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A broad, long-term research project is described that will lead 

to the computer becoming an equal member of the system-

development team, continuously making proactive contributions, 

akin to those expected from an experienced and knowledgeable 

customer or user, a conscientious QA engineer, a strict regulatory 

auditor, an engineering team leader, or the organization’s CTO.

Developing reliable reactive systems is difficult 
and error-prone. Deliverables can fail, bring-
ing in their wake disastrous results, far worse 
than exceeding budgets and time schedules. 

Consequently, a tremendous amount of work has been 
put into simplifying and automating key system and 
software engineering tasks. This has included high-
level languages and methodologies for modeling and 
programming, and methods and tools for requirements 
engineering, test generation, and verification.

However, humans are still limited in their effort 
to maintain a comprehensive picture of the elements 

and behaviors of a complex system, and of the relevant 
domain knowledge. This is exacerbated by the state 
explosion problem, which prevents exhaustive analysis 
of all possible behaviors. New algorithms, languages, 
and tools contribute somewhat to tackling these issues, 
but the smooth development of reliable complex reactive 
systems remains a major, and critical, moving target.

The severity of this gap is bothersome not only to 
engineering and computer-science professionals. Severe 
problems are found routinely in new versions of pop-
ular everyday products, ranging from failing to meet 
some basic customer need, through malfunctioning 
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in a routine use case, to having a 
hard-to-find but dangerous security 
vulnerability. It is particularly discon-
certing in view of the fact that such 
flaws or imperfections are discovered 
quite quickly by expert critics and 
reviewers.

The time has come for a major 
change in how complex systems are 
developed, providing a major empow-
erment of the development environ-
ment, and shifting the power balance 
between it and human engineers. 
Relying on powerful computational 
tools, on computerized versions of cer-
tain human-like competencies, and on 
knowledge in system development, 
the development environment will 
become a lot more creative and proac-
tive, will interact with the developers 
in more natural ways, and will, ideally, 
join the development team as an equal 
partner. We term our vision wise com-
puting, and it is built upon an earlier 
preliminary outline.1

PROACTIVE WISDOM
Imagine being invited by a commercial 
company or a research group to review 
their latest product, which they deem to 
be perfect, developed by their best engi-
neers using the best tools and the best 
methodologies. As a specific example, 
say the product was a voice-operated 
medical-assistant robot in charge of 
home patient care. The intellectual 
challenge of discovering faults and 
omissions in the product under review 
is irresistible, and your mind is busy 
trying to come up with questions or 
raise issues that might hide previously 
unnoticed flaws, such as

 › “What accents can the robot 
deal with? Will it understand a 
hoarse patient’s speech?”

 › “Will the noise of a loud TV 

confuse it? And what if a phrase 
spoken on the TV show happens 
to be a robot command?”

 › “If I trick it, asking it to fetch a 
glass that is glued to the table, 
will the robot or the glass break? 
Will the robot be confused?”

 › “Can the robot see and avoid a 
thin wire, say, when the patient 
is walking around with a phone 
or a medical device connected by 
a cord?”

 › “It seems that voice commands 
to abandon the current task 
had to be repeated twice, which 
was rarely the case with other 
commands.”

 › “I have heard about a major 
security vulnerability in the 
open-source library that the 
robot uses for vision. Was the fix 
applied?”

Indeed, with today’s engineering 
practices, such questions and chal-
lenges would be most welcome in 
review sessions and would become 
valuable in improving the product; fail-
ures associated with them would not 
necessarily embarrass the designers.

Wouldn’t it be nice if the software 
development environment could help 
discover such issues itself, and then 
contribute to addressing them too?

As another example, consider the 
development of a system for con-
trolling a chemical plant. The wise 
development environment will be able 
to identify, on its own, the absence 
of a requirement to notice the loss 
of communication with a tempera-
ture sensor. Further, it will explain 
that whenever current temperature is 
unknown, a certain door will be kept 
shut to reduce the risk of fire. At run-
time, the system will recommend that 
before opening the door manually, 

one should check for fire on the other 
side. This interaction will be carried 
out using high-level problem-domain 
abstractions, similar to the English 
terms used in the list of examples 
above, independently of the technical 
terms used within the system model.

The development environment will 
be able to answer what-if questions, 
such as “what happens if the tempera-
ture sensor malfunctions?” as well as 
check a variety of behaviors and prop-
erties on its own, proactively alerting 
developers to problems; for example, 
that an alarm device previously dedi-
cated to one situation is used also for 
another situation, possibly confusing 
human operators. It would also pro-
pose changes, explaining their impact 
and advantages.

During system maintenance, 
requests for new functionality—such 
as to deal with a new regulation for 
remote monitoring—would be stated 
in intuitive textual or visual interfaces. 
The development environment would 
then list affected components and pro-
pose required modifications. Indeed, 
even the mere confirmation that such 
functionality does not already exist 
would be extremely valuable.

THE WISE COMPUTING 
VISION
Wise computing extends the vision 
of MIT’s Programmer’s Apprentice 
(PA) project (circa 1970s–1990), which 
aimed to assist expert programmers 
by automatically developing code for 
requirements that follow known pat-
terns (clichés):

The long term goal [of the PA] is 
to develop a theory of how expert 
programmers analyze, synthe-
size, modify, explain, specify, 
verify, and document programs. 
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This is basic research at the 
intersection of artificial intelli-
gence and system engineering.2

In the outlook toward wise comput-
ing, we seek to achieve and exceed the 
above goals via what we term a wise 
development suite (WDS). Specifically, 
today, human–machine interaction 
in system engineering relies mostly 
on a one-way initiative: the humans 
instruct or query the computer, while 
the computer “just” makes an effort to 
understand and do what the humans 
had in mind. Moreover, the competen-
cies of the computer are presently more 
limited than those applied by humans 

when planning new systems or dis-
cussing development tasks. In the 
future, the WDS will initiate actions 
and suggestions based on deep knowl-
edge and understanding of a broader 
range of goals and constraints than is 
possible today; in particular, covering 
knowledge that is not captured in the 
specification or code of the system at 
hand but, rather, comes from domain 
expertise or general world knowledge 
and human experience.

This forward leap will be enabled 
both by new research, described 
later, and by leveraging and inte-
grating advances in hardware speed; 
programming and modeling for-
malisms; verification and analysis 

algorithms; program synthesis; nat-
ural language processing; machine 
learning; and knowledge acquisition 
and processing.

While it is only natural to conjecture 
that the hurdles to wise computing are 
insurmountable and that the dream of 
a WDS is just that, a dream, the validity 
of the current pursuit is supported by 
various efforts. For example, soon after 
our January 2015 preliminary tech-
nical report on wise computing was 
published in arXiv.org,1 a paper by the 
PA team showed a renewed interest in 
the PA line of research, describing new 
capabilities in natural language pro-
cessing, domain-specific knowledge, 

and code generation.3 Another exam-
ple is the work by Hadas Kress-Gazit’s 
group,4 in which a reactive robot con-
troller was synthesized from natu-
ral language specifications, and its 
desired and undesired behaviors were 
automatically predicted and discussed 
with developers. In industrial software 
development, automated interactive 
analysis is becoming more common, 
with notable examples including Goo-
gle’s Tricorder, Facebook’s Infer, and 
VMWare’s Review Bot tools. Using 
static analysis, these tools automati-
cally check for common types of errors 
and for violations of coding practices. 
Key tenets of these efforts, which 
must also be carried over to a WDS, 

are smooth workflow integration, effi-
ciency, and scalability. The design of 
our proof-of-concept framework5 is 
indeed aimed at achieving these prop-
erties. A more general call for action in 
this area was also expressed in a 2015 
column in the Communications of the 
ACM by Vint Cerf (then-president of 
the ACM).6

Further discussion of related work 
can be found in the supplementary 
material at www.wisdom.weizmann 
.ac.il/~harel/IEEE.wisecomputing.

The wise development suite
We now describe how a WDS will be 
involved in the development of com-
plex, yet typical, reactive systems. 
(Extending the ideas to other kinds of 
systems will be described as part of 
future research.) The WDS will be pro-
active throughout the development 
process, often assuming roles typically 
performed by humans (see Figure 1), as 
follows:

 › Requirements. It will participate 
in the elicitation, formaliza-
tion, validation, and iterative 
enrichment of requirements. 
Most notably, it will be able to 
notice requirements that were 
omitted—whether missed, 
lost, assumed to be obvious, or 
excluded intentionally but with-
out adequate documentation. 

 › Design. During design and 
implementation, it will dynam-
ically observe and analyze 
the system, using symbolic 
executions, simulations, and 
actual executions in controlled 
environments.

 › Testing and verification. Through-
out development, it will attempt 
to incrementally test and verify 
the system, constantly exploring 

IN INDUSTRIAL SOFTWARE 
DEVELOPMENT, AUTOMATED 

INTERACTIVE ANALYSIS IS BECOMING 
MORE COMMON.
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behaviors, both exhaustively 
and via suspicious use cases that 
it will proactively propose. 

 › Detection of emergent properties. 
It will detect undesired and 
conflicting behaviors, as well 
as behavior patterns that were 
not explicitly specified. For the 
latter, it will assess whether they 
are problems or advantages.

 › Cause and effect analysis. It will 
be able to hypothesize about 
causes of otherwise unexplained 
behaviors and, where needed, 
automatically offer fixes or con-
straints that avoid them.

 › Documentation. It will create 
models and documentation to 
share its growing knowledge 
with humans at appropriate 
abstraction levels.

 › Enabling runtime capabilities. Per 
meta-requirements, or con-
straints added late in develop-
ment, it will enhance the target 
system to monitor itself during 
execution, constrain behaviors, 
report problems, look ahead, and 
learn from its own past experi-
ence. It will also interact with 
users and with other systems 
to explain its actions and to 
accommodate external needs; 
for example, displaying on a 
door in a chemical plant why it is 
closed and what action can cause 
it to open.

 › Mode of interaction. It will proac-
tively initiate many of its interac-
tions with the human engineers, 
using visual representations, nat-
ural language, pseudocode, and 
conventional code, and exploit-
ing its ability to employ multiple 
levels of abstraction suitable 
for a wide range of human and 
machine stakeholders. As an 

example, consider the follow-
ing sentence, which combines 
low-level code elements, sys-
tem-level behaviors and specifi-
cations, and external user needs: 
“When this bit is turned on, that 
system-busy light starts blink-
ing, telling users they cannot 
enter new commands.”

Benefits
The most immediate benefits of hav-
ing wise development suites will be, 
of course, a significant reduction in 
the development time and cost of com-
plex systems, and much improved sys-
tem quality. This will also increase 
user and regulator confidence in sys-
tems, further expanding development 
and adoption of innovative solutions. 
Moreover, we believe that in the fur-
ther future, we will experience new 
dimensions of innovation as rich new 
capabilities and new ranges of safety 
will be initiated (and often invented!) 
by wise development environments 
rather than by humans only.

TOWARD GETTING IT DONE
How will such a WDS be built? We 
believe that the dream does not require 
a yet-to-be-discovered quantum leap 
from the state of the art. Instead, it can 
be accomplished incrementally, with 
research that, considered as a whole, 
might very well be of breakthrough 
nature, but which will also rely and build 
upon many existing ideas and tools.

The creation of a powerful ini-
tial WDS is based on three main 
cornerstones:

 › collecting, representing, and 
structuring knowledge about 
systems and problem domains 
through a common formalism (CF); 

 › conducting human-computer 
discourse about systems in natu-
ral and appealing ways through 
a special interaction language 
(IL); and 

 › rigorously analyzing and drawing 
conclusions from these knowledge 
items and interactions using a 
dedicated analysis engine (AE).

Current
practices

Stakeholders

Stakeholders

WDS

Tools

Systems

Systems

Wise
computing

(a)

(b)

FIGURE 1. System development lifecycles. Compared to current practices (a), (b) the wise 
development suite (WDS) joins the stakeholders and developers as an equal, knowl-
edgeable, proactive partner throughout the lifecycle of system and software develop-
ment projects.
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Naturally, these three research 
directions will have to be integrated 
in a comprehensive, generic, scalable, 
easy-to-use, and open tool, together 
with a corresponding methodology. 
We elaborate below, and also refer the 
reader to our article “Six (Im)possible 
Things before Breakfast: Building- 
Blocks and Design-Principles for 
Wise Computing” for an additional 
discussion.7

The common formalism: 
Representation and structuring
Wise computing will require us to 
develop application-agnostic means, 

accompanied by rigorous seman-
tics, for representing structure and 
behavior of systems and their envi-
ronment in executable specifications. 
This should cover all facets of rele-
vant information, such as behavioral 
and structural, discrete and contin-
uous, deterministic and stochas-
tic, object-centric and interobject, 
mainline behaviors and exceptions 
thereto. The representation will use 
multiple levels of abstraction, mod-
ularity at several levels of granular-
ity, and separation of concerns. It will 
also have to address the need for intu-
itive human–computer interaction, 
for fast and automated mathemati-
cally oriented analysis of all artifacts, 
and for easy incremental refinement 

and enhancement of specification 
elements.

The CF that we propose (and have 
begun to develop) will enable the 
WDS to see the “big picture” during 
all development stages, via constant 
automated analysis of the entire proj-
ect. For example, for an autonomous 
car project, using knowledge that 
includes, among other things, phys-
ics and traffic laws, it will be able to 
discover all possible causes for the car 
to overturn, including road-related 
issues, weight distribution, and driver 
actions. Central to the CF are exten-
sive, formally annotated, connections 

between entities, enabling rigorous 
application of external knowledge and 
free association, where earlier inter-
esting observations can readily drive 
a more focused automated exploration 
of related aspects.

Examples of the search for such 
new formalisms can be found in the 
introduction of hierarchical, concur-
rent state machines, namely, Stat-
echarts (see, for example, Harel’s 
early work on Statecharts and Statem-
ate8,9), and in our group’s research on 
scenario-based programming (SBP), 
where the programming idioms are 
aligned with the interobject scenar-
ios that humans often use in describ-
ing reactive systems in requirement 
documents.

To further elaborate on the latter, 
in a 2008 paper, it was suggested that 
programmers can be liberated from 
the constraints presently imposed by 
specification, design, and verification, 
and that programming computers can 
become much closer to the way we 
communicate with other persons, such 
as children, employees, or students, 
when trying to bring about desired 
behavior in others.10 This dream of 
liberating programming has yielded a 
large body of work on SBP, which origi-
nated in the language of live sequence 
charts (LSC),11,12 later being extended 
into procedural languages such as Java 
and C++ (see, for example, “Behavioral 
Programming”13 and www.b-prog.org). 
It allows natural playing-in of desired 
and forbidden scenarios, and tech-
niques and tools such as runtime look-
ahead, formal verification, automatic 
program repair, and more.

Regardless of the specific formal-
ism chosen, it seems that to be use-
ful for knowledge representation in 
a wise computing environment, the 
CF would have to allow specifying 
directly the execution scenarios that 
guide the application of such knowl-
edge to the system in question. For 
example, an expert’s knowledge of 
open-source libraries suitable for a 
certain application might be repre-
sented by the WDS as a combination 
of a data store of open-source solutions 
with an analysis and recommendation 
procedure. This approach might also 
blur the boundary between a system 
and its environment. For example, in 
the patient-care assistant robot case, 
a WDS’s growing knowledge of what 
new obstacles could look like might be 
stored in the same way as the system’s 
scenarios that actually recognize and 
navigate around such obstacles. Since 
the Statecharts and SBP formalisms 

THE CF THAT WE PROPOSE (AND HAVE 
BEGUN TO DEVELOP) WILL ENABLE THE 

WDS TO SEE THE “BIG PICTURE” DURING 
ALL DEVELOPMENT STAGES.
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deal adequately with many of the 
ways humans describe behavior in 
requirement documents and system 
specifications, we believe that with 
certain extensions (Assaf Marron’s 
paper,14 for example, describes a pos-
sible approach for combining them 
for wise-computing purposes), they 
can prove valuable in specifying many 
kinds of external knowledge and the 
meta-heuristics needed for a WDS.

An important part of the research 
needed for the CF component of the 
WDS involves ways to incorporate and 
use general software-engineering and 
domain-specific knowledge (see www 
.wisdom.weizmann.ac.il/~harel/IEEE 
.wisecomputing for discussion of prior 
research in this area, including knowl-
edge-based software engineering,15 
domain-oriented design,16 Wolfram 
Alpha,17 and Wolfram Language18). 
The necessary knowledge can be 
found in industry standards and ref-
erence documents, electronic educa-
tion materials, simulators and games 
containing world knowledge, and 
more. For example, to mimic the acute 
observer’s question regarding wires 
disrupting the patient-care assistant 
robot, one could

 › use machine learning to be able 
to identify, from documents or 
images, when a system includes 
a robot that has to move around 
in a typical indoor environment; 
and

 › specify a fixed scenario that 
asks whether the robot would 
trip over invisible obstacles 
like wires or unevenly carpeted 
floors. 

Even when not directly applicable 
to the case at hand (for example, this is 
a factory floor with no wires or carpets, 

and the robot is already programmed 
to handle the relevant obstacles), in 
many cases, just posing the ques-
tion can create a flurry of develop-
ment actions, such as enhancing and 
refining the test cases or document-
ing operational constraints and user 
responsibilities more conspicuously.

The construction of such knowl-
edge bases for the WDS will bene-
fit from collaborative efforts led by 
humans and by software agents. 
Centralized knowledge sources will 
likely be complemented by distributed 
search-and-recommend techniques, 
where advice regarding the system 
at hand is discovered from the auto-
mated, just-in-time examination of 
code, models, and documentation of 
similar systems available on the Inter-
net (see, for example, work by Robillard 
et al., Yadid and Yahav, and Zagalsky 
et al.,19–21 and the discussion at www 
.wisdom.weizmann.ac.il/~harel/IEEE 
.wisecomputing).

The interaction language: 
human–computer discourse
In addition to natural representation 
of the CF, a fully capable WDS requires 
a new IL that enables human–computer 
collaboration on all system artifacts 
and on all relevant knowledge, simi-
lar to the way project team members 
communicate among themselves. 
For example, when using the WDS to 
design an autonomous vehicle, the fol-
lowing conversation between a human 
(H) and the WDS (W) should be possi-
ble, almost verbatim:

H: “When the driver presses 
the brake pedal the brake 
light should turn on.” 

W: “Does this apply also to 
when the engine is off?”

H: “No.”

W: “Done.” 

   And later:

H: “I saw the car rolling downhill 
and stopping; how did it stop?”

W: “The driver pressed 
the brake pedal.” 

H: “Why didn’t the 
brake light go on?”

W: “The engine was off.”

H: “The light should have 
turned on anyway.” 

W: “But earlier you said no.”

H: “Ah, right. So please 
remove this exception.”

Such interactions deal simultane-
ously with requirements, program-
ming, what-if and causation scenar-
ios, and self-reflection, and they use 
the right level of detail for each (as 
opposed to, for example, showing an 
arcane and excessively detailed log of 
events). The IL will have formal exten-
sible semantics, and its underlying 
engine will interact with the user to 
resolve ambiguities.

It is important to distinguish 
between the CF and the IL. Ideally, 
the common formalism stores every-
thing that we know about the system, 
in a computer-analyzable manner. The 
interaction language is what humans 
will use to modify this storage and 
retrieve information from it. For exam-
ple, a portion of the CF might include a 
large automaton, or graph, with many 
state nodes and transition edges. In 
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addition to merely viewing visual rep-
resentations of this structure, the user 
will be able to interact about it with the 
CF via queries and commands such as 
“add an edge labeled E1 from state S1 to 
state S2,” or “is there a path from S1 to 
S3 that does not visit S2?” The IL might 
also serve as a presentation mecha-
nism for the CF, so that when such a 
graph becomes unwieldy, for example, 
it might be displayed as a list of text 
lines, or as table entries that can be 
sorted and traversed in various ways.

Although the above conversation 
script might seem like general futur-
istic machine intelligence, we believe 

that our far more restrictive subject 
matter—system development—renders  
it within reach. The piecewise asser-
tions about complex structures like 
those about properties of states, tran-
sitions, and labels thereof can com-
bine with modular compositional 
techniques like scenario-based pro-
gramming to formally define arti-
facts not readily available in existing 
languages, such as “a possible cause,” 
“a possible effect,” “an exception to a 
rule,” “a synonym,” “a situational con-
text,” and so on. Once these entities 
become well-defined, recent advances 
in programming using controlled nat-
ural language, visual formalisms, 
and programming by example would 
facilitate the first steps. In subsequent 

steps, machine learning could be used 
to translate from a wider (but still lim-
ited) range of human-provided natural 
language sentences to IL idioms, and to 
transform events and emergent proper-
ties in system behavior, as observed in 
simulations and in real execution (such 
as a car having stopped, or a light not 
having turned on, or the existence of an 
unexpected noise) into CF entities that 
can be presented, analyzed, or queried.

The analysis engine: The 
core of the WDS
Although features such as natural-
ness, unbounded abstraction, and 

separation-of-concerns of the CF and 
the IL will enable many fast knowledge- 
dependent analyses, we propose to 
create an AE to serve as the core of 
the WDS. This part of our vision, the 
“brain” of the WDS, will utilize and 
enhance the most advanced computa-
tional techniques available (for exam-
ple, model-checking, program synthe-
sis, constraint solving, and machine 
learning), to proactively and inter-
actively mimic intricate human pro-
cesses, such as free association, initia-
tive, prioritization, and even certain 
kinds of creativity. The AE will con-
stantly analyze all project artifacts, 
relevant world knowledge and rela-
tionships therein as encoded in the CF. 
It will proactively look for anomalies 

(for example, deadlocks, race condi-
tion, undue delays), interesting unex-
pected properties (for example, event 
correlations), and desired and unde-
sired patterns suggested by expe-
rience and by external knowledge. 
When it identifies relevant issues, the 
AE will drive deeper investigation, and 
suggest fixes.

Using the IL, the AE will present its 
findings clearly, concisely, and using 
appropriate abstractions, and will 
regularly receive work guidance, new 
requirements, simplifying assump-
tions, and so on. For example, the AE 
will be able to detect that an autono-
mous car is not aware of a new traffic 
sign or that it sometimes slows down 
unnecessarily, creating, in both cases, 
a collision risk. The AE will then be 
able to automatically offer program 
repairs, such as turning the legal 
requirement associated with the traf-
fic sign into program code, or detect-
ing and removing the reason for the 
slow down.

An obvious challenge to almost any 
kind of analysis is the computational 
complexity that results from the state 
explosion problem. The WDS and the 
AE will be specifically designed as fol-
lows to help cope with, or circumvent, 
this challenge in many cases.

The CF will be used to encode use-
ful heuristics, much like the means 
human developers would use to cope 
with present tool limitations in ordi-
nary projects. For example, if the WDS 
is unable to verify a commodity prod-
uct that uses face recognition in all 
possible lighting combinations speci-
fied in the CF, the stakeholders might 
specify that a certain helpful lighting 
arrangement can be assumed, sub-
stantially simplifying the verification. 
Further, existing machine learning 
techniques can be readily applied to 

A CHALLENGE TO ALMOST ANY KIND 
OF ANALYSIS IS THE COMPUTATIONAL 

COMPLEXITY THAT RESULTS FROM THE 
STATE EXPLOSION PROBLEM.
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extend such knowledge. One might 
learn the conditions under which the 
system has a low success rate or takes 
longer than would be allowed in pro-
duction for its recognition task, or 
even learn the environment settings 
under which the verification process 
requires more than the time allotted 
to it. The WDS can then propose con-
straints to be added to the CF and to 
the system’s documentation. Machine 
learning can also be used to find com-
monalities between automatically 
synthesized scenarios and CF ele-
ments, and to provide useful general-
izations and abstractions. Neverthe-
less, vast ground can be covered even 
with heuristics that are coded man-
ually, since they can be immediately 
shared across all engineering projects; 
the quantity of such heuristics is man-
ageable because they emanate from 
“human-scale” development activities, 
such as a paragraph in a requirement 
document, a discovered runtime bug, 
or a comment from an expert reviewer; 
and, like humans, the WDS would gen-
eralize such heuristics (for example, 
if the robot tripped on a nearly invisi-
ble wire, the heuristic is likely to look 
for other kinds obstacles to physical 
motion that are not readily detectable 
by the robots various sensors, such as 
visual, lidar, or sonar). Other facilities 
of the WDS will help add such require-
ments to the user manual, and help 
implement a runtime alert for when 
such conditions are not met. Further-
more, the abstractions, hierarchies 
and compositional traits of the CF will 
enable limiting certain analyses to 
appropriate components or subareas of 
the system. (We have already obtained 
some promising preliminary results 
in applying SMT solvers to the task of 
such compositional verification; see, 
for example, “Theory-Aided Model 

Checking of Concurrent Transition 
Systems”22 and references therein.)

The AE will not have to be an expert 
on everything. It will be designed 
to support multiple concurrent tar-
geted analyses, each of which might 
be limited, or guided by specific heu-
ristics, in a way that mimics the spe-
cial limited-but-focused attention a 
reviewer might apply to a particular 
aspect of the system. Such analysis 
skills will be added to the AE incre-
mentally, and could benefit from col-
laboration and reuse.

The AE will not be expected to carry 
out all manner of analysis. Thus, it 
would not always be required to find 
highly complex scenarios that could 
lead to a deadlock, or detect complex 
repeating patterns among a large 
number of events. Discovering these 
very often involves advanced verifica-
tion or machine learning techniques, 
and only rarely can be discovered 
merely by applying what one would 
call human wisdom. Instead, the AE 
will have algorithms that are geared 
to being able to ask simpler, but unex-
pected, questions, as in the examples 
throughout this article.

The previous point notwithstand-
ing, the modular nature of the AE will 
enable it to be continuously enriched 
with the latest state-of-the-art tech-
niques in verification, synthesis, and 
machine learning. 

An interim discussion
Now that we have discussed the CF, IL, 
and AE, one might ask whether success 
in the research needed to build them 
would be sufficient for achieving the 
high aspirations of wise computing. 
Also, are they necessary? For exam-
ple, could other techniques that are 
being developed, such as deep learn-
ing and program synthesis, combine 

to accomplish the same? And finally, 
are we actually saying that much of 
these components already exist today 
in some other guise?

As for novelty and necessity, at pres-
ent no common methods or methodolo-
gies can capture, automate, generalize, 
and continuously enhance competen-
cies that mimic an expert reviewer’s 
ability to make quick, yet pithy, obser-
vations (even if only in a narrow area) 
regarding a system about which they 
have only partial information, and 
using terms and abstractions that are 
understood by all stakeholders. More-
over, there are no ways to exceed the 
abilities of such experts by applying 
these competencies also in exhaustive 
analysis of all system artifacts.

As for the sufficiency of the AE, IL, 
and CF, we note that wise computing 
does not aim for automated design, 
synthesis, or verification of entire sys-
tems, but rather to provide expert val-
idation and advice continuously from 
the beginning of, and throughout, the 
development process.

A smaller-scale question is whether 
the search for “one language for every-
thing” is realistic. We believe that with 
a liberal enough definition of “lan-
guage,” the answer is positive. First, in 
a way, such languages do exist, such as 
Turing machines and English, in which 
reactive systems can be described with 
as much or as little detail as desired. 
Second, clearly a particular language 
might not be sufficiently intuitive to 
humans or sufficiently formal for com-
puter interpretation. However, these 
criteria are fluid, and because there 
is a plethora of excellent languages 
and idioms that collectively cover the 
relevant notions from knowledge, 
logic execution, sensing and actua-
tion, coordination and development 
meta-operations, and so on, it seems 
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that the raw materials for creating a 
syntax and semantics for a useful gen-
eral CF are indeed already available.

Note that wise computing does 
not require breakthrough advances 
in general natural language process-
ing and in code-generation from casu-
ally written requirement documents, 
for example. The WDS will be able to 
understand humans with regard to sys-
tem development activities, using only 
state-of-the art natural language pro-
cessing, by relying on things like con-
trolled subsets of natural language,23 
domain-specific phrasing templates and 
itemized checklists, interactive disam-
biguation, model annotations, tables 
or graphs of technical and natural lan-
guage synonyms and richer semantic 
networks (like abstractions and refine-
ment relationships), vocabularies that 
are extracted from actual models, and 
more. All of these can be gradually 
acquired by programming, by extract-
ing information from documents and 
models, or by machine learning. Addi-
tionally, we believe that smart human 

users will be able to quickly learn from 
examples and experience, and adopt 
as “natural” the idioms that are more 
readily understood by the WDS.

We do assume, though, that the sys-
tem under development is engineered 
in ways that are amenable to composi-
tion, abstraction, requirements-tracking,  
verification, and automated repair. 
This aligns with our group’s active 
research on such system engineering 
goals over several decades. Indeed, 
the initial work described in the next 
section was carried out using a par-
ticular architecture that aims at such 
purposes.

SOME INITIAL WORK
We end this vision article by briefly 
describing a very modest and prelim-
inary, proof-of-concept, wise develop-
ment suite (a mini-WDS, or mWDS), 
which illustrates some of the ideas 
we aim at. A more detailed descrip-
tion of the mWDS and a case study 
we have carried out using it appears 
in “An Initial Wise Development 

Environment for Behavioral Models.”5 
Also, up-to-date versions of the mWDS 
and the case study themselves, as well 
as prerecorded video clips demonstrat-
ing its main principles, can be found at 
www.wisdom.weizmann.ac.il/~harel 
/IEEE.wisecomputing. We particu-
larly recommend that the reader take 
the time to view the two narrated 
demo clips therein.

A modest wise development suite
The mWDS is focused on accompa-
nying the development of reactive 
systems using scenario-based pro-
gramming, where system compo-
nents are scenarios (also known as 
behavior threads). The system behav-
ior is based on events that serve as 
abstractions of physical interactions 
with the environment, which, in turn, 
are implemented, say, with classical 
sensors and actuators. Scenarios con-
trol the behavior by requesting, block-
ing, and reacting to such events,13 and 
they are executed in parallel, yielding 
cohesive system behavior. We focus 
on this model because it is simple and 
general; its idioms appear in other 
formalisms, such as certain kinds of 
publish–subscribe systems and super-
visory control; and most importantly, it 
can sometimes combine intuitiveness 
with amenability to fast automated 
analysis (see, for example, the work of 
Katz et al.22 and Harel et al.24 and ref-
erences therein), which are at the cen-
ter of the wise computing vision.

Functional components of the 
mWDS: the three sisters
The present demonstration focuses 
on a human competence that appears 
most elusive: the uninitiated noticing 
and handling of emergent properties, 
that is, observed properties that did not 
necessarily appear in the requirements 

Athena ReginaLivia

Behavioral
program

Behavioral
model

Abstraction-
refinement

Model
checking

SMT solving Specification
mining

Simulation
traces

Interactive
debugging

FIGURE 2. A high-level overview of the three sisters. The developer provides a behavioral 
program, from which Athena extracts a behavioral model. She then analyzes this model 
using abstraction-refinement, model checking, and satisfiability modulo theory solving. 
Athena also shares the behavioral model with her sisters—with Regina for the purpose of 
specification mining and with Livia for interactive debugging. The sisters also exchange 
information with one another. For instance, Regina might ask Athena to attempt to for-
mally prove an emergent property that she found.
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or documentation—either as desired 
or as forbidden ones. To this end, we 
have constructed a mini-AE built from 
three new components, which we call 
“the three sisters”—Athena, Regina, 
and Livia—as shown in Figure 2.5 
We have also made some initial steps 
toward creating basic versions of the 
CF and IL, but these are omitted here 
due to lack of space. 

Very briefly, Athena, named after 
the Greek goddess of reason, uses for-
mal tools (model-checking, satisfiability 
modulo theory [SMT] solving) to prove 
observed system properties—properties 
that should be valid for all runs.

The more “regal” Regina can initi-
ate executions of the system and con-
trol the other two wise-computing 
components. She runs multiple exe-
cutions (actually, simulations in a safe 
sandbox), collects statistical informa-
tion, and, in a form of specification 
mining, attempts to present inter-
esting conclusions to the user. These 
conclusions might not be valid for all 
runs, but they still reflect the system’s 
behavior during a large number of exe-
cutions and can thus capture what will 
happen in typical runs.

Finally, Livia works in a live online 
fashion, monitoring the system as it 
runs and prompting the user when 
it appears to be acting in undesired 
ways—for example, if a thread seems 
to be “stuck.” She can also monitor the 
system for the occurrence of specific 
scenarios (such as those marked by 
the user as undesired). In problematic 
or suspicious cases, Livia can launch 
a formal localized runtime analysis 
(using, for instance, bounded model 
checking), checking whether an error 
has truly occurred and why, or, con-
versely, finding a sequence of events 
that would allow the system to proceed 
correctly from its current state.

Workflow
The offline components, Athena and 
Regina, constantly, automatically, and 
proactively analyze the code and run 
simulated executions thereof, looking 
for emergent properties and assess-
ing them. Such properties might be 
relevant even if they do not hold for 
all runs, as they can reconfirm correct 
behavior or draw attention to problems.

Athena and Regina run continu-
ously as background processes. When-
ever they detect a fresh compilation 
of the system, they take a snapshot of 
the code and begin to analyze it. Ath-

ena performs basic verification for 
general properties (like the absence of 
deadlocks), and system-specific ones. 
Checks for additional properties, such 
as loops of generating system events 
without reacting to environment 
events, can be added incrementally 
in a modular manner. Mimicking the 
earlier insightful observation about 
having to repeat certain commands 
can be generalized as follows: look 
for scenarios or behavior patterns of 
“always after E1 do E2,” and “always 
between E1 and the next E2 there is an 
occurrence of E3.” If there is no explicit 
specification of “always before E2 do 
E3,” this might be a problem (and even 
if it is specified, this might be an error). 
She then verifies properties suggested 
by Regina, as described further below.

To accelerate the verification, and 
provide a safe, isolated simulation 
environment, Athena first generates 
an abstract model of each thread, 
based only on its external communica-
tion events and points of synchroniza-
tion with other threads, “abstracting 
away” unshared internal thread states, 
and external interface actions (see a 
specific example in the next section). 
Athena then searches these models 
for certain patterns—such as sema-
phores, shared memories, sensors, and 
actuators—and partitions the threads 
into functionally related modules. 

For additional acceleration of subse-
quent property verification, Athena 
employs module-based abstraction- 
refinement techniques.25 She tempo-
rarily abstracts away elements that 
seem unlikely to affect the outcome. If 
the verification fails, the counterexam-
ples are checked against the full model, 
and, if they are spurious, namely false 
negatives, the abstraction is refined and 
the process repeats. We are currently in 
the process of integrating SMT-based 
(theory-aided) techniques into Athena 
(see, for example, Katz et al.22) to fur-
ther improve performance.

Regina searches for system prop-
erties via specification mining. She 
runs multiple simulations of Athena’s 
abstract model and looks for patterns, 
such as events that always (or never) 

WE HAVE CONSTRUCTED A MINI-AE BUILT 
FROM THREE NEW COMPONENTS, WHICH 

WE CALL “THE THREE SISTERS”— 
ATHENA, REGINA, AND LIVIA.
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appear together; events that cause, 
prevent, or suspend the occurrence of 
other events; producer–consumer pat-
terns, and so on. This is done under 
various assumptions, such as fair ver-
sus unfair event scheduling, that is, 
allowing and disallowing starvation of 
certain system or environments behav-
iors. We plan to enhance this capability 
with techniques and tools for test case 
generation guided by coverage goals.

At present, Regina looks only for 
simple properties, and as with Ath-
ena, additional ones can be read-
ily added. Published techniques for 
mining scenario-based specifications 
from runtime event sequences are 
prime candidates for such extensions. 
Observed properties are immediately 
displayed to the user, who can imme-
diately prune trivially correct ones (“Of 
course! This is what the system was 
programmed to do!”) or trivially incor-
rect ones (“This pattern only applies to 
these particular runs, and I know why 
Regina incorrectly tried to generalize 
this, so there is no need to pursue it”), or 
follow up on hints of undesired behav-
ior (“Never mind the generality of the 
observed pattern, even in these runs 
only this shouldn’t have happened”).

Regina then proceeds to check 
whether these properties hold in gen-
eral, either on her own by checking sta-
tistically for additional simulations, 
or by passing them over to Athena for 
formal verification. Here, too, the user 
can intervene by dictating the kinds of 
verification to be carried out and their 
order, as well as additional properties 
to be checked. Figure 3 shows simple 
examples of the results displayed by 
Regina and Athena.

As the mWDS might continue 
its analysis indefinitely, the user is 
informed of verification results, 
including relevant counterexamples, 
as soon as they are available. Future 
validations can be enriched by the ver-
ified properties to ensure they survive 
system changes, or to study why other 
properties that seem desirable do not 
always hold.

Since exhaustive model check-
ing or extensive statistical checking 
of many properties will very often be 
infeasible, we complement the user’s 
selection and prioritization with heu-
ristics. For example, the mWDS iden-
tifies groups of logically equivalent, 
symmetrical, or syntactically simi-
lar properties, and analyzes only one 

representative from each. Further, 
higher priorities are assigned to prop-
erties associated with facets that are 
prone to error, such as concurrency.

When Athena’s verification runs 
out of memory or exceeds programmer- 
specified time limits, Regina can take 
over, using her more efficient but less 
accurate statistical methods.

When an undesired safety or live-
ness issue is discovered, the user may 
request Athena to synthesize a code 
fix in the form of an additional sce-
nario.25,26 Athena can also synthesize 
a monitor thread and add it to the pro-
gram, in order to report at runtime if a 
certain property is violated. For exam-
ple, recalling the example of tricking 
the home care robot into trying to lift 
a glass that is glued to the table, one 
such scenario can simply block the 
application of a pulling force that is 
greater than a certain threshold, thus 
preventing the breaking of the glass 
or the robot, and another can report 
when motion-related actions have not 
been completed within a given time 
limit, avoiding the appearance of the 
robot being stuck.

Athena also supports applying its 
ability to focus on behaviors that mat-
ter, toward thread optimization, such 
as the removal of unreachable code.

As described, the online part of the 
mWDS, Livia, is a runtime debugging 
assistant and is launched manually to 
accompany test and production runs 
of the final system.

A modest case study
We have evaluated our mini-WDS by 
using it to develop several programs, 
including the one we will present here: 
a cache-coherence protocol. Such pro-
tocols are designed to ensure consis-
tent shared memory access in a set of 
distributed processors. Each processor 

ReleaseBus (1) <--> Cache [2] : RequestBus (1) [ fails ] 

Cache [2] : RequestBus (1) --> ReleaseBus (1) [ holds ] 

Cache [2] := ( Mem [1] == 1) --> ReleaseBus (1) [ holds ]

FIGURE 3. Displays from the mini wise-development suite (mWDS) during development 
of a cache-coherence protocol application, showing emergent properties as observed by 
Regina, followed by Athena’s conclusion regarding whether they hold or not. The arrows 
indicate event implication—that the occurrence of one event implies the occurrence of the 
other a short time earlier or later. For example, the first property observed by Regina is 
“The event of ‘releasing Bus 1’ implies, and is implied by, the event of ‘Cache 2 requests 
Bus 1’.” Then, using model checking, Athena determined that this does not always hold.
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caches its results of memory reads, 
and when it writes a new value to 
the shared memory other processors 
invalidate their corresponding cache 
entries. Cache-coherence protocols 
are notoriously susceptible to concur-
rency related bugs—rendering them 
a prime candidate to benefit from a 
wise development environment. Fig-
ure 3 depicts a simple extract from the 
mWDS’s listing.

An important question we consid-
ered when preparing the case study 
was whether programming a com-
plex system while being aided by a 
proactive framework is convenient 
and/or useful. While such issues are 
highly subjective, we can report that 
we found the process useful, natural, 
and even enjoyable. Also, although 
the mWDS implements only a very 
modest portion of the wise comput-
ing vision, its integration into the 
development environment increased 
our confidence in the implementa-
tion’s correctness. Specifically, the 
mWDS reported several concurrency- 
related issues that we had overlooked 
and had to repair. And having Regina 
and Athena identify properties that 
indeed seemed natural and expected 
but were neither obvious nor redun-
dant, reassured us that we were indeed 
on the right track. Again, we recom-
mend that the reader view the recorded 
demos referred to earlier.

The verification-acceleration tech-
niques also helped. For example, in 
verifying the mutual exclusion prop-
erty “Cache 3 cannot acquire Bus 2 
repeatedly without first releasing it,” 
Athena explored about 1 million states 
in about 27 minutes. In automatic and 
proactive abstraction-refinement, it 
abstracted away other buses and ver-
ified the property, exploring only 
21,000 states in under 31 seconds.

The notion of machines that 
invent, design, and build other 
machines exists mostly in the 

realm of science fiction. However, we 
believe that computers can definitely 
help humans in doing so, and the fea-
sibility of the wise computing vision 
lends support to that belief. We are 
encouraged by our preliminary results 
on the common formalism, interaction 
language, and analysis engine, as well as 
by the mini-WDS integrative prototype. 

Clearly, a tremendous amount of 
work remains to be done, and we hope 
that researchers and practitioners 
will be inspired to undertake major 
efforts that would help bring the vision 
to fruition. 
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