
14 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

COVER FEATURE SOFTWARE ENGINEERING

David Harel, The Weizmann Institute of Science

Guy Katz, Stanford University

Rami Marelly and Assaf Marron, The Weizmann Institute of Science

A broad, long-term research project is described that will lead

to the computer becoming an equal member of the system-

development team, continuously making proactive contributions,

akin to those expected from an experienced and knowledgeable

customer or user, a conscientious QA engineer, a strict regulatory

auditor, an engineering team leader, or the organization’s CTO.

Developing reliable reactive systems is difficult
and error-prone. Deliverables can fail, bring-
ing in their wake disastrous results, far worse
than exceeding budgets and time schedules.

Consequently, a tremendous amount of work has been
put into simplifying and automating key system and
software engineering tasks. This has included high-
level languages and methodologies for modeling and
programming, and methods and tools for requirements
engineering, test generation, and verification.

However, humans are still limited in their effort
to maintain a comprehensive picture of the elements

and behaviors of a complex system, and of the relevant
domain knowledge. This is exacerbated by the state
explosion problem, which prevents exhaustive analysis
of all possible behaviors. New algorithms, languages,
and tools contribute somewhat to tackling these issues,
but the smooth development of reliable complex reactive
systems remains a major, and critical, moving target.

The severity of this gap is bothersome not only to
engineering and computer-science professionals. Severe
problems are found routinely in new versions of pop-
ular everyday products, ranging from failing to meet
some basic customer need, through malfunctioning

Wise Computing:
Toward Endowing System
Development with
Proactive Wisdom

 F E B R U A R Y 2 0 1 8 15

in a routine use case, to having a
hard-to-find but dangerous security
vulnerability. It is particularly discon-
certing in view of the fact that such
flaws or imperfections are discovered
quite quickly by expert critics and
reviewers.

The time has come for a major
change in how complex systems are
developed, providing a major empow-
erment of the development environ-
ment, and shifting the power balance
between it and human engineers.
Relying on powerful computational
tools, on computerized versions of cer-
tain human-like competencies, and on
knowledge in system development,
the development environment will
become a lot more creative and proac-
tive, will interact with the developers
in more natural ways, and will, ideally,
join the development team as an equal
partner. We term our vision wise com-
puting, and it is built upon an earlier
preliminary outline.1

PROACTIVE WISDOM
Imagine being invited by a commercial
company or a research group to review
their latest product, which they deem to
be perfect, developed by their best engi-
neers using the best tools and the best
methodologies. As a specific example,
say the product was a voice-operated
medical-assistant robot in charge of
home patient care. The intellectual
challenge of discovering faults and
omissions in the product under review
is irresistible, and your mind is busy
trying to come up with questions or
raise issues that might hide previously
unnoticed flaws, such as

 › “What accents can the robot
deal with? Will it understand a
hoarse patient’s speech?”

 › “Will the noise of a loud TV

confuse it? And what if a phrase
spoken on the TV show happens
to be a robot command?”

 › “If I trick it, asking it to fetch a
glass that is glued to the table,
will the robot or the glass break?
Will the robot be confused?”

 › “Can the robot see and avoid a
thin wire, say, when the patient
is walking around with a phone
or a medical device connected by
a cord?”

 › “It seems that voice commands
to abandon the current task
had to be repeated twice, which
was rarely the case with other
commands.”

 › “I have heard about a major
security vulnerability in the
open-source library that the
robot uses for vision. Was the fix
applied?”

Indeed, with today’s engineering
practices, such questions and chal-
lenges would be most welcome in
review sessions and would become
valuable in improving the product; fail-
ures associated with them would not
necessarily embarrass the designers.

Wouldn’t it be nice if the software
development environment could help
discover such issues itself, and then
contribute to addressing them too?

As another example, consider the
development of a system for con-
trolling a chemical plant. The wise
development environment will be able
to identify, on its own, the absence
of a requirement to notice the loss
of communication with a tempera-
ture sensor. Further, it will explain
that whenever current temperature is
unknown, a certain door will be kept
shut to reduce the risk of fire. At run-
time, the system will recommend that
before opening the door manually,

one should check for fire on the other
side. This interaction will be carried
out using high-level problem-domain
abstractions, similar to the English
terms used in the list of examples
above, independently of the technical
terms used within the system model.

The development environment will
be able to answer what-if questions,
such as “what happens if the tempera-
ture sensor malfunctions?” as well as
check a variety of behaviors and prop-
erties on its own, proactively alerting
developers to problems; for example,
that an alarm device previously dedi-
cated to one situation is used also for
another situation, possibly confusing
human operators. It would also pro-
pose changes, explaining their impact
and advantages.

During system maintenance,
requests for new functionality—such
as to deal with a new regulation for
remote monitoring—would be stated
in intuitive textual or visual interfaces.
The development environment would
then list affected components and pro-
pose required modifications. Indeed,
even the mere confirmation that such
functionality does not already exist
would be extremely valuable.

THE WISE COMPUTING
VISION
Wise computing extends the vision
of MIT’s Programmer’s Apprentice
(PA) project (circa 1970s–1990), which
aimed to assist expert programmers
by automatically developing code for
requirements that follow known pat-
terns (clichés):

The long term goal [of the PA] is
to develop a theory of how expert
programmers analyze, synthe-
size, modify, explain, specify,
verify, and document programs.

16 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

This is basic research at the
intersection of artificial intelli-
gence and system engineering.2

In the outlook toward wise comput-
ing, we seek to achieve and exceed the
above goals via what we term a wise
development suite (WDS). Specifically,
today, human–machine interaction
in system engineering relies mostly
on a one-way initiative: the humans
instruct or query the computer, while
the computer “just” makes an effort to
understand and do what the humans
had in mind. Moreover, the competen-
cies of the computer are presently more
limited than those applied by humans

when planning new systems or dis-
cussing development tasks. In the
future, the WDS will initiate actions
and suggestions based on deep knowl-
edge and understanding of a broader
range of goals and constraints than is
possible today; in particular, covering
knowledge that is not captured in the
specification or code of the system at
hand but, rather, comes from domain
expertise or general world knowledge
and human experience.

This forward leap will be enabled
both by new research, described
later, and by leveraging and inte-
grating advances in hardware speed;
programming and modeling for-
malisms; verification and analysis

algorithms; program synthesis; nat-
ural language processing; machine
learning; and knowledge acquisition
and processing.

While it is only natural to conjecture
that the hurdles to wise computing are
insurmountable and that the dream of
a WDS is just that, a dream, the validity
of the current pursuit is supported by
various efforts. For example, soon after
our January 2015 preliminary tech-
nical report on wise computing was
published in arXiv.org,1 a paper by the
PA team showed a renewed interest in
the PA line of research, describing new
capabilities in natural language pro-
cessing, domain-specific knowledge,

and code generation.3 Another exam-
ple is the work by Hadas Kress-Gazit’s
group,4 in which a reactive robot con-
troller was synthesized from natu-
ral language specifications, and its
desired and undesired behaviors were
automatically predicted and discussed
with developers. In industrial software
development, automated interactive
analysis is becoming more common,
with notable examples including Goo-
gle’s Tricorder, Facebook’s Infer, and
VMWare’s Review Bot tools. Using
static analysis, these tools automati-
cally check for common types of errors
and for violations of coding practices.
Key tenets of these efforts, which
must also be carried over to a WDS,

are smooth workflow integration, effi-
ciency, and scalability. The design of
our proof-of-concept framework5 is
indeed aimed at achieving these prop-
erties. A more general call for action in
this area was also expressed in a 2015
column in the Communications of the
ACM by Vint Cerf (then-president of
the ACM).6

Further discussion of related work
can be found in the supplementary
material at www.wisdom.weizmann
.ac.il/~harel/IEEE.wisecomputing.

The wise development suite
We now describe how a WDS will be
involved in the development of com-
plex, yet typical, reactive systems.
(Extending the ideas to other kinds of
systems will be described as part of
future research.) The WDS will be pro-
active throughout the development
process, often assuming roles typically
performed by humans (see Figure 1), as
follows:

 › Requirements. It will participate
in the elicitation, formaliza-
tion, validation, and iterative
enrichment of requirements.
Most notably, it will be able to
notice requirements that were
omitted—whether missed,
lost, assumed to be obvious, or
excluded intentionally but with-
out adequate documentation.

 › Design. During design and
implementation, it will dynam-
ically observe and analyze
the system, using symbolic
executions, simulations, and
actual executions in controlled
environments.

 › Testing and verification. Through-
out development, it will attempt
to incrementally test and verify
the system, constantly exploring

IN INDUSTRIAL SOFTWARE
DEVELOPMENT, AUTOMATED

INTERACTIVE ANALYSIS IS BECOMING
MORE COMMON.

 F E B R U A R Y 2 0 1 8 17

behaviors, both exhaustively
and via suspicious use cases that
it will proactively propose.

 › Detection of emergent properties.
It will detect undesired and
conflicting behaviors, as well
as behavior patterns that were
not explicitly specified. For the
latter, it will assess whether they
are problems or advantages.

 › Cause and effect analysis. It will
be able to hypothesize about
causes of otherwise unexplained
behaviors and, where needed,
automatically offer fixes or con-
straints that avoid them.

 › Documentation. It will create
models and documentation to
share its growing knowledge
with humans at appropriate
abstraction levels.

 › Enabling runtime capabilities. Per
meta-requirements, or con-
straints added late in develop-
ment, it will enhance the target
system to monitor itself during
execution, constrain behaviors,
report problems, look ahead, and
learn from its own past experi-
ence. It will also interact with
users and with other systems
to explain its actions and to
accommodate external needs;
for example, displaying on a
door in a chemical plant why it is
closed and what action can cause
it to open.

 › Mode of interaction. It will proac-
tively initiate many of its interac-
tions with the human engineers,
using visual representations, nat-
ural language, pseudocode, and
conventional code, and exploit-
ing its ability to employ multiple
levels of abstraction suitable
for a wide range of human and
machine stakeholders. As an

example, consider the follow-
ing sentence, which combines
low-level code elements, sys-
tem-level behaviors and specifi-
cations, and external user needs:
“When this bit is turned on, that
system-busy light starts blink-
ing, telling users they cannot
enter new commands.”

Benefits
The most immediate benefits of hav-
ing wise development suites will be,
of course, a significant reduction in
the development time and cost of com-
plex systems, and much improved sys-
tem quality. This will also increase
user and regulator confidence in sys-
tems, further expanding development
and adoption of innovative solutions.
Moreover, we believe that in the fur-
ther future, we will experience new
dimensions of innovation as rich new
capabilities and new ranges of safety
will be initiated (and often invented!)
by wise development environments
rather than by humans only.

TOWARD GETTING IT DONE
How will such a WDS be built? We
believe that the dream does not require
a yet-to-be-discovered quantum leap
from the state of the art. Instead, it can
be accomplished incrementally, with
research that, considered as a whole,
might very well be of breakthrough
nature, but which will also rely and build
upon many existing ideas and tools.

The creation of a powerful ini-
tial WDS is based on three main
cornerstones:

 › collecting, representing, and
structuring knowledge about
systems and problem domains
through a common formalism (CF);

 › conducting human-computer
discourse about systems in natu-
ral and appealing ways through
a special interaction language
(IL); and

 › rigorously analyzing and drawing
conclusions from these knowledge
items and interactions using a
dedicated analysis engine (AE).

Current
practices

Stakeholders

Stakeholders

WDS

Tools

Systems

Systems

Wise
computing

(a)

(b)

FIGURE 1. System development lifecycles. Compared to current practices (a), (b) the wise
development suite (WDS) joins the stakeholders and developers as an equal, knowl-
edgeable, proactive partner throughout the lifecycle of system and software develop-
ment projects.

18 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

Naturally, these three research
directions will have to be integrated
in a comprehensive, generic, scalable,
easy-to-use, and open tool, together
with a corresponding methodology.
We elaborate below, and also refer the
reader to our article “Six (Im)possible
Things before Breakfast: Building-
Blocks and Design-Principles for
Wise Computing” for an additional
discussion.7

The common formalism:
Representation and structuring
Wise computing will require us to
develop application-agnostic means,

accompanied by rigorous seman-
tics, for representing structure and
behavior of systems and their envi-
ronment in executable specifications.
This should cover all facets of rele-
vant information, such as behavioral
and structural, discrete and contin-
uous, deterministic and stochas-
tic, object-centric and interobject,
mainline behaviors and exceptions
thereto. The representation will use
multiple levels of abstraction, mod-
ularity at several levels of granular-
ity, and separation of concerns. It will
also have to address the need for intu-
itive human–computer interaction,
for fast and automated mathemati-
cally oriented analysis of all artifacts,
and for easy incremental refinement

and enhancement of specification
elements.

The CF that we propose (and have
begun to develop) will enable the
WDS to see the “big picture” during
all development stages, via constant
automated analysis of the entire proj-
ect. For example, for an autonomous
car project, using knowledge that
includes, among other things, phys-
ics and traffic laws, it will be able to
discover all possible causes for the car
to overturn, including road-related
issues, weight distribution, and driver
actions. Central to the CF are exten-
sive, formally annotated, connections

between entities, enabling rigorous
application of external knowledge and
free association, where earlier inter-
esting observations can readily drive
a more focused automated exploration
of related aspects.

Examples of the search for such
new formalisms can be found in the
introduction of hierarchical, concur-
rent state machines, namely, Stat-
echarts (see, for example, Harel’s
early work on Statecharts and Statem-
ate8,9), and in our group’s research on
scenario-based programming (SBP),
where the programming idioms are
aligned with the interobject scenar-
ios that humans often use in describ-
ing reactive systems in requirement
documents.

To further elaborate on the latter,
in a 2008 paper, it was suggested that
programmers can be liberated from
the constraints presently imposed by
specification, design, and verification,
and that programming computers can
become much closer to the way we
communicate with other persons, such
as children, employees, or students,
when trying to bring about desired
behavior in others.10 This dream of
liberating programming has yielded a
large body of work on SBP, which origi-
nated in the language of live sequence
charts (LSC),11,12 later being extended
into procedural languages such as Java
and C++ (see, for example, “Behavioral
Programming”13 and www.b-prog.org).
It allows natural playing-in of desired
and forbidden scenarios, and tech-
niques and tools such as runtime look-
ahead, formal verification, automatic
program repair, and more.

Regardless of the specific formal-
ism chosen, it seems that to be use-
ful for knowledge representation in
a wise computing environment, the
CF would have to allow specifying
directly the execution scenarios that
guide the application of such knowl-
edge to the system in question. For
example, an expert’s knowledge of
open-source libraries suitable for a
certain application might be repre-
sented by the WDS as a combination
of a data store of open-source solutions
with an analysis and recommendation
procedure. This approach might also
blur the boundary between a system
and its environment. For example, in
the patient-care assistant robot case,
a WDS’s growing knowledge of what
new obstacles could look like might be
stored in the same way as the system’s
scenarios that actually recognize and
navigate around such obstacles. Since
the Statecharts and SBP formalisms

THE CF THAT WE PROPOSE (AND HAVE
BEGUN TO DEVELOP) WILL ENABLE THE

WDS TO SEE THE “BIG PICTURE” DURING
ALL DEVELOPMENT STAGES.

 F E B R U A R Y 2 0 1 8 19

deal adequately with many of the
ways humans describe behavior in
requirement documents and system
specifications, we believe that with
certain extensions (Assaf Marron’s
paper,14 for example, describes a pos-
sible approach for combining them
for wise-computing purposes), they
can prove valuable in specifying many
kinds of external knowledge and the
meta-heuristics needed for a WDS.

An important part of the research
needed for the CF component of the
WDS involves ways to incorporate and
use general software-engineering and
domain-specific knowledge (see www
.wisdom.weizmann.ac.il/~harel/IEEE
.wisecomputing for discussion of prior
research in this area, including knowl-
edge-based software engineering,15
domain-oriented design,16 Wolfram
Alpha,17 and Wolfram Language18).
The necessary knowledge can be
found in industry standards and ref-
erence documents, electronic educa-
tion materials, simulators and games
containing world knowledge, and
more. For example, to mimic the acute
observer’s question regarding wires
disrupting the patient-care assistant
robot, one could

 › use machine learning to be able
to identify, from documents or
images, when a system includes
a robot that has to move around
in a typical indoor environment;
and

 › specify a fixed scenario that
asks whether the robot would
trip over invisible obstacles
like wires or unevenly carpeted
floors.

Even when not directly applicable
to the case at hand (for example, this is
a factory floor with no wires or carpets,

and the robot is already programmed
to handle the relevant obstacles), in
many cases, just posing the ques-
tion can create a flurry of develop-
ment actions, such as enhancing and
refining the test cases or document-
ing operational constraints and user
responsibilities more conspicuously.

The construction of such knowl-
edge bases for the WDS will bene-
fit from collaborative efforts led by
humans and by software agents.
Centralized knowledge sources will
likely be complemented by distributed
search-and-recommend techniques,
where advice regarding the system
at hand is discovered from the auto-
mated, just-in-time examination of
code, models, and documentation of
similar systems available on the Inter-
net (see, for example, work by Robillard
et al., Yadid and Yahav, and Zagalsky
et al.,19–21 and the discussion at www
.wisdom.weizmann.ac.il/~harel/IEEE
.wisecomputing).

The interaction language:
human–computer discourse
In addition to natural representation
of the CF, a fully capable WDS requires
a new IL that enables human–computer
collaboration on all system artifacts
and on all relevant knowledge, simi-
lar to the way project team members
communicate among themselves.
For example, when using the WDS to
design an autonomous vehicle, the fol-
lowing conversation between a human
(H) and the WDS (W) should be possi-
ble, almost verbatim:

H: “When the driver presses
the brake pedal the brake
light should turn on.”

W: “Does this apply also to
when the engine is off?”

H: “No.”

W: “Done.”

 And later:

H: “I saw the car rolling downhill
and stopping; how did it stop?”

W: “The driver pressed
the brake pedal.”

H: “Why didn’t the
brake light go on?”

W: “The engine was off.”

H: “The light should have
turned on anyway.”

W: “But earlier you said no.”

H: “Ah, right. So please
remove this exception.”

Such interactions deal simultane-
ously with requirements, program-
ming, what-if and causation scenar-
ios, and self-reflection, and they use
the right level of detail for each (as
opposed to, for example, showing an
arcane and excessively detailed log of
events). The IL will have formal exten-
sible semantics, and its underlying
engine will interact with the user to
resolve ambiguities.

It is important to distinguish
between the CF and the IL. Ideally,
the common formalism stores every-
thing that we know about the system,
in a computer-analyzable manner. The
interaction language is what humans
will use to modify this storage and
retrieve information from it. For exam-
ple, a portion of the CF might include a
large automaton, or graph, with many
state nodes and transition edges. In

20 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

addition to merely viewing visual rep-
resentations of this structure, the user
will be able to interact about it with the
CF via queries and commands such as
“add an edge labeled E1 from state S1 to
state S2,” or “is there a path from S1 to
S3 that does not visit S2?” The IL might
also serve as a presentation mecha-
nism for the CF, so that when such a
graph becomes unwieldy, for example,
it might be displayed as a list of text
lines, or as table entries that can be
sorted and traversed in various ways.

Although the above conversation
script might seem like general futur-
istic machine intelligence, we believe

that our far more restrictive subject
matter—system development—renders
it within reach. The piecewise asser-
tions about complex structures like
those about properties of states, tran-
sitions, and labels thereof can com-
bine with modular compositional
techniques like scenario-based pro-
gramming to formally define arti-
facts not readily available in existing
languages, such as “a possible cause,”
“a possible effect,” “an exception to a
rule,” “a synonym,” “a situational con-
text,” and so on. Once these entities
become well-defined, recent advances
in programming using controlled nat-
ural language, visual formalisms,
and programming by example would
facilitate the first steps. In subsequent

steps, machine learning could be used
to translate from a wider (but still lim-
ited) range of human-provided natural
language sentences to IL idioms, and to
transform events and emergent proper-
ties in system behavior, as observed in
simulations and in real execution (such
as a car having stopped, or a light not
having turned on, or the existence of an
unexpected noise) into CF entities that
can be presented, analyzed, or queried.

The analysis engine: The
core of the WDS
Although features such as natural-
ness, unbounded abstraction, and

separation-of-concerns of the CF and
the IL will enable many fast knowledge-
dependent analyses, we propose to
create an AE to serve as the core of
the WDS. This part of our vision, the
“brain” of the WDS, will utilize and
enhance the most advanced computa-
tional techniques available (for exam-
ple, model-checking, program synthe-
sis, constraint solving, and machine
learning), to proactively and inter-
actively mimic intricate human pro-
cesses, such as free association, initia-
tive, prioritization, and even certain
kinds of creativity. The AE will con-
stantly analyze all project artifacts,
relevant world knowledge and rela-
tionships therein as encoded in the CF.
It will proactively look for anomalies

(for example, deadlocks, race condi-
tion, undue delays), interesting unex-
pected properties (for example, event
correlations), and desired and unde-
sired patterns suggested by expe-
rience and by external knowledge.
When it identifies relevant issues, the
AE will drive deeper investigation, and
suggest fixes.

Using the IL, the AE will present its
findings clearly, concisely, and using
appropriate abstractions, and will
regularly receive work guidance, new
requirements, simplifying assump-
tions, and so on. For example, the AE
will be able to detect that an autono-
mous car is not aware of a new traffic
sign or that it sometimes slows down
unnecessarily, creating, in both cases,
a collision risk. The AE will then be
able to automatically offer program
repairs, such as turning the legal
requirement associated with the traf-
fic sign into program code, or detect-
ing and removing the reason for the
slow down.

An obvious challenge to almost any
kind of analysis is the computational
complexity that results from the state
explosion problem. The WDS and the
AE will be specifically designed as fol-
lows to help cope with, or circumvent,
this challenge in many cases.

The CF will be used to encode use-
ful heuristics, much like the means
human developers would use to cope
with present tool limitations in ordi-
nary projects. For example, if the WDS
is unable to verify a commodity prod-
uct that uses face recognition in all
possible lighting combinations speci-
fied in the CF, the stakeholders might
specify that a certain helpful lighting
arrangement can be assumed, sub-
stantially simplifying the verification.
Further, existing machine learning
techniques can be readily applied to

A CHALLENGE TO ALMOST ANY KIND
OF ANALYSIS IS THE COMPUTATIONAL

COMPLEXITY THAT RESULTS FROM THE
STATE EXPLOSION PROBLEM.

 F E B R U A R Y 2 0 1 8 21

extend such knowledge. One might
learn the conditions under which the
system has a low success rate or takes
longer than would be allowed in pro-
duction for its recognition task, or
even learn the environment settings
under which the verification process
requires more than the time allotted
to it. The WDS can then propose con-
straints to be added to the CF and to
the system’s documentation. Machine
learning can also be used to find com-
monalities between automatically
synthesized scenarios and CF ele-
ments, and to provide useful general-
izations and abstractions. Neverthe-
less, vast ground can be covered even
with heuristics that are coded man-
ually, since they can be immediately
shared across all engineering projects;
the quantity of such heuristics is man-
ageable because they emanate from
“human-scale” development activities,
such as a paragraph in a requirement
document, a discovered runtime bug,
or a comment from an expert reviewer;
and, like humans, the WDS would gen-
eralize such heuristics (for example,
if the robot tripped on a nearly invisi-
ble wire, the heuristic is likely to look
for other kinds obstacles to physical
motion that are not readily detectable
by the robots various sensors, such as
visual, lidar, or sonar). Other facilities
of the WDS will help add such require-
ments to the user manual, and help
implement a runtime alert for when
such conditions are not met. Further-
more, the abstractions, hierarchies
and compositional traits of the CF will
enable limiting certain analyses to
appropriate components or subareas of
the system. (We have already obtained
some promising preliminary results
in applying SMT solvers to the task of
such compositional verification; see,
for example, “Theory-Aided Model

Checking of Concurrent Transition
Systems”22 and references therein.)

The AE will not have to be an expert
on everything. It will be designed
to support multiple concurrent tar-
geted analyses, each of which might
be limited, or guided by specific heu-
ristics, in a way that mimics the spe-
cial limited-but-focused attention a
reviewer might apply to a particular
aspect of the system. Such analysis
skills will be added to the AE incre-
mentally, and could benefit from col-
laboration and reuse.

The AE will not be expected to carry
out all manner of analysis. Thus, it
would not always be required to find
highly complex scenarios that could
lead to a deadlock, or detect complex
repeating patterns among a large
number of events. Discovering these
very often involves advanced verifica-
tion or machine learning techniques,
and only rarely can be discovered
merely by applying what one would
call human wisdom. Instead, the AE
will have algorithms that are geared
to being able to ask simpler, but unex-
pected, questions, as in the examples
throughout this article.

The previous point notwithstand-
ing, the modular nature of the AE will
enable it to be continuously enriched
with the latest state-of-the-art tech-
niques in verification, synthesis, and
machine learning.

An interim discussion
Now that we have discussed the CF, IL,
and AE, one might ask whether success
in the research needed to build them
would be sufficient for achieving the
high aspirations of wise computing.
Also, are they necessary? For exam-
ple, could other techniques that are
being developed, such as deep learn-
ing and program synthesis, combine

to accomplish the same? And finally,
are we actually saying that much of
these components already exist today
in some other guise?

As for novelty and necessity, at pres-
ent no common methods or methodolo-
gies can capture, automate, generalize,
and continuously enhance competen-
cies that mimic an expert reviewer’s
ability to make quick, yet pithy, obser-
vations (even if only in a narrow area)
regarding a system about which they
have only partial information, and
using terms and abstractions that are
understood by all stakeholders. More-
over, there are no ways to exceed the
abilities of such experts by applying
these competencies also in exhaustive
analysis of all system artifacts.

As for the sufficiency of the AE, IL,
and CF, we note that wise computing
does not aim for automated design,
synthesis, or verification of entire sys-
tems, but rather to provide expert val-
idation and advice continuously from
the beginning of, and throughout, the
development process.

A smaller-scale question is whether
the search for “one language for every-
thing” is realistic. We believe that with
a liberal enough definition of “lan-
guage,” the answer is positive. First, in
a way, such languages do exist, such as
Turing machines and English, in which
reactive systems can be described with
as much or as little detail as desired.
Second, clearly a particular language
might not be sufficiently intuitive to
humans or sufficiently formal for com-
puter interpretation. However, these
criteria are fluid, and because there
is a plethora of excellent languages
and idioms that collectively cover the
relevant notions from knowledge,
logic execution, sensing and actua-
tion, coordination and development
meta-operations, and so on, it seems

22 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

that the raw materials for creating a
syntax and semantics for a useful gen-
eral CF are indeed already available.

Note that wise computing does
not require breakthrough advances
in general natural language process-
ing and in code-generation from casu-
ally written requirement documents,
for example. The WDS will be able to
understand humans with regard to sys-
tem development activities, using only
state-of-the art natural language pro-
cessing, by relying on things like con-
trolled subsets of natural language,23
domain-specific phrasing templates and
itemized checklists, interactive disam-
biguation, model annotations, tables
or graphs of technical and natural lan-
guage synonyms and richer semantic
networks (like abstractions and refine-
ment relationships), vocabularies that
are extracted from actual models, and
more. All of these can be gradually
acquired by programming, by extract-
ing information from documents and
models, or by machine learning. Addi-
tionally, we believe that smart human

users will be able to quickly learn from
examples and experience, and adopt
as “natural” the idioms that are more
readily understood by the WDS.

We do assume, though, that the sys-
tem under development is engineered
in ways that are amenable to composi-
tion, abstraction, requirements-tracking,
verification, and automated repair.
This aligns with our group’s active
research on such system engineering
goals over several decades. Indeed,
the initial work described in the next
section was carried out using a par-
ticular architecture that aims at such
purposes.

SOME INITIAL WORK
We end this vision article by briefly
describing a very modest and prelim-
inary, proof-of-concept, wise develop-
ment suite (a mini-WDS, or mWDS),
which illustrates some of the ideas
we aim at. A more detailed descrip-
tion of the mWDS and a case study
we have carried out using it appears
in “An Initial Wise Development

Environment for Behavioral Models.”5
Also, up-to-date versions of the mWDS
and the case study themselves, as well
as prerecorded video clips demonstrat-
ing its main principles, can be found at
www.wisdom.weizmann.ac.il/~harel
/IEEE.wisecomputing. We particu-
larly recommend that the reader take
the time to view the two narrated
demo clips therein.

A modest wise development suite
The mWDS is focused on accompa-
nying the development of reactive
systems using scenario-based pro-
gramming, where system compo-
nents are scenarios (also known as
behavior threads). The system behav-
ior is based on events that serve as
abstractions of physical interactions
with the environment, which, in turn,
are implemented, say, with classical
sensors and actuators. Scenarios con-
trol the behavior by requesting, block-
ing, and reacting to such events,13 and
they are executed in parallel, yielding
cohesive system behavior. We focus
on this model because it is simple and
general; its idioms appear in other
formalisms, such as certain kinds of
publish–subscribe systems and super-
visory control; and most importantly, it
can sometimes combine intuitiveness
with amenability to fast automated
analysis (see, for example, the work of
Katz et al.22 and Harel et al.24 and ref-
erences therein), which are at the cen-
ter of the wise computing vision.

Functional components of the
mWDS: the three sisters
The present demonstration focuses
on a human competence that appears
most elusive: the uninitiated noticing
and handling of emergent properties,
that is, observed properties that did not
necessarily appear in the requirements

Athena ReginaLivia

Behavioral
program

Behavioral
model

Abstraction-
refinement

Model
checking

SMT solving Specification
mining

Simulation
traces

Interactive
debugging

FIGURE 2. A high-level overview of the three sisters. The developer provides a behavioral
program, from which Athena extracts a behavioral model. She then analyzes this model
using abstraction-refinement, model checking, and satisfiability modulo theory solving.
Athena also shares the behavioral model with her sisters—with Regina for the purpose of
specification mining and with Livia for interactive debugging. The sisters also exchange
information with one another. For instance, Regina might ask Athena to attempt to for-
mally prove an emergent property that she found.

 F E B R U A R Y 2 0 1 8 23

or documentation—either as desired
or as forbidden ones. To this end, we
have constructed a mini-AE built from
three new components, which we call
“the three sisters”—Athena, Regina,
and Livia—as shown in Figure 2.5
We have also made some initial steps
toward creating basic versions of the
CF and IL, but these are omitted here
due to lack of space.

Very briefly, Athena, named after
the Greek goddess of reason, uses for-
mal tools (model-checking, satisfiability
modulo theory [SMT] solving) to prove
observed system properties—properties
that should be valid for all runs.

The more “regal” Regina can initi-
ate executions of the system and con-
trol the other two wise-computing
components. She runs multiple exe-
cutions (actually, simulations in a safe
sandbox), collects statistical informa-
tion, and, in a form of specification
mining, attempts to present inter-
esting conclusions to the user. These
conclusions might not be valid for all
runs, but they still reflect the system’s
behavior during a large number of exe-
cutions and can thus capture what will
happen in typical runs.

Finally, Livia works in a live online
fashion, monitoring the system as it
runs and prompting the user when
it appears to be acting in undesired
ways—for example, if a thread seems
to be “stuck.” She can also monitor the
system for the occurrence of specific
scenarios (such as those marked by
the user as undesired). In problematic
or suspicious cases, Livia can launch
a formal localized runtime analysis
(using, for instance, bounded model
checking), checking whether an error
has truly occurred and why, or, con-
versely, finding a sequence of events
that would allow the system to proceed
correctly from its current state.

Workflow
The offline components, Athena and
Regina, constantly, automatically, and
proactively analyze the code and run
simulated executions thereof, looking
for emergent properties and assess-
ing them. Such properties might be
relevant even if they do not hold for
all runs, as they can reconfirm correct
behavior or draw attention to problems.

Athena and Regina run continu-
ously as background processes. When-
ever they detect a fresh compilation
of the system, they take a snapshot of
the code and begin to analyze it. Ath-

ena performs basic verification for
general properties (like the absence of
deadlocks), and system-specific ones.
Checks for additional properties, such
as loops of generating system events
without reacting to environment
events, can be added incrementally
in a modular manner. Mimicking the
earlier insightful observation about
having to repeat certain commands
can be generalized as follows: look
for scenarios or behavior patterns of
“always after E1 do E2,” and “always
between E1 and the next E2 there is an
occurrence of E3.” If there is no explicit
specification of “always before E2 do
E3,” this might be a problem (and even
if it is specified, this might be an error).
She then verifies properties suggested
by Regina, as described further below.

To accelerate the verification, and
provide a safe, isolated simulation
environment, Athena first generates
an abstract model of each thread,
based only on its external communica-
tion events and points of synchroniza-
tion with other threads, “abstracting
away” unshared internal thread states,
and external interface actions (see a
specific example in the next section).
Athena then searches these models
for certain patterns—such as sema-
phores, shared memories, sensors, and
actuators—and partitions the threads
into functionally related modules.

For additional acceleration of subse-
quent property verification, Athena
employs module-based abstraction-
refinement techniques.25 She tempo-
rarily abstracts away elements that
seem unlikely to affect the outcome. If
the verification fails, the counterexam-
ples are checked against the full model,
and, if they are spurious, namely false
negatives, the abstraction is refined and
the process repeats. We are currently in
the process of integrating SMT-based
(theory-aided) techniques into Athena
(see, for example, Katz et al.22) to fur-
ther improve performance.

Regina searches for system prop-
erties via specification mining. She
runs multiple simulations of Athena’s
abstract model and looks for patterns,
such as events that always (or never)

WE HAVE CONSTRUCTED A MINI-AE BUILT
FROM THREE NEW COMPONENTS, WHICH

WE CALL “THE THREE SISTERS”—
ATHENA, REGINA, AND LIVIA.

24 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

appear together; events that cause,
prevent, or suspend the occurrence of
other events; producer–consumer pat-
terns, and so on. This is done under
various assumptions, such as fair ver-
sus unfair event scheduling, that is,
allowing and disallowing starvation of
certain system or environments behav-
iors. We plan to enhance this capability
with techniques and tools for test case
generation guided by coverage goals.

At present, Regina looks only for
simple properties, and as with Ath-
ena, additional ones can be read-
ily added. Published techniques for
mining scenario-based specifications
from runtime event sequences are
prime candidates for such extensions.
Observed properties are immediately
displayed to the user, who can imme-
diately prune trivially correct ones (“Of
course! This is what the system was
programmed to do!”) or trivially incor-
rect ones (“This pattern only applies to
these particular runs, and I know why
Regina incorrectly tried to generalize
this, so there is no need to pursue it”), or
follow up on hints of undesired behav-
ior (“Never mind the generality of the
observed pattern, even in these runs
only this shouldn’t have happened”).

Regina then proceeds to check
whether these properties hold in gen-
eral, either on her own by checking sta-
tistically for additional simulations,
or by passing them over to Athena for
formal verification. Here, too, the user
can intervene by dictating the kinds of
verification to be carried out and their
order, as well as additional properties
to be checked. Figure 3 shows simple
examples of the results displayed by
Regina and Athena.

As the mWDS might continue
its analysis indefinitely, the user is
informed of verification results,
including relevant counterexamples,
as soon as they are available. Future
validations can be enriched by the ver-
ified properties to ensure they survive
system changes, or to study why other
properties that seem desirable do not
always hold.

Since exhaustive model check-
ing or extensive statistical checking
of many properties will very often be
infeasible, we complement the user’s
selection and prioritization with heu-
ristics. For example, the mWDS iden-
tifies groups of logically equivalent,
symmetrical, or syntactically simi-
lar properties, and analyzes only one

representative from each. Further,
higher priorities are assigned to prop-
erties associated with facets that are
prone to error, such as concurrency.

When Athena’s verification runs
out of memory or exceeds programmer-
specified time limits, Regina can take
over, using her more efficient but less
accurate statistical methods.

When an undesired safety or live-
ness issue is discovered, the user may
request Athena to synthesize a code
fix in the form of an additional sce-
nario.25,26 Athena can also synthesize
a monitor thread and add it to the pro-
gram, in order to report at runtime if a
certain property is violated. For exam-
ple, recalling the example of tricking
the home care robot into trying to lift
a glass that is glued to the table, one
such scenario can simply block the
application of a pulling force that is
greater than a certain threshold, thus
preventing the breaking of the glass
or the robot, and another can report
when motion-related actions have not
been completed within a given time
limit, avoiding the appearance of the
robot being stuck.

Athena also supports applying its
ability to focus on behaviors that mat-
ter, toward thread optimization, such
as the removal of unreachable code.

As described, the online part of the
mWDS, Livia, is a runtime debugging
assistant and is launched manually to
accompany test and production runs
of the final system.

A modest case study
We have evaluated our mini-WDS by
using it to develop several programs,
including the one we will present here:
a cache-coherence protocol. Such pro-
tocols are designed to ensure consis-
tent shared memory access in a set of
distributed processors. Each processor

ReleaseBus (1) <--> Cache [2] : RequestBus (1) [fails]

Cache [2] : RequestBus (1) --> ReleaseBus (1) [holds]

Cache [2] := (Mem [1] == 1) --> ReleaseBus (1) [holds]

FIGURE 3. Displays from the mini wise-development suite (mWDS) during development
of a cache-coherence protocol application, showing emergent properties as observed by
Regina, followed by Athena’s conclusion regarding whether they hold or not. The arrows
indicate event implication—that the occurrence of one event implies the occurrence of the
other a short time earlier or later. For example, the first property observed by Regina is
“The event of ‘releasing Bus 1’ implies, and is implied by, the event of ‘Cache 2 requests
Bus 1’.” Then, using model checking, Athena determined that this does not always hold.

 F E B R U A R Y 2 0 1 8 25

caches its results of memory reads,
and when it writes a new value to
the shared memory other processors
invalidate their corresponding cache
entries. Cache-coherence protocols
are notoriously susceptible to concur-
rency related bugs—rendering them
a prime candidate to benefit from a
wise development environment. Fig-
ure 3 depicts a simple extract from the
mWDS’s listing.

An important question we consid-
ered when preparing the case study
was whether programming a com-
plex system while being aided by a
proactive framework is convenient
and/or useful. While such issues are
highly subjective, we can report that
we found the process useful, natural,
and even enjoyable. Also, although
the mWDS implements only a very
modest portion of the wise comput-
ing vision, its integration into the
development environment increased
our confidence in the implementa-
tion’s correctness. Specifically, the
mWDS reported several concurrency-
related issues that we had overlooked
and had to repair. And having Regina
and Athena identify properties that
indeed seemed natural and expected
but were neither obvious nor redun-
dant, reassured us that we were indeed
on the right track. Again, we recom-
mend that the reader view the recorded
demos referred to earlier.

The verification-acceleration tech-
niques also helped. For example, in
verifying the mutual exclusion prop-
erty “Cache 3 cannot acquire Bus 2
repeatedly without first releasing it,”
Athena explored about 1 million states
in about 27 minutes. In automatic and
proactive abstraction-refinement, it
abstracted away other buses and ver-
ified the property, exploring only
21,000 states in under 31 seconds.

The notion of machines that
invent, design, and build other
machines exists mostly in the

realm of science fiction. However, we
believe that computers can definitely
help humans in doing so, and the fea-
sibility of the wise computing vision
lends support to that belief. We are
encouraged by our preliminary results
on the common formalism, interaction
language, and analysis engine, as well as
by the mini-WDS integrative prototype.

Clearly, a tremendous amount of
work remains to be done, and we hope
that researchers and practitioners
will be inspired to undertake major
efforts that would help bring the vision
to fruition.

ACKNOWLEDGMENTS
This work was supported by a grant from the
Israel Science Foundation, by the Philip M.
Klutznick Research Fund, and by a research
grant from Dora Joachimowicz. We thank

ABOUT THE AUTHORS
DAVID HAREL is vice president of the Israel Academy of Sciences and Human-

ities, and a professor at the Weizmann Institute of Science. His research inter-

ests include logic and computability, software and systems engineering, model-

ing biological systems. Harel invented Statecharts, co-invented Live Sequence

Charts, and has authored several books, including Algorithmics: The Spirit of

Computing and Computers Ltd.: What They Really Can’t Do. He received the

ACM Karlstrom Outstanding Educator Award, the Israel Prize, the ACM Soft-

ware System Award, the EMET Prize, and five honorary degrees. Harel received

a PhD in computer science from MIT. He is a Fellow of ACM, IEEE, and AAAS, a

member of the Academia Europaea and the Israel Academy of Sciences, and a

foreign member of the US National Academy of Engineering and the American

Academy of Arts and Sciences. Contact him at dharel@weizmann.ac.il.

GUY KATZ is a postdoctoral research fellow at Stanford University. His research

interests lie at the intersection of software engineering and formal methods,

in particular, modeling paradigms that are useful and friendly to programmers

while also amenable to formal analysis, verification, and program repair. To

this end, he has been studying the properties of various concurrency idioms,

and how these properties can be leveraged by advanced program analysis

tools such as SMT solvers. Katz received a PhD in computer science from the

Weizmann Institute of Science. Contact him at guyk@cs.stanford.edu.

RAMI MARELLY is co-founder of Cue, a consulting firm in system engineering,

business development, and project management. Before his retirement, he held

key positions in the Israeli Air Force technological directorate. Marelly’s research

focused on specifying and executing behavioral requirements by co-developing

the Play-in/Play-out approach. He received a PhD in computer science from the

Weizmann Institute of Science. Contact him at ramimarelly@gmail.com.

ASSAF MARRON is a researcher in the Weizmann Institute of Science’s Com-

puter Science and Applied Mathematics Department. Prior to joining the

Weizmann Institute, he worked in senior management and technical positions

at leading companies, including IBM and BMC Software. Marron’s research

interests include software engineering, scenario-based programming, machine

learning, and information visualization. He received a PhD in computer science

from the University of Houston. Contact him at assaf.marron@weizmann.ac.il.

26 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

Yishai Feldman, Orna Kupferman, Shahar
Maoz, Moshe Vardi, Gera Weiss, Amiram
Yehudai, and the anonymous reviewers for
their valuable comments.

REFERENCES
1. D. Harel et al., “Wise Computing:

Towards Endowing System Develop-
ment with True Wisdom,” arXiv, 23
Jan. 2015; arxiv.org/abs/1501.05924.

2. C. Rich and R. Waters, “The Pro-
grammer’s Apprentice: A Research
Overview,” Computer, vol. 21, no. 11,
1988, pp. 10–25.

3. H. Davis, B. Shrobe, and R. Katz,
Towards a Programmer’s Apprentice
(Again), CBMM memo no. 030, Center
for Brains, Minds and Machines, 2015.

4. C. Lignos et al., “Provably Correct
Reactive Control from Natural Lan-
guage,” Autonomous Robots, vol. 38,
no. 1, 2015, pp. 89–105.

5. D. Harel et al., “An Initial Wise
Development Environment for
Behavioral Models,” Proc. 4th Int’l
Conf. Model-Driven Engineering and
Software Development (MODELS-
WARD 16), 2016, pp. 600–612.

6. V. Cerf, “A Long Way to Have Come
and Still to Go,” Comm. ACM, vol. 1,
no. 58, 2015, p. 7.

7. A. Marron et al., “Six (Im)possible
Things before Breakfast: Building-
Blocks and Design-Principles for
Wise Computing,” Proc. 19th Int’l
Conf. Model Driven Engineering Lan-
guages and Systems (MODELS 16),
2016, pp. 94–100.

8. D. Harel, “Statecharts: A Visual
Formalism for Complex Systems,”
Science of Computer Programming,
vol. 8, no. 3, 1987, pp. 231–274.

9. D. Harel et al., “STATEMATE: A
Working Environment for the
Development of Complex Reactive
Systems,” IEEE Trans. Software Eng.,
vol. 16, no. 4, 1990, pp. 403–414.

10. D. Harel, “Can Programming Be Lib-
erated, Period?,” Computer, vol. 41,
no. 1, 2008, pp. 28–37.

11. W. Damm and D. Harel. “LSCs:
Breathing Life into Message
Sequence Charts,” J. Formal Methods
in System Design, vol. 19, no. 1, 2001,
pp. 45–80.

12. D. Harel and R. Marelly, Come, Let’s
Play: Scenario-Based Programming
Using LSCs and the Play-Engine,
Springer, 2003.

13. D. Harel, A. Marron, and G. Weiss,
“Behavioral Programming,”
Comm. ACM, vol. 55, no. 7, 2012,
pp. 90–100.

14. A. Marron, “A Reactive Specification
Formalism for Enhancing System
Development, Analysis and Adap-
tivity,” Proc. 15th ACM-IEEE Int’l
Conf. Formal Methods and Models for
System Design (MEMOCODE 17), 2017,
pp. 161–164.

15. K. Benner, “Knowledge-Based Soft-
ware Assistant,” Knowledge-Based Sys-
tems, vol. 1, no. 4, 1988, pp. 221–226.

16. G. Fischer, “Domain-Oriented Design
Environments,” Automated Software
Eng., vol. 1, no. 2, 1994, pp. 177–203.

17. S. Wolfram, “Wolfram Alpha,” 2018;
www.wolframalpha.com/about.html.

18. S. Wolfram, “Wolfram Language,”
2018; www.wolfram.com/language.

19. M. Robillard, R. Walker, and T.
Zimmermann, “Recommendation
Systems for Software Engineering,”
IEEE Software, vol. 27, no. 4, 2010,
pp. 80–86.

20. S. Yadid and E. Yahav, “Extracting
Code from Programming Tutorial
Videos,” Proc. Int’l Symp. New Ideas,
New Paradigms, and Reflections on
Programming and Software, 2016,
pp. 98–111.

21. A. Zagalsky, O. Barzilay, and A. Yehu-
dai, “Example Overflow: Using Social
Media for Code Recommendation,”

Proc. 3rd Int’l Workshop on Recom-
mendation Systems for Software Eng.
(RSSE 12), 2012, pp. 38–42.

22. G. Katz, C. Barrett, and D. Harel,
“Theory-Aided Model Checking of
Concurrent Transition Systems,”
Proc. 15th Int’l Conf. Formal Methods in
Computer Aided Design (FMCAD 15),
2015, pp. 81–88.

23. D. Harel and M. Gordon, “Steps
Towards Scenario-Based Program-
ming with a Natural Language
Interface,” Proc. ETAPS Workshop:
From Programs to Systems, 2014,
pp. 129–144.

24. D. Harel et al., “On the Succinctness
of Idioms for Concurrent Program-
ming,” Proc. 26th Int’l Conf. Concur-
rency Theory (CONCUR 15), 2015,
pp. 85–99.

25. G. Katz, “On Module-Based Abstrac-
tion and Repair of Behavioral Pro-
grams,” Proc. 19th Int’l Conf. Logic
for Programming, Artificial Intelligence
and Reasoning (LPAR 13), 2013,
pp. 518–535.

26. D. Harel et al., “Non-Intrusive Repair
of Safety and Liveness Violations in
Reactive Programs,” Trans. Compu-
tational Collective Intelligence, vol. 16,
2014, pp. 1–33.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

See www.computer.org
/computer-multimedia
for multimedia content
related to this article.

