
Towards a Certified Proof Checker
for Deep Neural Network Verification

Remi Desmartin1, Omri Isac2(B), Grant Passmore3, Kathrin Stark1,
Ekaterina Komendantskaya1, and Guy Katz2

1 Heriot-Watt University, Edinburgh, UK
rhd2000@hw.ac.uk

2 The Hebrew University of Jerusalem, Jerusalem, Israel
omri.isac@mail.huji.ac.il

3 Imandra Inc., Austin, TX, USA

Abstract. Recent developments in deep neural networks (DNNs) have
led to their adoption in safety-critical systems, which in turn has height-
ened the need for guaranteeing their safety. These safety properties of
DNNs can be proven using tools developed by the verification community.
However, these tools are themselves prone to implementation bugs and
numerical stability problems, which make their reliability questionable.
To overcome this, some verifiers produce proofs of their results which
can be checked by a trusted checker. In this work, we present a novel
implementation of a proof checker for DNN verification. It improves on
existing implementations by offering numerical stability and greater ver-
ifiability. To achieve this, we leverage two key capabilities of Imandra, an
industrial theorem prover: its support for exact real arithmetic and its
formal verification infrastructure. So far, we have implemented a proof
checker in Imandra, specified its correctness properties and started to
verify the checker’s compliance with them. Our ongoing work focuses on
completing the formal verification of the checker and further optimising
its performance.

Keywords: Deep Neural Network · Formal Verification · AI Safety

1 Introduction

Applications of deep neural networks (DNNs) have grown rapidly in recent years,
as they are able to solve computationally hard problems. This has led to their
wide use in safety-critical applications like medical imaging [33] or autonomous
aircraft [19]. However, DNNs are hard to trust for safety-critical tasks, notably
because small perturbations in their inputs – whether from faulty sensors or

R. Desmartin and O. Isac—Both authors contributed equally.
R. Desmartin—Funded by Imandra Inc.
E. Komendantskaya—Funded by EPSRC grant AISEC (EP/T026952/1) and NCSC
grant “Neural Network Verification: in search of the missing spec.”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Glück and B. Kafle (Eds.): LOPSTR 2023, LNCS 14330, pp. 198–209, 2023.
https://doi.org/10.1007/978-3-031-45784-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45784-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-45784-5_13

Towards a Certified Proof Checker for Deep Neural Network Verification 199

malicious adversarial attacks – may cause large variations of their outputs, lead-
ing to potentially catastrophic system failures [34]. To circumvent this issue,
the verification community has developed techniques to guarantee DNN correct-
ness using formal verification, employing mathematically rigorous techniques
to analyse DNNs’ possible behaviours in order to prove it safe and compliant
e.g. [2,9,15,16,21,23,31,32,36]. Along with these DNN verifiers, the community
holds the annual competition VNN-COMP [8] that led to the standardisation of
formats [3].

Usually, DNN verifiers consider a trained DNN and prove input-output prop-
erties, e.g. that for inputs within a delimited region of the input space, the net-
work’s output will be in a safe set. Besides verifying DNNs at a component level,
verification has the power to verify larger systems integrating DNNs. Integration
of DNN verifiers in larger verification frameworks has been studied as well [10],
and it requires the DNN verifiers to provide results that can be checked by the
system-level verifier.

Unfortunately, DNN verifiers are susceptible to errors as any other program.
One source of problems is floating-point arithmetic used for their internal cal-
culations. While crucial for performance, floating-point arithmetic also leads to
numerical instability and is known to compromise the soundness of DNN veri-
fiers [18]. As the reliability of DNN verifiers becomes questionable, it is necessary
to check that their results are not erroneous. When a DNN verifier concludes
there exists a counterexample for a given property, this result can be easily
checked by evaluating the counterexample over the network and ensuring the
property’s violation. However, when a verifier concludes that no counterexample
exists, ensuring the correctness of this result becomes more complicated.

To overcome this, DNN verifiers may produce proofs for their results, allow-
ing an external program to check their soundness. Producing proofs is a common
practice [4,26], and was recently implemented on top of the Marabou DNN ver-
ifier [17,21]. Typically, proof checkers are simpler programs than the DNN veri-
fiers, and hence much easier to inspect and verify. Moreover, while verifiers are
usually implemented in performance-oriented languages such as C++, trusted
proof checkers could be implemented in languages suitable for verification.

Functional programming languages (FPL), such as Haskell, OCaml and
Lisp, are well-suited for this task, thanks to their deep relationship with logics
employed by theorem provers. In fact, some FPLs, such as Agda [27], Coq [1],
ACL2 [22], Isabelle [30] and Imandra [28] are also theorem provers in their
own right. Implementing and then verifying a program in such a theorem prover
allows to bridge the verification gap, i.e. minimise the discrepancies that can exist
between the original (executable) program and its verified (abstract) model [7].

In this paper, we describe our ongoing work to design, implement and verify
a formally-verifiable and infinitely-precise proof checker for DNN verifiers. We
have implemented an adaptation of a checker of UNSAT proofs produced by the
Marabou DNN verifier [17,21] to Imandra [28], a programming language with its
own theorem prover that has been successfully used in fintech applications [29].
Three key features make Imandra a suitable tool: arbitrary precision (“exact”)

200 R. Desmartin et al.

real arithmetic, efficient code extraction and the first-class integration of formal
verification. Support for infinite precision real arithmetic prevents errors due to
numerical instability in the proof checker. In the linear case, this corresponds to
arbitrary precision rational arithmetic. In the nonlinear case, real computation
in Imandra takes place over a canonical real closed field, the field of real algebraic
numbers. The ability to extract verified Imandra code to native OCaml improves
scalability as it can then benefit from the standard OCaml compiler’s optimi-
sations. Finally, with Imandra’s integrated formal verification, we can directly
analyse the correctness of the proof checker we implement. Capacities of Imandra
in DNN verification have already been reported in [13].

Contributions. We improve on the previous implementation [17] in two ways:
firstly, our checker can itself be formally verified by Imandra; and secondly,
Imandra’s infinite precision numbers eliminate the possibility of the usual float-
ing point arithmetic errors. This increases the checker’s reliability and overcomes
a main barrier in integrating DNN verifiers in system-level checkers. Since reli-
ability usually compromises scalability, our proof checker supports two checking
modes: (i) one uses verified data structures at the expense of computation speed;
(ii) the other accepts some parts of the proof without checking.

Our ongoing work is currently focused on formally verifying the proof checker.
So far, we have managed to verify that our checker complies with linear algebra
theorems, and we attempt to leverage these results to verify the proof checker
as a whole in the future.

Paper Organisation. The rest of this paper is organised as follows. In Sect. 2
we provide relevant background on DNN verification and proof production. In
Sect. 3 and Sect. 4 we respectively describe our proof checker, and our ongoing
work towards formally verifying it using Imandra. In Sect. 5 we conclude our
work, and describe our plans for completing our work and for the future.

An extended version of this paper is available in [12].

2 Background

2.1 DNN Verification

Throughout the paper, we focus on DNNs with ReLU(x) = max(0, x) activation
functions, though all our work can be extended to DNNs using any piecewise-
linear activation functions (e.g. max pooling). We refer the reader to the extended
version of this paper for a formal definition of DNNs and activation functions [12].
An example of a DNN appears in Fig. 1.

The DNN verification problem is the decision problem of deciding whether
for a given DNN N : R

m → R
k and a property P ⊆ R

m+k, there exists an
input x ∈ R

m such that N (x) = y ∧ P (x, y). If such x exists, the verification
query is satisfiable (SAT); otherwise it is unsatisfiable (UNSAT). Typically, P rep-
resents an erroneous behaviour, thus an input x satisfying the query serves as a
counterexample and UNSAT indicates the network acts as expected.

Towards a Certified Proof Checker for Deep Neural Network Verification 201

Fig. 1. A Simple DNN. The bias parameters are all set to zero and are ignored. Green
denotes input nodes, blue hidden nodes, and red output nodes. (Color figure online)

Due to its linear and piecewise-linear structure, a DNN verification query
can be reduced to an instance of Linear Programming (LP) [11], representing
the affine functions of the DNN, and piecewise-linear constraints that represent
the activation functions and the property. This reduction makes algorithms for
solving LP instances, coupled with a case-splitting approach for handling the
piecewise-linear constraints [5,20], a prime scheme for DNN verification, which
we call LP-based DNN verifiers.

The widely used Simplex algorithm [11,14,20], is typically used by such veri-
fiers. Based on the problem constraints, the algorithm initiates a matrix A called
the tableau, a variable vector x and two bound vectors u, l such that l ≤ x ≤ u.
The Simplex algorithm then attempts to find a solution to the system:

Ax = 0 ∧ l ≤ x ≤ u (1)

or concludes that none exists. For clarity, we denote u(xi), l(xi) as the upper
and lower bounds of the variable xi, instead of ui, li.

Example 1. Consider the DNN in Fig. 1 and the property P that holds if and
only if (x1, x2) ∈ [−1, 1]2 ∧ y ∈ [2, 3]. We later show a proof of UNSAT for this
query. We assign variables x1, x2, y to the input and output neurons. For all
i ∈ 1, 2, 3 we assign a couple of variables fi, bi for the inputs and outputs of the
neurons vi, where fi = ReLU(bi). We then get the linear constraints and bounds
(where some bounds were arbitrarily fixed for simplicity):

b1 = 2x1, b2 = x2, b3 = f2 − f1, y = f3 (2)

− 1 ≤ x1, x2, b2 ≤ 1, 0 ≤ f2 ≤ 1, −2 ≤ b1, b3 ≤ 2, 0 ≤ f1, f3 ≤ 2, 2 ≤ y ≤ 3 (3)

and the piecewise linear constraints: ∀i ∈ 1, 2, 3 : fi = ReLU(bi)
Then, an LP-based DNN verifier initiates the input for the Simplex algorithm:

A =

⎡
⎢⎢⎣

2 0 −1 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 0 0 −1 −1 1 0 0
0 0 0 0 0 0 0 −1 1

⎤
⎥⎥⎦

u =
[

1 1 2 1 2 2 1 2 3
]ᵀ

x =
[
x1 x2 b1 b2 b3 f1 f2 f3 y

]ᵀ

l =
[−1 −1 −2 −1 −2 0 0 0 2

]ᵀ

In addition to the piecewise-linear constraints ∀i ∈ 1, 2, 3 : fi = ReLU(bi).

One of the key tools used by the Simplex algorithm, and consequently by
DNN verifiers, is dynamic bound tightening. This procedure allows deducing

202 R. Desmartin et al.

tighter bounds for each variable and is crucial for the solver’s performance. For
example, using the above equation f3 = y and the bound u(y) = 2, we can
deduce u(f3) = 2, and further use this bound to deduce other bounds as well.
The piecewise-linear constraints introduce rules for tightening bounds as well,
which we call Theory-lemmas. For instance, the output variable f3 of the ReLU
constraint of the above example is upper bounded by the input variable b3, whose
upper bound is 2. The list of supported lemmas appears in [12].

The case-splitting approach is used over the linear pieces of some piecewise-
linear constraints, creating several sub-queries with each adding new information
to the Simplex algorithm. For example, when performing a split over a constraint
of the form y = ReLU(x), two sub-queries are created. One is enhanced with y =
x∧x ≥ 0, and the other with y = 0∧x ≤ 0. The use of case-splitting also induces
a tree structure for the verification algorithm, with nodes corresponding to the
splits applied. On every node, the verifier attempts to conclude the satisfiability
of the query based on its linear constraints. If it concludes an answer, then this
node represents a leaf. In particular, a tree with all leaves corresponding to an
UNSAT result of Simplex is a search tree of an UNSAT verification query.

2.2 Proof Production for DNN Verification

Proof production for SAT is straightforward using a satisfying assignment. On the
other hand, when a query is UNSAT, the verification algorithm induces a search
tree, where each leaf corresponds to an UNSAT result of the Simplex algorithm
for that particular leaf. Thus, a proof of UNSAT is comprised of a matching proof
tree where each leaf contains a proof of the matching Simplex UNSAT result.
Proving UNSAT results of Simplex is based on a constructive version of the Farkas
Lemma [35], which identifies the proof for UNSAT LP instances. Formally, it was
proven [17] that:

Theorem 1. Let A ∈ Mm×n(R) and l, x, u ∈ R
n, such that A · x = 0 and

l ≤ x ≤ u, exactly one of these two options holds:

1. The SAT case: ∃x ∈ R
n such that A · x = 0 and l ≤ x ≤ u.

2. The UNSAT case: ∃w ∈ R
m such that for all l ≤ x ≤ u, wᵀ ·A · x < 0, whereas

0 · w = 0. Thus, w is a proof of the constraints’ unsatisfiability.

Moreover, these vectors can be constructed while executing the Simplex algorithm.

To construct the proof vectors, two column vectors are assigned to each
variable xi, denoted fu(xi), fl(xi), which are updated during bound tighten-
ing. These vectors are used to prove the tightest upper and lower bounds of xi

deduced during the bound tightenings performed by Simplex, based on u, l and
A. Constructing the proof vector of Theorem 1 case 2. allows the proof checker
to check the unsatisfiability of the query immediately, without repeating Simplex
procedure. This mechanism was designed and implemented [17], on top of the
Marabou DNN verifier [21].

Supporting the complete tree structure of the verification algorithm is done
by constructing the proof tree in a similar manner to the search tree—every split

Towards a Certified Proof Checker for Deep Neural Network Verification 203

performed in the search directly creates a similar split in the proof tree, with
updates to the equations and bounds introduced by the split. Proving theory
lemmas is done by keeping details about the bound that invoked the lemma
together with a Farkas vector proving its deduction and the newly learned bound,
and adding them to the corresponding proof tree node.

3 The Imandra Proof Checker

Our proof checker is designed to check proofs produced by the Marabou DNN
verifier [21], to the best of our knowledge the only proof producing DNN verifier.
When given a Marabou proof of UNSAT as a JSON [6] file, the proof checker
reconstructs the proof tree using datatypes encoded in Imandra.

The proof tree consists of two different node types—a proof node and a
proof leaf. Both node types contain a list of lemmas and a corresponding split. In
addition, a node contains a list of its children, and a leaf contains a contradiction
vector, as constructed by Theorem 1. This enables the checker to check the proof
tree structure at the type level. The proof checker also initiates a matrix A called
a tableau, vectors of upper and lower bounds u, l and a list of piecewise-linear
constraints (see Sect. 2.1).

The checking process consists of traversing the proof tree. For each node,
the checker begins by locally updating u, l and A according to the split, and
optionally checking the correctness of all lemmas. Lemma checking is similar to
checking contradictions, as shown in Example 2 below (see [12] for details).

If the node checked is not a leaf, then the checker will check that all its
children’s splits correspond to some piecewise-linear constraint of the problem
i.e. one child has a split of the form y = x ∧ x ≥ 0 and the other of the form
y = 0∧x ≤ 0 for some constraint y = ReLU(x). If the checker certifies the node,
it will recursively check all its children, passing changes to u, l and A to them.

When checking a leaf, the checker checks that the contradiction vector w
implies UNSAT, as stated in Theorem 1. As implied from the theorem, the checker
will first create the row vector wᵀ · A, and will compute the upper bound of its
underlying linear combination of variables wᵀ · A · x. The checker concludes by
asserting this upper bound is negative.

The checker then concludes that the proof tree represents a correct proof if
and only if all nodes passed the checking process.

Example 2. Consider the simple proof in Fig. 2. The root contains a single lemma
and each leaf contains a contradiction vector, which means the verifier performed
a single split. In addition, the proof object contains the tableau A, the bound
vectors u, l, and the ReLU constraints as presented in Example 1.

The proof checker begins by checking the lemma of the root. It does so by
creating the linear combination

[
0 0 1 0

]ᵀ ·A ·x = −b3−f1+f2. As the lemma is
invoked by the upper bound of b3, the checker uses the equivalent equation b3 =
f2 − f1, which gives the upper bound u(b3) = u(f2) − l(f1) = 1. We can indeed
deduce the bound u(f3) = 1 based on the constraint f3 = ReLU(b3), so the
lemma proof is correct. Then, the checker certifies that the splits f3 = 0∧ b3 ≤ 0

204 R. Desmartin et al.

Fig. 2. A proof tree example.

and f3 = b3 ∧ b3 ≥ 0 correspond to the two splits of f3 = ReLU(b3). The checker
then begins checking the left leaf. It starts by updating l(b3) = 0 and adding the
equation f3 = b3 as the row

[
0 0 0 0 1 0 0 −1 0

]
to A. Then, the checker checks

the contradiction vector by computing
[
0 0 1 −1 1

]ᵀ ·A · x = −f1 + f2 − y. The
upper bound of this combination is −l(f1)+u(f2)− l(y) = −1 which is negative,
thus proving UNSAT for the leaf according to Theorem 1. Checking the right leaf
is done similarly. After checking all nodes, the checker asserts the proof tree
indeed proves UNSAT for the whole query.

Implementation in Imandra, OCaml Extraction and Evaluation. Port-
ing the proof checker from C++ to Imandra necessitates taking into account the
trade-off between scalability and computation.

The choice of data structures for common objects – like vectors – is essential
in the balance between scalability and efficiency [13]. In this work, we experiment
with two different implementations for vectors: native OCaml lists, and sparse
vectors using Imandra’s built-in Map data type, based on binary search trees.
The latter has better performance but the former makes it easier to verify, so for
now our verification efforts focus on the native list implementation (for further
discussion of data structure choice, see [12]).

Imandra’s logic includes theories for arbitrary precision integer and real arith-
metic, which for integers and linear (rational) computations over reals are imple-
mented using OCaml’s Zarith library [24]. Zarith and GMP, its underlying
library, are not verified but trusted. Nonlinear real computations are handled
with on-demand field extensions via constructive real closures [25]. As a result,
the Imandra implementation of the checker supports arbitrary precision real
arithmetic with no overhead.

Executing code within Imandra’s reasoning environment is helpful during
the implementation and verification process, but is not optimised for perfor-
mance. To that end, imandra-extract is a facility to extract native OCaml
code that can be compiled – and optimised – with standard OCaml compil-
ers. The extracted code retains Imandra’s semantics, meaning that it still uses
infinite precision real arithmetic. An initial comparison of the execution time
for checking the same proofs from the ACAS-Xu benchmark [21] in the C++
implementation and in the extracted OCaml code with native lists shows that
our implementation is about 150 times slower than the original implementation

Towards a Certified Proof Checker for Deep Neural Network Verification 205

but stays within a reasonable time, i.e. less than 40 min for all the examples
ran (see Table 1). Further optimisations and a comprehensive benchmark are
ongoing work.

Table 1. Comparison of the execution speed for checking Marabou proofs for verifica-
tion tasks from the ACAS Xu benchmark.

ACAS- C++ [17] Imandra (native lists) Imandra (sparse vectors)

Xu tasks Full (s) Partial (s) Full (s) Partial (s) Full (s)

N(2, 9) p3 5.130 167.078 878.075 15.125 4784.866

N(2, 9) p4 5.658 206.675 1019.770 11.208 8817.575

N(3, 7) p3 10.557 299.608 1493.763 24.979 1638.844

N(5, 7) p3 2.568 58.288 311.096 50.365 12276.323

N(5, 9) p3 15.116 424.816 2210.472 30.611 6265.039

4 Specification of the Proof Checker’s Correctness

We aim to verify the two main checks performed by the proof checker when
traversing the proof tree (see Sect. 3): contradictions and theory lemmas.

Contradictions Checking. We want to verify that our proof checker identifies
correctly when a contradiction vector is a valid proof of UNSAT, thus satisfying
Theorem 1 (case 2). Formally, the specification can be given as:

For any contradiction vector w, tableau A, bounds u, l, and a bounded input
l ≤ x ≤ u, if the upper bound of wT · A · x is negative, then x cannot satisfy
the constraints A · x = 0 ∧ l ≤ x ≤ u. The Imandra implementation of this
specification is given in Listing 1.1.

theorem contra_correct x contra tableau u_bounds l_bounds =

is_bounded x u_bounds l_bounds

&& check_contradiction contra tableau u_bounds l_bounds

==> not (null_product tableau x)

Listing 1.1. High-level theorem formalising correctness of contradiction checking. The
function check_contradiction is a key component of the proof checker which should
return true iff the linear combination of the tableau and contradiction vectors has a
negative upper bound.

Theory Lemmas. We aim to prove that each theory lemma within the proof
corresponds to a known theory lemma (see [12] for further details).

Proving the specification necessitates guiding Imandra by providing support-
ing lemmas, in our case properties of linear algebra. After proving these inter-
mediary lemmas, Imandra’s proof automation can apply them automatically, or
we can manually specify which lemma to apply.

206 R. Desmartin et al.

So far we have defined and proved that our checker is coherent with known
properties of linear algebra (e.g. Listing 1.2). Our current work focuses on build-
ing on top of these lemmas to fully prove the checker’s correctness.

lemma dot_product_coeff x y c =

dot_product x (list_mult y c) = c *. dot_product x y

[@@auto]

lemma dot_product_coeff_eq x y c =

dot_product x y = 0. ==> dot_product x (list_mult y c) = 0.

[@@auto][@@apply dot_product_coeff x y c]

Listing 1.2. Definition of lemmas proved in Imandra; dot_product_coeff, which
defines the homogeneity of the dot-product, is used to prove the second lemma.

5 Discussion and Future Work

We have implemented a checking algorithm for proofs generated by a DNN ver-
ifier in the functional programming language of Imandra, enabling the checking
algorithm to be infinitely precise and formally verifiable by Imandra’s prover.

Compared to previous work, our implementation presents two new guaran-
tees: it avoids numerical instability by using arbitrary precision real numbers
instead of floating-point numbers; and its correctness can be formally verified
as it is implemented in a theorem prover. The arbitrary precision linear real
arithmetic library, GMP, is standard but it is not itself formally verified.

One limitation of our work is the discrepancy between the initial verified
model and the model encoded in the checked proofs: training and verification
frameworks use floating point numbers; Marabou uses overapproximation to mit-
igate the numerical instability, and rounds the values during the proof seriali-
sation; the proof checker then uses exact real arithmetic to reason about the
weights. Ultimately though, if the checker validates a proof, it means that the
encoded model satisfies the property and can be extracted and deployed.

As expected, adding safety guarantees comes at a cost of performance, but
the extraction of native OCaml minimises the overhead compared to the unver-
ified C++ implementation. Furthermore, using an FPL checker to check proofs
produced by a DNN verifier is a first step towards integrating DNN verification
into the verification of larger systems with DNN-enabled components.

Our immediate future work is to continue the verification of the proof checker.
In addition, we intend to identify cases where the existing checker implementa-
tion fails (e.g. due to numerical instability) and ours correctly checks the proof.
Investigating further optimisations is also a promising direction by implementing
better performance data structures, such as AVL trees.

Acknowledgements. We thank the reviewers for their valuable comments and sug-
gestions, which greatly helped us to improve our manuscript.

Towards a Certified Proof Checker for Deep Neural Network Verification 207

References

1. The Coq Proof Assistant (1984). https://coq.inria.fr
2. Bak, S.: Nnenum: verification of ReLU neural networks with optimized abstrac-

tion refinement. In: Proceedings of 13th International Symposium NASA Formal
Methods (NFM), pp. 19–36 (2021)

3. Barrett, C., Katz, G., Guidotti, D., Pulina, L., Narodytska, N., Tacchella, A.: The
Verification of Neural Networks Library (VNN-LIB) (2019). https://www.vnnlib.
org/

4. Barrett, C., de Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories. In:
All About Proofs, Proofs for All, vol. 55, no. 1, pp. 23–44 (2015)

5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. In: Proceedings of 30th Confer-
ence on Neural Information Processing Systems (NeurIPS) (2016)

6. Bray, T.: The JavaScript Object Notation (JSON) Data Interchange Format
(2014). https://www.rfc-editor.org/info/rfc7159

7. Breitner, J., et al.: Ready, set, verify! applying Hs-to-Coq to real-world Haskell
code. J. Funct. Program. 31, e5 (2021)

8. Brix, C., Müller, M.N., Bak, S., Johnson, T.T., Liu, C.: First Three Years of the
International Verification of Neural Networks Competition (VNN-COMP). Tech-
nical report (2023). http://arxiv.org/abs/2301.05815

9. Brix, C., Noll, T.: Debona: Decoupled Boundary Network Analysis for Tighter
Bounds and Faster Adversarial Robustness Proofs. Technical report (2020). http://
arxiv.org/abs/2006.09040

10. Daggitt, M.L., Kokke, W., Atkey, R., Arnaboldi, L., Komendantskaya, E.: Vehicle:
Interfacing Neural Network Verifiers with Interactive Theorem Provers. Technical
report (2022). http://arxiv.org/abs/2202.05207

11. Dantzig, G.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

12. Desmartin, R., Isac, O., Passmore, G., Stark, K., Katz, G., Komendantskaya, E.:
Towards a Certified Proof Checker for Deep Neural Network Verification. Technical
report (2023). http://arxiv.org/abs/2307.06299

13. Desmartin, R., Passmore, G.O., Komendantskaya, E.: Neural networks in iman-
dra: matrix representation as a verification choice. In: Proceedings of 5th Inter-
national Workshop of Software Verification and Formal Methods for ML-Enabled
Autonomous Systems (FoMLAS) and 15th International Workshop on Numerical
Software Verification (NSV), pp. 78–95 (2022)

14. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

15. Ferrari, C., Mueller, M.N., Jovanović, N., Vechev, M.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: Proceedings of 10th Inter-
national Conference on Learning Representations (ICLR) (2022)

16. Henriksen, P., Lomuscio, A.: DEEPSPLIT: an efficient splitting method for neural
network verification via indirect effect analysis. In: Proceedings of 30th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 2549–2555 (2021)

17. Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural network verification with proof
production. In: Proceedings 22nd International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp. 38–48 (2022)

https://coq.inria.fr
https://www.vnnlib.org/
https://www.vnnlib.org/
https://www.rfc-editor.org/info/rfc7159
http://arxiv.org/abs/2301.05815
http://arxiv.org/abs/2006.09040
http://arxiv.org/abs/2006.09040
http://arxiv.org/abs/2202.05207
http://arxiv.org/abs/2307.06299
https://doi.org/10.1007/11817963_11

208 R. Desmartin et al.

18. Jia, K., Rinard, M.: Exploiting verified neural networks via floating point numerical
error. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) SAS 2021. LNCS, vol.
12913, pp. 191–205. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88806-0 9

19. Julian, K., Kochenderfer, M., Owen, M.: Deep neural network compression for
aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598–608 (2019)

20. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: a calculus
for reasoning about deep neural networks. Form. Methods Syst. Des. (FMSD)
60(1), 87–116 (2021)

21. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

22. Kaufmann, M., Moore, J.S.: ACL2: an industrial strength version of Nqthm. In:
Proceedings of 11th Conference on Computer Assurance (COMPASS), pp. 23–34
(1996)

23. Khedr, H., Ferlez, J., Shoukry, Y.: PEREGRiNN: penalized-relaxation greedy neu-
ral network verifier. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol.
12759, pp. 287–300. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81685-8 13

24. Miné, A., Leroy, X., Cuoq, P., Troestler, C.: The Zarith Library (2023). https://
github.com/ocaml/Zarith

25. de Moura, L., Passmore, G.O.: Computation in real closed infinitesimal and tran-
scendental extensions of the rationals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 178–192. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38574-2 12

26. Necula, G.: Compiling with Proofs. Carnegie Mellon University (1998)
27. Norell, U.: Dependently typed programming in Agda. In: Proceedings of 4th Inter-

national Workshop on Types in Language Design and Implementation (TLDI), pp.
1–2 (2009)

28. Passmore, G., et al.: The imandra automated reasoning system (system descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 464–471. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 30

29. Passmore, G.O.: Some lessons learned in the industrialization of formal methods
for financial algorithms. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 717–721. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 39

30. Paulson, L.C.: Isabelle: A Generic Theorem Prover. Springer, Heidelberg (1994).
https://doi.org/10.1007/BFb0030541

31. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural
networks. In: Proceedings of 32nd International Conference on Neural Information
Processing Systems (NeurIPS), pp. 15762–15772 (2019)

32. Smith, J., Allen, J., Swaminathan, V., Zhang, Z.: Refutation-Based Adversarial
Robustness Verification of Deep Neural Networks (2021)

33. Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol.
10(3), 257–273 (2017)

https://doi.org/10.1007/978-3-030-88806-0_9
https://doi.org/10.1007/978-3-030-88806-0_9
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-3-030-81685-8_13
https://github.com/ocaml/Zarith
https://github.com/ocaml/Zarith
https://doi.org/10.1007/978-3-642-38574-2_12
https://doi.org/10.1007/978-3-642-38574-2_12
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1007/978-3-030-90870-6_39
https://doi.org/10.1007/978-3-030-90870-6_39
https://doi.org/10.1007/BFb0030541

Towards a Certified Proof Checker for Deep Neural Network Verification 209

34. Szegedy, C., et al.: Intriguing Properties of Neural Networks. Technical report
(2013). http://arxiv.org/abs/1312.6199

35. Vanderbei, R.: Linear programming: foundations and extensions. J. Oper. Res. Soc.
(1996)

36. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for neural network robustness verification. Adv. Neural. Inf. Process.
Syst. 34, 29909–29921 (2021)

http://arxiv.org/abs/1312.6199

	Towards a Certified Proof Checker for Deep Neural Network Verification
	1 Introduction
	2 Background
	2.1 DNN Verification
	2.2 Proof Production for DNN Verification

	3 The Imandra Proof Checker
	4 Specification of the Proof Checker's Correctness
	5 Discussion and Future Work
	References

