intrusive development as outlined in the example of

Figure 2, adapted from [9].

wait for
WaterLevelLow

request
AddHot

request
AddHot

request
AddHot

WhenLowAddHot

wait for
WaterLevelLow

request
AddCold

request
AddCold

request
AddCold

WhenLowAddCold

wait for
AddHot while

blocking
AddCold

wait for
AddCold while

blocking
AddHot

Stability

⋯
WaterLevelLow

AddHot

AddCold

AddHot

AddCold

AddHot

AddCold

⋯

Event Log

Figure 2: Incremental development of a system for controlling water level in a tank with
hot and cold water sources. The b-thread WhenLowAddHot repeatedly waits for WaterLevelLow events
and requests three times the event AddHot. WhenLowAddCold performs a similar action with the
event AddCold, reflecting a separate requirement, which was introduced when adding three water
quantities for every sensor reading proved to be insufficient. When WhenLowAddHot and WhenLowAddCold

run simultaneously, with the first at a higher priority, the runs will include three consecutive
AddHot events followed by three AddCold events. A new requirement is then introduced, to the
effect that water temperature should be kept stable. We add the b-thread Stability, to interleave
AddHot and AddCold events. For details about how sensor and actuator b-threads interact with the
physical environment (sensors, valves) without suspending the entire system see [13]. For details
about model-checking such software with all possible environment behaviors, see [7].

More detailed examples showing the power of incremental modularity in behavioral

programming appear in [12, 13]. Briefly, in a program for playing Tic-Tac-Toe [12],

each game-rule is implemented in a dedicated b-thread; e.g. “block X moves when it

is O’s turn’ ’ or “block marking of already-marked squares”. Similarly, player-strategy

modules are oblivious of other strategies; e.g., “wait for two X marks in the same line,
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and then request marking O in that line”. A similar technique can be used to control a

robot performing simultaneous missions, such as vehicle operation and route management.

In stabilizing a quadrotor — an unmanned flying vehicle with four rotors — each of

four b-threads in the program controls a particular orientation angle, or the quadrotor’s

altitude, solely by changing rotor speeds; see [13].

Each b-thread repeatedly requests and blocks events representing possible increases

or decreases of rotor RPM, which could contribute to its own goal. The triggering of an

event that is requested by one or more b-threads and blocked by none allows at least

one b-thread to progress. Affected b-threads can then recalculate their declarations of

requested and blocked events, and the process repeats.

In [6] and [15], model-checking and planning algorithms (respectively) are applied

to play-out, the method for executing LSCs. These smart play-out techniques control

the choice of the event to be triggered, such that, within the next superstep (i.e., prior

to the next event driven by the environment), the specification is not violated by the

program (if this is possible). In [7], a proof-of-concept model checker verifies behavioral

Java programs “in vivo” - without first translating them into a model-checker-specific

language. It is further shown in [7] how, when a problem is detected, the programmer

can develop and add a b-thread that repairs the program by refining the behavior without

modifying existing code.

3 Outline of the Repair Approach

In this thesis we utilize the model checker of [7] to automate elements of manual program-

repair processes, using a principle that can be summarized as “taking the road not taken”.

For illustration, assume that a system was tested, or even model-checked, to satisfy its

specification, and a new requirement was then introduced, or a bug reported, highlighting

a required property not previously articulated, and thus neither tested nor model-checked.

Our method calls for first adding the new property to the specification. We then model-

check the program to find distinct violating runs. For each such run, we add a special

b-thread, which waits for the sequence of all events in the run, up to the last one requested

by the program (rather than by the environment). The repair b-thread then blocks this

event. Some other pending requests might then be triggered. If this does not correct the

problem, the process repeats.

For example, consider a faulty game-strategy b-thread, whose event request leads to

a loss. When this event is blocked, another b-thread, perhaps one that requests a set

of default moves, comes into play (so to speak), offering an alternative. The elimination
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process continues until “the right” default move is the choice at that state. The new

corrective wait-and-block behavior is non-intrusive, in that its implementation does not

require changing the existing program code.

We refer to such a repair b-thread as a patch, and to the process as patching, or

simply, repairing. We hope that combined with the behavioral-programming principles,

our approach will help make the concept of patching seem less a “necessary evil” and

more a useful, mainstream software maintenance practice.

As full program repair may not always be possible, due to the state explosion problem,

we also discuss the case where patching can be limited to a bounded “neighborhood” of

a specific operation scenario; for example, when we are provided with a bug report sent

from a user.

We formally prove correctness and analyze the method, characterize the programs on

which it can be used, and exemplify its usage with our proof-of-concept tool.

The rest of this thesis is organized as follows: basic definitions of behavioral programs

and their model-checking are given in Sections 4 and in Section 5, respectively. The repair

of loopless programs is discussed in Section 6, followed by a repair algorithm for general

programs in Section 7. Finally, limited-depth patching is described in Section 8. Each of

the three repair algorithms is followed by a concrete example.

4 Definitions

While behavioral programming is geared towards natural and intuitive development using

almost any programming language, its underlying infrastructure can be conveniently

described and analyzed in terms of transition systems.

4.1 The Behavioral Programming Computational Model

The definitions below follow [7, 13] and were modified to include the notion of a b-thread

tagging states of the system as having certain properties, commonly termed atomic

propositions (AP) [2]. Recall that a deterministic labeled transition system is a 6-tuple

⟨S,E,→, init,AP,L⟩, where S is a set of states, E is a set of events, → is a (possibly

partial) function from S × E to S, init ∈ S is the initial state, AP is a set of atomic

propositions, and L ∶ S → 2AP is a labeling function. The runs of a transition system are

sequences of the form s0
e1Ð→ s1

e2Ð→ ⋯ eiÐ→ si⋯, where s0 = init, and for all i = 1,2,⋯, si ∈ S,
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ei ∈ E, and the function → maps the pair ⟨si−1, ei⟩ to si, written si−1
eiÐ→ si. We say that

⟨S,E,→, init⟩ is total if the transition function → is a total function.

Behavior threads are modeled as transition systems, with S, E, and AP finite, and

the states being associated with event sets:

Definition 1. A behavior thread (abbr. b-thread) is a tuple ⟨S,E,→, init,AP,L,R,B⟩,
where ⟨S,E,→, init,AP,L⟩ forms a deterministic total labeled transition system, R∶S →
2E associates a state with the set of events requested by the b-thread when in it, and

B∶S → 2E associates a state with the set of events blocked by the b-thread when in it.

Definition 2. The runs of a set of b-threads {⟨Si,Ei,→i, initi,APi, Li,Ri,Bi⟩}ni=1 are the

runs of the labeled transition system ⟨S,E,→, init,AP,L⟩, where S = S1 × ⋯ × Sn, E =
⋃n

i=1Ei, init = ⟨init1, . . . , initn⟩, and → includes a transition ⟨s1, . . . , sn⟩
eÐ→ ⟨s′1, . . . , s′n⟩ if

and only if

e ∈
n

⋃
i=1
Ri(si)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e is requested

⋀ e ∉
n

⋃
i=1
Bi(si)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e is not blocked

.

and
n

⋀
i=1
( (e ∈ Ei Ô⇒ si

eÐ→i s
′
i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
affected b-threads

move

∧ (e ∉ Ei Ô⇒ si = s′i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unaffected b-threads
don’t move

)

We set AP = ⋃n
i=1APi and, for (s1, . . . , sn) ∈ S1 × . . . × Sn, we define:

L(s1, . . . , sn) = L1(s1) ∪ . . . ∪Ln(sn)

Note that when implemented in a standard programming language, we assume that

b-threads do not share data, and rely solely on events for input and output. This results

in the abstraction that a behavior thread is “in a state” only when synchronized with

others, and that the state transition caused by executing program instructions between

synchronization points is atomic.

Observe that while each b-thread is deterministic in its reaction to events, Definition 2

does not specify how events are selected, and thus there may be more than one run for a

given set of b-threads. There could be multiple ways to select events and runs, including

ones that are random, planned, or priority-based. The default behavioral execution

infrastructure of LSC (in the Play-Engine and PlayGo tools), the Java package (BPJ )

and the Erlang module (bp) executes a set of b-threads based on priorities. That is, in

each state of the composite system, the first event that is requested and is not blocked is

selected for triggering.
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Definition 3. For the transition system T , defined in Definition 2, a (deterministic)

event selection mechanism is a function f ∶S → E, such that for each s ∈ S there exists a

transition s
f(s)ÐÐ→ s′ of T .

Behavioral programming is designed particularly for the development of reactive sys-

tems [14], and in this context it is critical to distinguish between environment behavior

and program behavior.

Definition 4. A reactive behavioral program is a set of b-threads, an event selection

mechanism, and a partition of the events of the b-threads into external events representing

uncontrollable occurrences coming from the environment, and internal events completely

controlled by the program.

We denote the set of external events by Eenv, and the set of internal events by Eprog.

By convention, the patches we present in this work may block only the triggering of events

in Eprog and may not block events in Eenv.

4.2 Specifications

We now introduce definitions that assist in the discussion of desired and undesired runs

of behavioral programs.

Definition 5. For a set of b-threads P and a run ρ = (e1, e2, . . . , ), such that the execution

corresponding to ρ is sinit
e1Ð→ s1

e2Ð→ s2 . . ., we define APtrace(ρ) = L(sinit)L(s1)L(s2) . . .
and define the set of all traces of P to be APtraces(P ) = {APtrace(ρ) ∣ ρ ∈ runs(P )}.

Definition 6. A specification for a behavioral program P is a linear time (LT) property Φ

(i.e. a subset of (2AP )ω). We say that P satisfies Φ, denoted P ⊧ Φ, iff APtraces(P ) ⊆ Φ.

Since this definition assumes infinite runs, when dealing with systems of finite runs

we pad any finite run with the trace ∅ω.

It is important to note, that the same set of b-threads can satisfy Φ with one event

selection mechanism, and not with another. We adopt a wider perspective here, and

ensure that the patched set of b-threads satisfies Φ with all event selection mechanisms.

Such patching immediately detects and fixes any bugs that could have remained hidden

with a certain mechanism, but which may emerge later. An approach that takes a specific

event selection mechanism into account may also be useful for some applications.

We now narrow the definition of Φ, which can represent any LT property, to invariants

and deadlocks.
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Definition 7. An LT Φ property over AP is an invariant if there is a propositional logic

formula ϕ over AP such that Φ = {A0A1A2 . . . ∈ (2AP )ω ∣ ∀j ≥ 0,Aj ⊧ ϕ}.

Intuitively, invariants are properties of the current state of the system, and do not

reflect the history of events leading to it. Through invariant checking one can handle

regular safety properties:

Definition 8. An LT property Φ over AP is called a safety property if for all σ ∈
(2AP )ω −Φ there exists a finite prefix σ̄ of σ such that

Φ ∩ {σ′ ∈ (2AP )ω ∣ σ̄ is a finite prefix of σ′} = φ

Intuitively, a safety property states that no “bad” sequences of events may happen.

Any run that causes such a sequence has a bad prefix ; after it the run does not satisfy

the property no matter how it continues.

Regular safety properties are those for which some finite automaton recognizes the

bad prefixes [2], or, in our case, there is a b-thread that marks its state as bad when

the bad prefix is recognized. By applying the invariant model-checker to a program with

these threads added, we can effectively handle general regular safety properties.

Definition 9. We say that a (finite) run ρ = (e1, e2, . . . , en) causes a deadlock if it leads

to a state s that has no enabled events (all requested events are also blocked).

Much like invariants, deadlocks too are properties of states in the system, and not of

runs.

When patching, we will receive as input a program P and an invariant Φ. We will

implicitly check that the system has no deadlocks; if it does, the patching algorithm will

try to remove them. In particular, we will make sure that no new deadlocks are created

while patching; otherwise we could “patch” a system by simply blocking all enabled

events at its initial state.

5 Extending the Model-Checking of Invariants and

Deadlocks

To check that a program P satisfies an invariant and does not cause a deadlock we follow

the algorithm in [2], section 3.3.1, and the implementation in [7].
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Any state that violates the invariant or is deadlocked is marked as “bad”. We con-

struct the state graph of the program, traverse it using DFS (trimming when arriving at

a cycle), and check that all states reachable from the initial state are not bad. From each

state we explore all enabled events (which reflects our decision to cater for all all possible

event selection mechanisms).

The runtime complexity of this algorithm, implemented as in [7], is as follows. Let

G = (VG,EG) denote the state graph constructed, and let n be the number of threads

and e = ∣E∣ the number of events in the original program. For each state ∈ VG, we have

to perform n ⋅ e operations in order to find all its enabled events. In order to determine

if a state was already visited earlier (also needed to detect cycles), assuming all states

are stored in some hash table, we have to calculate a unique identifier for each state;

this costs an additional log ∣VG∣ operations, if we assume some optimal labeling of the

states that only takes that many bits. Finally, another ∣VG∣ + ∣EG∣ operations have to be

performed to later traverse the graph. In total, we have:

Tmc = O (∣EG∣ + ∣VG∣ ⋅ (n ⋅ e + log ∣VG∣))

This complexity is the minimum price one has to pay for running a model-checker on

a behavioral program. Since our technique is based on model-checking, it will necessarily

be forever linked in complexity to that of model checking [21, 2], and the progress made

there, for better or for worse. Tmc thus serves a base point with which to compare the

complexity of our patching algorithms, and we are interested in how much additional

overhead they incur above it.

We actually use a slightly different algorithm. For our purposes, the usual model-

checking that returns a single violating run does not suffice: we want to explore all runs

that violate the invariant or cause a deadlock.

This is achieved as follows: we traverse the state graph using the same DFS, but

whenever we reach a bad state we store that information in its predecessor states. Each

state already visited in the graph will thus contain information on all its bad successors.

If the state is reached again, through another route from the root, we need not traverse

its subtree again: we simply update the relevant states using the data already stored (see

Figure 3).

The added complexity of this algorithm is measured using the number of violating

runs, Υ (OOPSilon: pun intended), and the depth of the state graphD. For each violating

run we propagate at most D events to the predecessors, causing an overhead of at most
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Figure 3: When a “bad” state is reached, all its predecessors store the relative path from that
point to the violation. When a node in this path is reached through a different path, the data
is propagated. The DFS continues until the root stores all violating paths.

1 + 2 + . . . +D = O(D2) per violating run. The total runtime complexity is thus:

T = Tmc +Υ(1 + 2 + . . . +D) = Tmc +O(Υ ⋅D2)

Finally, if all direct successors of a state are bad, then the state itself can be considered

bad; this is because the patching technique we discuss will cut off the violating children,

rendering the state a deadlock. We thus add the following modification: if, during the

DFS, all of a state’s successors are violating or deadlocked, the state itself is marked

as violating; thus its successors can be ignored (see Figure 4). The runtime worst-case

complexity remains unchanged.

s1

s2

X X

s1

X

X X

Figure 4: All of s2’s predecessors are marked as bad; as a result, the state itself is also marked
as bad. If this were not the case, it would be turned into a deadlocked state. State s1 has a self
loop and is thus its own successor. Since not all its successors are bad, the propagation stops
there.
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6 Linear Patches

6.1 Generating Linear Patches

Before discussing patching of general programs, we begin with the simpler case of finite

programs that are loopless: their state graph contains no cycles.

In a loopless program, every run is finite, and as we mentioned earlier, in such cases

we add a self-looped trap state and associate it with the accepting states of the transition

system.

Definition 10. A linear wait-block patch for event sequence (e1, e2, . . . , en, elast), such

that elast ∈ Eprog, is a b-thread with the following properties:

• The patch waits for events e1, . . . , en, blocks elast once and then terminates.

• If the run deviates from the sequence e1, . . . , en, the patch terminates.

• The patch never requests events and does not label states (R(s) = L(s) = ∅ for all

s).

Intuitively, the patch is designed to prevent one bad run from occurring. Events

e1, . . . , en will be chosen according to violating runs found by the model-checker. The

patch will intervene before the last event, causing another event to be triggered, thus

preventing the violation.

The patch only interferes with runs starting with events e1, . . . , en; other runs remain

unchanged. Formally:

Lemma 1 (The Locality Lemma). Let P be a collection of b-threads, let p be a linear

wait-block patch for event sequence (e1, . . . , en), and let P ′ = P ∪ {p} denote the patched

program. Then for any run ρ of P that does not start with events e1, . . . , en, the events

of ρ constitute a valid run ρ′ of P ′, and APtrace(ρ) = APtrace(ρ′)

Proof. By definition, if a run does not start with events (e1, . . . , en), then the patch never

requests or blocks events. This means that the events chosen by P ′ are exactly those

requested by P . If we simulate the run ρ on P ′ (i.e., have the environment choose the

same events as it did with P ), then the program will always request the same events as

it did before. This means that events ρ′ = (e1, . . . , en) form a valid run of P ′.

Finally, since the original b-threads will reach the same states as before, they will

have the same atomic propositions. Since the patch has no atomic propositions associated

with its states, we get that APtrace(ρ) = APtrace(ρ′).
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The Locality Lemma is our motivation for patching: it states (in this case, for linear

patches) that when we add a patch to negate a single bad run, other runs remain un-

harmed, meaning that the patch is local. This is an advantage of our method as compared

to traditional, manual, patching: our patches do not create new errors in unexpected parts

of the code.

The distinct bad runs representing the bug or emanating from the new requirement

are found by model-checking, as follows:

Linear Patching(P,Φ):

Run the model checker on (P,Φ)

if P ⊧ Φ then

return P

P’ ← P

for each violating run (e1, . . . , en) do

if ∀i, ei ∈ Eenv then

return Failure

else

Find the largest k such that ek ∈ Eprog

Create a linear wait-block patch p for (e1, . . . , ek)

P ′
← P ′

∪ {p}

return P ′

The idea is straightforward: the model-checker finds all runs violating Φ and we add

a patch per run to prevent them. The algorithm guarantees that we create no deadlocks

in doing so. Furthermore, because the model-checker works with respect to all possible

event selection mechanisms, any bugs that emerged after the patching are fixed. The

Locality Lemma guarantees that no good runs “far away” from the patch are harmed. If

the algorithm returns a patched program, we thus know that it satisfies the specification

Φ and causes no deadlocks.

There is also the case where the algorithm returns a failure notice, as a result of the

model checker returning a violating run in which there were no program-requested events.

This, of course, means that the program cannot be repaired through wait-block patching.

Formally:

Lemma 2 (The Patchability Lemma). Let P be a loopless program with state graph

G = (VG,EG) and let Φ be a safety property. Then the following three statements are

equivalent:

1. The algorithm succeeds in returning a patched program P ′.
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2. There exist linear wait-block patches p1, . . . , pk, such that P ∪ {p1, . . . , pk} ⊧ Φ.

3. There exists a graph G′ = (VG,EG′) with EG′ ⊆ EG and EG −EG′ ⊆ Eprog, such that

no states violating Φ or causing deadlocks are reachable from the initial state in G′.

Proof. • (1)⇒ (2) is trivial.

• (2) ⇒ (3): Take the original state graph G, and for each pi remove the edge

corresponding to the event it blocks. Since the patched program satisfies Φ and

does not reach a deadlock, all reachable states in the graph obtained in this way

satisfy Φ and do not cause deadlocks. Furthermore, by definition of a wait-block

patch, all blocked events were in Eprog, as needed.

• (3)⇒ (1): Without loss of generality, we assume that P starts with an initialization

event einit ∈ Eprog. If this does not hold we can change to a new initial state s′init and

add a thread that forces event einit to be chosen before proceeding to the original

program.

Suppose that G′ exists but that the algorithm returned a failure notice. In this case

we conclude that it deadlocked on the very first state, s′init. This, in turn, means

that state sinit was marked as bad, so that all paths starting in sinit lead to bad

states. This contradicts the existence of G′, proving the claim.

Condition (3) means that the original program was “not too far” from satisfying Φ:

it contained some good runs and some bad runs, and through some blocking the bad runs

could be averted. Observe that the equivalence of (1) and (2) is really the validity of the

algorithm.

The worst case runtime complexity of the algorithm is just that of the modified model-

checker, namely T = Tmc+O(Υ ⋅D2). This shows the dependence of our algorithm on the

number of violating runs in the original program. If their number and lengths are small

enough our automatic patching is not much worse than regular model-checking. This also

demonstrates why using this algorithm for synthesis could be costly. If the program is

“far away” from satisfying Φ, as could be the case when trying to synthesize a program

from scratch (say, from a general program that constantly requests all possible events),

then Υ could be polynomial in the size of the state graph, greatly slowing the process.
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6.2 Patching for a Specific Event Selection Mechanism

The above algorithm patches the program so that it satisfies Φ, regardless of the event

selection mechanism used. However, it may be useful to patch the program for the specific

mechanism M to be used, as it could speed up the patching process, reduce the number

of generated patches, and most importantly, block less events, leaving open more options

for further behavior refinements and repair, as explained in Figure 5.

s1

XX X

s1

XX X

a

b c d e

a

d e

Figure 5: In state s1, a patch that considers all event selection mechanisms will block b,c, and
e. A patch that considers only, say, an ESM that chooses events alphabetically, needs to block
b and c, but can leave e unblocked, relying on the selection of d.

In this case, the model-checking algorithm is modified to return as output all violating

runs of the original program, as well as all (and only) violating runs that would be created

by blocking previously discovered bad transitions. Bad runs that will not be possible in

the patched program, under the specific ESM, are ignored. This technique is readily

applicable also to patches for programs with cycles, discussed in the sequel.

6.3 Example: Patching Tic-Tac-Toe

We demonstrate the use of the linear patching algorithm on the loopless Tic-Tac-Toe

behavioral program from [7]. It is loopless since the fact that each step adds a new move

to the board means that its state graph has no cycles.

Suppose that the original program is developed without a model-checker. At the

time of development, the programmer is convinced that the program always achieves its

goal (never loses); various testers support this statement. The program is then deployed.

Some months later, a customer defeats it and sends in the game’s trace. However, the

original software engineer has long quit the firm, and it would take a long time for a new

engineer to repair the code. A suitable solution would be to apply an automatic patching

algorithm to the malfunctioning software.
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To simulate this, we took the complete program from [7] and omitted the more com-

plex threads — those that handle situations where an opponent creates, simultaneously,

two ways to win, and thus cannot be blocked. If the human player does not try the com-

plex strategy that creates such double attacks, the program does indeed seem to work,

but a skilled player can defeat it.

The automatic proof-of-concept tool is easy to use, requiring little modifications to

the original program. The specification Φ in this case simply marks a victory of the

human player as bad. The output is in the form of new files, each containing a new

thread instance, which are easy to integrate into the original program. The patches

themselves are easy to read and comprehend (see Figure 6).

public patch1 ()

{

events.add(new X(2 ,2));

events.add(new O(1 ,1));

events.add(new X(0 ,0));

events.add(new O(2 ,0));

}

Figure 6: Example of a wait-block patch generated by the proof-of-concept tool. It waits for
the moves X(2,2), O(1,1), X(0,0), and if they occur, it blocks a O(2,0) move. The code itself
is fairly easy to comprehend; the more complicated details are hidden away in a parent class,
making the auto-generated code legible and comprehensible.

Each such patch inherits from a parent class which implements its “main” function;

see Figure 7.

public void runBThread ()

{

for (int i=0; i<events.size ()-1; i++)

{

bp.bSync( none, all, none );

if (! lastEventWas(events.get(i)))

disablePatch ();

}

bSync( none, all, events.getLast() );

disablePatch ();

}

Figure 7: The patch thread’s main function, runBThread() is part of the patching library, and
is not added to the actual patched program. It waits for events defined by a particular patch
instance (as in Figure 6), blocking the last event and then terminating. If the events chosen
deviate from those defined in the patch instance, the patch terminates.

In our example, the patched Tic-Tac-Toe program contains 26 different patches, one

of which is demonstrated in the figure. Subsequent verification by the model checker

confirms that now the specification is indeed satisfied.
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7 Patches for Programs with Cycles

7.1 Generating Patches for Cycles

The correctness of the algorithms for linear patching relies on the program’s state graph’s

having no cycles. As most reactive systems run indefinitely, periodically returning to some

“idle” state, such systems cannot be patched by linear wait-block patches. For a simple

example, see Figure 8.

Figure 8: A simple state graph with a violating state and a cycle. Attempting to repair this
program through linear patching would require infinitely many patches: a patch for aa, for abaa,
for ababaa, and so on. In fact, any run of the form (ab)∗aa would require its own patch. We
must thus extend the definition of a linear patch into a patch more suitable for such programs.

Our solution is to extend the linear patch associated with a single sequence of events,

into one that can keep track of an entire hierarchy of paths and cycles in the graph,

blocking the violating event as needed.

Definition 11. Given a state graph G′ = (VG′ ,EG′), two special vertices marked vinit

and vend and an event e ∈ Eprog, a cyclic wait-block patch for G′ is a b-thread with the

following properties:

• It waits for all events chosen by the event selection mechanism and traverses the

graph G′ according to those events.

• Whenever a state vend is reached, it blocks event e once.

• If an event occurs such that there is no edge marked with that event, it terminates.

• It never requests events and does not label states.

Intuitively, the patch is designed to prevent a family of bad runs that are similar to

one another, in that they reach their bad state by transitioning from vend via the event

e. The graph G′ will be chosen such that it contains all paths from vinit to vend, thus

rendering a single patch able to block that entire family of bad runs.
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The Locality Lemma holds for the cyclic case as well: all runs of the original system,

with the exception of those starting in vinit and ending in reaching the violating state

through vend and e, are valid runs of the patched system. The proof is similar to that of

the linear case, and is based on the fact that in any such run the generated patch does

not request or block any events, and thus does not affect the events requested by the

program.

Linear patches are a particular case of the cyclic ones, in which the graph G′ is a

path, meaning there is precisely one way to reach the violating state.

The cyclic patching algorithm is as follows (G denotes the full state graph traversed

by the model-checker):

Cyclic Patching(P,Φ):

Run the model checker on (P,Φ)

if P ⊧ Φ then

return P

for each violating run (e1, . . . , en) do

if ∀i, ei ∈ Eenv then

return Failure

else

Find the largest k such that ek ∈ Eprog

Let send denote the state reached after events e1, . . . , ek−1
Construct the minimal subgraph G′ containing all paths in G from sinit to send

Create a cyclic wb-patch p for G′ with states vinit = sinit, vend = send, and event ek

P ′
← P ′

∪ {p}

return P ′

Constructing the minimal subgraph G′ is performed using a modified BFS algorithm,

in the following manner: Given the full graph and the two vertices sinit and send, we

run a BFS search from sinit. Instead of the usual BFS, where each vertex stores a single

predecessor (the first vertex from which it is found), we have each vertex store all vertices

from which it is found. When the search is done, we begin in send and backtrack through

all possible predecessors of each vertex, until reaching sinit. The set of edges and vertices

traversed this way form the subgraph G′ that we need.

Claim 1. The graph G′ is the minimal subgraph containing all paths from sinit to send in

G.

Proof. Let p = (sinit, s1, . . . , sn, send) be a path in G. If p is simple, i.e., no state repeats

itself, then clearly after n+1 iterations of the BFS search each vertex in p has its preceeding
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state marked as a predecessor. Therefore, the entire path will be traversed during the

backtrack phase, meaning that p is in G′.

Now, suppose that p is a complex path with one cycle (the proof for the general case

is an easy extension). Then p can be expressed as follows:

p = (sinit, s1, . . . , sk, s′1, s′2, . . . , s′j, sk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

the cycle

, sk+1, . . . , sn, send)

The states before and after the cycle are found as before. The cycle’s states, s′1, . . . , s
′
j,

are found at the latest during the j’th iteration after the first arrival at sk. When the

cycle ends, s′j is marked as a predecessor of sk. Therefore, during the backtrack phase

that passes through sk, the entire cycle will be found, meaning that the graph contains

p.

To see why G′ is minimal, observe that if a state is added to the subgraph it is part of

at least one path from sinit to send, and therefore cannot be omitted from the graph.

The algorithm’s correctness is proved by the following lemma:

Lemma 3. If the algorithm returns a patched program P ′, then P ′ ⊧ Φ.

Proof. Suppose that there exists a run ρ of P ′ violating Φ. Denote its states s1, . . . , sn,

and extract from them a violating run with no cycles. If si = sj for some j > i, delete

states si+1, . . . , sj. Denote the remaining states as st1 , . . . , stk . The run corresponding to

this state sequence was found by the model checker, and a patch for some subgraph G′

which contains this run was created. Since G′ contains all paths from s1 to sn, it also

contains ρ. Therefore, the patch would have blocked the last program-requested event of

ρ, causing a contradiction.

As with the linear case, it is possible for the algorithm to return a failure notice. The

Patchability Lemma, which characterized programs that could be fixed in the linear case,

holds for the cyclic case as well; its proof is analogous.

The complexity of the algorithm is as follows: The exploration of violating runs costs,

as before, O(Tmc + Υ ⋅D2). Constructing the relevant subgraph for each violating run

costs another O(∣VG∣ + ∣EG∣) times Υ runs, yielding a total of:

T = Tmc +O(Υ ⋅D2 +Υ(∣VG∣ + ∣EG∣)).
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Again, this shows our dependence on the number of violating runs, Υ. The smaller that

number, the closer our complexity is to that of the model-checker; the higher it is, the

closer we are to the notorious, worst-case complexity of the synthesis problem.

7.2 Subgraph Representation

The generated code for a linear patch contains only the list of events to be waited for,

followed by the event to be blocked. This list can be readily understood and possibly

manipulated by a human, say, for documentation or analysis. Further, the developer

may simplify or generalize the patch; e.g., skip waiting for certain guaranteed events or

consolidate patches into fewer “symbolic” ones.

However, in the general case, a patch is associated with an entire sub-graph of the

state graph, and not with just one list of events. This makes gaining such insights

considerably harder. Thus, we propose to represent the subgraph as a collection of easily

readable linear event scenarios, amenable to human manipulation. The operation of the

cyclic patch will be as before.

Specifically, we use the term line for a finite sequence of events that occur along some

contiguous path in the state graph, and along which no state is visited twice. We use the

term tail for a line whose last event would lead to a bad state in the state graph. The

program’s state graph, or parts thereof, are stored as a collection of lines, each containing

its sequence of events, and links to other lines that are reachable by a single event from

the last event in the line. See Figure 9.

Figure 9: A state graph of a buggy program. The model-checker returns the violating run with
events e1, e2, e7, e8, e9. The subgraph of all paths from state A to state G (see solid states and
edges) is decomposed into: line1 = e1, e2 (successors tail, line2); line2 = e3 (successors line3 , line4); The
self-loop line3 = e6 (successors line3, line4); line4 = e4, e5 (successors line2 ,tail); tail = e7, e8 (with event
to be blocked, e9). In addition to the run found by the model checker, the patch prevents other
runs, e.g., e1, e2, e3, e6, e6, e4, e5, e3, e4, e5´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cycles

, e7, e8, e9.

Thus, each patch,
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• begins by activating lines containing the initial state;

• waits for all events and traverses active lines;

• deactivates active lines when they are deviated from;

• deactivates a line and activates its successors when the line’s last event occurs;

• in a tail, prior to the event leading to the bad state, blocks that event, waits for

one more event, and deactivates the tail.

The line representation can be implemented in a data structure or in separate patch

b-threads, each beginning with waiting for a unique activation event. This results in a

number of small patches and is readily implementable in all implementations of behavioral

programming.

7.3 Example: Patching a Coffee Machine

We demonstrate cyclic patching with a simple coffee vending machine example, which is

expected to repeatedly wait for a coin, wait for a coffee request, and prepare the coffee.

The main requirement is that coffee is never prepared unless a coin is first inserted.

However, if immediately after power-up the user requests coffee, the machine incorrectly

allows coffee to be requested and prepared infinitely many times without a coin. When

the first coin is inserted, the machine enters normal operation. The machine’s state graph

is depicted in Figure 10.

Figure 10: The buggy coffee machine’s state graph. After the PowerUp event, if a CoffeeRequested

event occurs (before a coin is inserted), free coffee can be obtained infinitely many times, until a
coin is inserted. The loop on the right-hand side of the graph represents the desired operation.
The problematic state (marked s1) has two enabled events: CoffeeReady, which is immediately
requested (and selected), and the environment event CoffeeRequested. We expect the patch to
block the CoffeeReady event.
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When the bug is discovered and automatic patching is attempted, the first step is to

have a new b-thread identify and mark bad states (namely, s2). The state graph of the

coffee machine with that b-thread is depicted in Figure 11.

Figure 11: The coffee machine’s state graph after the addition of a thread marking state s2 as
bad. The new thread’s own states have been omitted for clarity.

The automatic patching algorithm generates a single patch, corresponding to the

subgraph depicted in Figure 12.

Figure 12: The subgraph of the program’s state graph for which a patch is created. It shows
all paths from the graph’s initial state to state s1, in which event CoffeeReady must be blocked to
prevent violations.

Finally, the graph of the patched program is depicted in Figure 13, and the code

generated by the proof-of-concept tool is shown in Figure 14.

8 Limited-Depth Repair

Due to our algorithms’ heavy reliance on model-checking to come up with violating runs,

they can only be applied to programs small enough to be model-checked. One solution

might be using more effective model-checking techniques; we discuss this direction in

Section 10. Another practical direction is to find another source that could provide us

with information about the violating runs. A natural option, already implemented by

large software vendors, is to allow users to send reports about buggy runs (for a known
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Figure 13: The patched program’s state graph (states of the patches themselves are omitted
for clarity). The violating CoffeeReady event has been blocked, and the bad state no longer exists
in the state graph.

example, see Figure 15). For behavioral programs, these reports can partially replace the

model-checker’s role in the repair process.

8.1 Automatic Repair from Field Error Reports

We propose the following methodology for using such failure reports in order to cope

with the state-explosion problem inherent to model-checking, and to patch programs

with many violating runs:

• The failure report contains an event log.

• Using the fact that the effect of a patch is local, we constrain the model checking

depth to a neighborhood of the path of the failure (the bad run), followed by a

limited fan-out of possible continuations, past the blocked transition.

• This is enforced by a dedicated b-thread, which monitors all events, and when an

event occurs that is not along the reported bad path, it starts counting the distance

from the bug report. When the distance is greater than a given parameter, the

b-thread calls a model-checker API to prune the search.

• Finally, the patch is generated as before.

Such patching prevents the failure reported by the end-user, along with any other

failures “not far” from it, and can help when full model-checking and patching consumes

too much resources.

The search-depth parameter is key. One extreme case is where it is set to 0; in

which case, only the violating run received as input would be prevented, but the repair
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public cyclicPatch1 ()

{

line1Events.add( new PowerUp () );

line1Events.add( new CoffeeRequested () );

line1 = new LineComponent( line1Events );

line2Events.add( new CoffeeRequested () );

line2 = new LineComponent( line2Events );

tailEvents.add( new CoffeeReady () );

tail = new TailComponent( tailEvents );

line1.addSuccessor( tail );

line1.addSuccessor( line2 );

line2.addSuccessor( line2 );

line2.addSuccessor( tail );

this.addActiveComponent( line1 );

}

Figure 14: The automatically-generated Java code for representation of the subgraph in Fig-
ure 12. The first line contains events PowerUp and CoffeeRequested, and the second line contains
CoffeeRequested. The tail contains only the event to be blocked, CoffeeReady. The code is readily
understandable.

Figure 15: Event logs from bug reports are used in patch construction.

process would be quick. The opposite extremity is setting the depth parameter to a large

number, greater than the maximal depth of the state graph. In this case, the limited

depth algorithm would yield the same results as the general algorithm, but would also

have the same running time. Any interim value of the search depth yields a different

trade-off between the number of violating runs prevented and the running time of the

repair process.

It is up to the user to use knowledge of the specific program’s state graph, or perhaps

run tests, in order to come up with the largest depth for which it is still feasible to run

the repair algorithm.

8.2 Example: Dining Philosophers

Consider the dining philosophers problem [5]. A behavioral implementation thereof in-

cludes the events of a philosopher picking up and putting down a given fork, a b-thread
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for the behavior of each philosopher and a b-thread for each fork. Each philosopher’s

b-thread is subject to a strict event sequence: pick up one fork nondeterministically, pick

up the other, put down one fork nondeterministically, and then the other. Each fork’s

b-thread waits for events that change the state of the fork, and blocks illegal events (e.g.,

a second picking up, or, a putting down by the “wrong” philosopher). In [7] the authors

model-check this problem and variations thereof for safety and liveness properties.

The behavioral implementation described above can easily reach a deadlock - say,

by having each philosopher picking up the left fork. However, the large amount of non-

determinism makes it infeasible to apply our automatic repair algorithm for a large num-

ber of philosophers.

In order to simulate a user report about a faulty run, we encoded a specific violating

run arbitrarily chosen into our proof-of-concept tool, and ran experiments with different

search depth parameters and different number of philosophers. The table in Figure 16

shows the results of these experiments. The large increases in the number of loops found

when the depth parameter increases illustrates the state-explosion problem as the state

graph we work on grows closer to the full state graph.

Search
Depth

3 Philosophers 6 Philosophers 9 Philosophers

3
3 patches
3 loops
0.5 seconds

1 patches
2 loops
4.2 seconds

1 patches
2 loops
30 seconds

4
15 patches
30 loops
1.2 seconds

2 patches
4 loops
22 seconds

3 patches
6 loops
4.5 minutes

5
20 patches
380 loops
3.2 seconds

12 patches
1200 loops
2 minutes

12 patches
2580 loops
45 minutes

Figure 16: Patching the dining philosophers problem using bounded depth patching. Receiving
a bug report (e.g., each philosopher picked up a single fork), the algorithm searches event
sequences that deviate from, or continue, the event trace in the bug report by no more events
than the search depth parameter. The patches handle cycles discovered within the search depth
(e.g., one of the philosophers completing a full eating cycle of picking up and putting down her
two forks, while the others do not proceed). The tests were carried out on a PC with a Intel
Quad Core Q6600 CPU @ 2.40GHz.

9 Related Work

The research in [20, 19, 17] presents fault localization and automatic repair of programs,

where a set of software components that are suspected to cause a fault is replaced by a set
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of synthesized components, such that the resulting system is guaranteed to meet the full

specification. Automatic repair of concurrency bugs (e.g., accessed to shared memory),

is presented in [16]. The detection mechanism uses bad runs associated with bug reports,

and the analysis involves actual execution. The repair is manifested in modification to

existing code. Genetic-programming-based repair of legacy C programs is demonstrated

in [23]. The repair relies on changes to existing code in order to correct problems that

were assumed to be local in nature. In [1], genetic-programming is combined with co-

evolution of the test cases against which the program is evaluated. Naturally, any work

on automatic-repair would be considered a particular case of program synthesis [18, 3].

10 Conclusion and Next Steps

The contribution of this thesis is in the proposed automated approach, in which faulty

components are neither identified nor modified. Instead, the system is non-intrusively

augmented with additional components, to yield desired overall system behaviors. The

entire approach is made possible by the incrementality and modularity of behavioral

programs. The new components are readily understandable by humans, and can be

documented, enhanced, or generalized as part of standard development. The generated

patches can then be distributed to users without re-distributing the original software.

Finally, contributing to the on-going and up-hill battle with state explosion, we propose

a methodology and a practical technique for constructing local patches using limited-

depth model-checking.

This research is a step in the direction of developing methodologies and tools for

the repair of behavioral programs. An important next step is to enrich the tool with

interactive capabilities, allowing the developer to examine the state graph and enhance

the proposed repairs: consolidating similar patches, generalizing or constraining patch

functionality, or perhaps changing existing code after all.

Future research problems include repairing the program with regard to time-related

and liveness properties and integration with other formal methods tools and techniques,

including other synthesis algorithms, symbolic model-checking, and compositional verifi-

cation. Our tool could be combined with Java Pathfinder [22] or other tools to explore

support of richer inter-process communication beyond solely behavioral events, and pos-

sibly solving concurrency problems among b-threads, as in [16].

We hope that with further developments in incremental, non-intrusive development,

supported by powerful repair automation, the task of software maintenance may eventu-

ally shed its present (often lackluster) image, becoming a rewarding undertaking, allowing
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software engineers to quickly address customer needs in a productive, satisfying manner.
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