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Abstract

The development of large reactive software systems is an expensive and error-prone undertak-
ing. Deliverables will often fail, resulting in unintended software behavior, exceeded budgets
and breached time schedules. One of the key reasons for this difficulty is the growing com-
plexity of many kinds of reactive systems, which increasingly prevents the human mind from
managing a comprehensive picture of all their relevant elements and behaviors.

In recent decades, a prominent approach for tackling this issue has been that of formal
analysis. There, one relies on automatic tools that methodically explore the state space of the
system and perform various tasks. The main hindrance to the applicability of formal analysis
is the state explosion phenomenon: the size of the state space of a system can be exponential in
the size of its constituent components. This makes it highly difficult for analysis techniques to
scale up to real-world systems. Although the research community has put a great deal of work
into improving the scalability of analysis tools, resolving the great difficulties in developing
reliable reactive systems remains a major, and critical, moving target.

In this thesis we focus on an aspect of the problem which, we feel, has much untapped
potential: the effect that the computational model (e.g., the programming language) in use
has on the complexity of analyzing the resulting software. We advocate a design for analysis

approach: our hypothesis is that by carefully choosing the programming idioms to be used in
the development of a particular system, and in particular by preferring simpler idioms, one can
render the resulting software more amenable to analysis. We demonstrate that this hypothesis
applies to several program analysis tasks, such as verification, optimization and repair.

Given this approach, a natural question to ask is whether it is possible to find programming
models that are simple enough to facilitate program analysis on the one hand, but which are
expressive and convenient enough to be appealing to programmers on the other hand. Indeed,
we study this delicate trade-off, and show that certain programming idioms satisfy both re-
quirements in certain cases. We take a modular approach, studying the contribution and costs
of individual idioms; our ultimate goal is to provide engineers with a pool of programming id-
ioms, from which they will be able to tailor a programming framework to their specific needs.

We believe that the results presented in this thesis are compelling evidence that the careful
selection of a programming model can indeed render program analysis easier. We hope that it
will serve to draw more attention to this important research direction.



 

 

 

 תקציר
 

פיתוחן של מערכות תגובתיות מורכבות הינה מלאכה יקרה וסבוכה. לעיתים קרובות מערכות 

 בעלויותנפרסו בשטח מתפקדות בצורה שונה מזו שיועדה להן, וגורמות בכך לחריגות שכבר 

של מערכות הגבוהה זה היא רמת המורכבות ובזמני פיתוח. אחת הסיבות העיקריות לקושי 

סים אנושיים לראות בעיני רוחם תמונה דנוכתוצאה, חוסר יכולתם של מה –תגובתיות בימינו 

 מקיפה וכוללת של התנהגות המערכת ורכיביה.

בעשורים האחרונים, אחת הגישות העיקריות שדרכה ניסו חוקרים להתמודד עם הבעיה הזאת 

מצבים . בניתוח פורמלי משתמשים בכלים אוטומטיים שסורקים את מרחב הניתוח פורמליהינה 

של מערכת תוכנה ומנתחים אותה. המכשול העיקרי להפעלת שיטה זו בפועל הוא בעיית 

 קודנוטה לגדול בצורה מעריכית בגודל מרחב המצבים של תוכנה  – "התפוצצות המצבים"

למרות ת תוכנה גדולות. ו, ועל כן כלי ניתוח מתקשים להתמודד עם מערכהמקור שלה

התמודדות עם בעיית התפוצצות המצבים, צים מרובים בשהקהילה המדעית השקיעה מאמ

 פתרון לקושי הרב שבפיתוח תוכנה אמינה עדיין אינו נראה לעין.

בתזה זו אנו מתמקדים בפן אחר של הבעיה, אשר לדעתנו טמון בו פוטנציאל בלתי מנוצל רב: 

השפעתו של המודל החישובי, או שפת התכנות שבה משתמשים, על רמת הסיבוכיות שבניתוח 

: "תכנות לאימות"כאן גישה של מקדמים אנו במילים אחרות, ה המתקבלת בעזרתם. התוכנ

אנו סבורים שע"י בחירה מושכלת של ניבי תכנות שיכללו במודל החישובי, נוכל להפוך את 

התוכנה המתקבלת לקלה יותר לניתוח. אנו מדגימים מקרים רבים שבהם שימוש בניבי תכנות 

 תית במשימות ניתוח תוכנה כגון אימות, אופטימיזציה ותיקון.פשוטים אכן גורם להקלה משמעו

לאור גישתנו זו, עולה השאלה הבאה: האם ניתן למצוא מודלים תכנותיים שהם מחד פשוטים 

דיים כדי לפשט את משימת ניתוח התוכנה, אך מאידך גם מורכבים וחזקים דיים כדי למשוך 

במקרים נדון בסוגיה הזו, ונראה שמתכנתים ומהנדסים להשתמש בהם. בפרקים הבאים 

אכן קיימים ניבי תכנות שעונים לשתי הדרישות. אנו נוקטים בגישה מודולרית, מסוימים 

ומנתחים את תועלתו ועלותו של כל ניב תכנות בנפרד. בטווח הארוך, שאיפתנו היא לאפשר 

נוכחית, אותם ניבי תכנות הדרושים לצורך משימתם הבבדיוק ולהשתמש למהנדסים לבחור 

 ובכך לשמר את פשטותו של המודל ככל הניתן ולהקל על משימות הניתוח.

לעניות דעתנו התוצאות המוצגות בתזה זו מהוות תימוכין מהימנים לכך שבחירה מושכלת של 

. אנו תקווה שמסקנותינו יגבירו את תשומת התוכנהניתוח מלאכת על יבי תכנות יכולה להקל נ

 .הלב המוקדשת לכיוון מחקר זה
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Chapter 1

Constructing Reliable Concurrent
Reactive Systems

1.1 Concurrency Bugs and Formal Analysis

Nowadays, reactive software systems are key components in many aspects of our lives. They
appear, e.g., in airplanes, elevators, smartphones and cars, and we have come to rely greatly on
their smooth operation.

A common problem in modern software systems is software errors, or bugs. These bugs
lead to undesired software behavior which can have dramatic effects, sometimes much worse
than mere inconvenience to users. For example, in one case, erroneous software conversions
between the metric and US measurement systems caused the Mars Climate Orbiter spacecraft
to crash. In another case, six patients died due to faulty dosage calculations by the Therac-25
radiation therapy machine. Thus, devising error-free software is a highly desirable goal.

But where do software bugs even come from? Modern concurrent reactive systems are
typically characterized by a myriad of threads and services running in parallel, continuously
interacting with each other and with their environment. Errors in these systems often do not
originate from single threads or components, but are the result of unexpected interleaving of
sets thereof [119]. Consequently, some bugs cannot be discovered by looking at just one com-
ponent of the system; rather, a more “global” view is required. Since these systems tend to be
highly complex, it is difficult for human engineers to obtain this global point of view, making
concurrency related bugs hard to predict, understand and prevent.

In recent decades, a prominent approach for tackling this issue and creating more reliable
software has been that of formal analysis. There, one relies on automatic tools that methodically
explore the state space of the system and perform various analysis tasks, such as detecting
bugs or even repairing them. In many cases, this automatic and systematic exploration can
detect subtle bugs that would otherwise go unnoticed. Analysis techniques can be used during
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development, allowing the engineers to correct any discovered bugs prior to deployment.

Unfortunately, formal analysis has not been quite able to eradicate software bugs altogether.
The main hindrance in applying formal analysis to large systems is the state explosion phe-
nomenon: the size of a system’s state space tends to grow exponentially in the size of its
constituent components. Thus, even medium-sized software system can have many billions of
states. This makes it difficult for analysis techniques to scale up to real-world systems.

In its ongoing attempts to improve the scalability of analysis tools, the research commu-
nity has directed a great deal of effort into finding more efficient ways to explore the state
spaces of large systems. Specifically, research has focused on finding exploration methods that
do not entail explicitly enumerating and visiting every composite state of the system. A few
notable examples include the efficient traversal of state graphs using binary decision diagrams

(BDDs) [38, 40] — a data structure that can detect and eliminate similarities in a program’s state
graph, reducing its size; a technique called partial order reduction [13], aimed at ignoring re-
dundant thread interleavings; compositional verification [76], which allow one to reason about
individual parts of the system and then deduce global correctness; and abstraction-refinement

based techniques [51], which allow us to analyze and reason about abstract, more compact
models of the system. These often harness advanced theorem provers and SMT solvers as their
underlying engines [61, 72]. Still, existing tools and techniques are quickly reaching their lim-
its, and the great difficulties in developing reliable reactive systems remain a major, and critical,
moving target.

1.2 Design for Analysis

In this thesis we focus on an aspect of analysis tasks, which, we feel, has not received suf-
ficient attention in the literature: the effect that the selected computational model (e.g., the
programming language idioms) has on the complexity of software analysis.

It is now widely accepted that many of the errors in concurrent software result from the
“unconstrained” concurrency that characterizes modern programming languages [119]. Fur-
thermore, advanced programming language features, such as pointers and aliasing, are very
difficult for analysis tools to handle. Thus, since analyzing arbitrary programs poses such a
difficulty, one reasonable approach is to trade generality for effectiveness — i.e., to limit the
programming idioms available to the programmer, effectively narrowing down the scope of
programs that he/she is allowed to write, in order to obtain better analysis performance for
programs that remain within that scope. This is the approach that we take, showing that vari-
ous analysis tasks may indeed become significantly easier for programs written using specific
concurrency models. In other words, we advocate a design for analysis approach: by carefully
choosing the programming idioms to be used in the development of a particular system, one
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can render the resulting programs easier to analyze, ultimately increasing software reliability.
Observe that this direction is mostly orthogonal to the advanced analysis techniques mentioned
in Section 1.1, and that those techniques can still be applied to software written using the more
constrained programming models that we advocate.

In Part II of the thesis we demonstrate several ways in which using simple programming
idioms is beneficial to program analysis. This is not entirely surprising — as mentioned before,
advanced programming features (e.g., pointers, aliasing) are known to be problematic for mod-
ern analysis tools. Taken to the extreme, it is not difficult to believe, for example, that a C++
program is harder to analyze than a finite state automaton. This naturally gives rise to the ques-
tion: is it possible to find programming models that are simple enough to facilitate program
analysis on the one hand, but which are expressive and convenient enough to be appealing to
programmers on the other hand? Indeed, if we only advocate trivial programming models they
will never be adopted by programmers. Consequently, a great deal of our efforts in this thesis
is devoted to studying the delicate trade-off between the simplicity needed for analysis and the
richness required by programmers. In particular, in Part III we show that the simple models
studied in Part II are sufficiently rich and expressive to be used for various real-world purposes.

We stress that we are not looking for a “magical” programming model that would constitute
a silver bullet for solving the analysis problem in general: indeed, we do not think that such
a model exists. Instead, our approach is modular: we often focus on individual programming
idioms instead of whole programming models, attempting to characterize for each idiom the
programming instances in which it is required, as well as the analysis costs that it entails.
Our ultimate goal is to provide software engineers with a catalog of programming idioms,
from which they would be able to tailor a programming framework to their specific needs —
including enough concurrency idioms to make programming convenient, but also adding “just
enough” concurrency to keep the model simple and amenable to analysis.

In this thesis we focus primarily on three fundamental concurrency idioms (and combina-
tions thereof): the requesting, waiting-for and blocking of discrete events. These idioms, and
the motivation for focusing on them, are discussed in Chapter 2, and in the subsequent chapters
we provide an in-depth study of their properties, analysis- and engineering-wise. We hope that
our results, which we find promising, will trigger additional research in this direction.
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Chapter 2

The Request-Wait-Block Model

In this thesis we demonstrate our design-for-analysis approach using the Request-Wait-Block

(RWB) model for concurrent programs. We chose to focus on this model because (i) it is
simple; and (ii) it offers several software-engineering advantages. As explained in Section 1.2
it is of critical importance for us to have both of these properties in models that we study, in
order to make our design for analysis approach viable. In this chapter we explain the principles
of this model and the motivation behind it.

2.1 Behavioral Programming

Behavioral Programming (BP), is a programming language recently proposed by Harel, Mar-
ron and Weiss [90]. It is an extension and a generalization of scenario-based programming,
which was introduced with the language of live sequence charts (LSCs) [57, 87]. A behavioral
program consists of independent threads of behavior that are interwoven at run time. Each be-

havior thread (abbr. b-thread) specifies events and event sequences which, from its own point
of view must, may, or must not occur. As shown in Figure 2.1, the infrastructure synchro-
nizes and interweaves all behaviors, selecting events that constitute integrated system behavior
without requiring direct communication between b-threads. Specifically, all b-threads declare
events that should be considered for triggering (called requested events) and events whose trig-
gering they forbid (block), and then synchronize. An event selection mechanism (ESM) then
triggers one event that is requested and not blocked, and resumes all b-threads that requested
the event. B-threads can also declare events that they simply “listen-out for”, and they too are
resumed when these waited-for events occur.

One of BP’m main source of appeal is that it enables and facilitates incremental modu-

larity. In particular, it is possible in BP to iteratively add new threads to the program, each
representing an additional scenario or a requirement that the system needs to handle; and the
event selection mechanism then interweaves these threads together, producing cohesive system
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Figure 2.1: The behavioral programming execution cycle: all b-threads synchronize, declaring
requested and blocked events; a requested event that is not blocked is selected and b-threads
waiting for it are resumed.

behavior. Often, it is enough to add new threads without changing existing code — a small
illustrative example appears in Figure 2.2.

More detailed examples showing the power of incremental modularity in behavioral pro-
gramming appear in [89, 91]. One example is a behavioral program for playing Tic-Tac-
Toe [89]. There, each game-rule is implemented in a dedicated b-thread; e.g. “block X moves

when it is O’s turn” or “block marking of already-marked squares”. Similarly, player-strategy
modules are oblivious of other strategies; e.g., “wait for two X marks in the same line, and

then request marking O in that line”. A similar technique is used to control a robot performing
simultaneous missions, such as vehicle operation and route management.

In [91], a program is presented for stabilizing a quadrotor — an unmanned flying vehicle
with four rotors. There, four b-threads each control a particular orientation angle, or the quadro-
tor’s altitude, solely by changing rotor speeds. Each b-thread repeatedly requests and blocks
events representing possible increases or decreases of rotor RPM, which could contribute to its
own goal. The triggering of an event that is requested by one or more b-threads and blocked
by none allows at least one b-thread to progress. Affected b-threads can then recalculate their
declarations of requested and blocked events, and the process repeats.

Additional motivation for using behavioral programming is that its strict and simple mech-
anism for inter-object communication, e.g. its request-wait-block interface, results in b-threads
that are often aligned with how humans often describe behavior [74, 90], and that they foster
abstract programming skills [12]. We point out that the requesting, waiting-for and blocking
idioms are common and appear in various additional models, such as publish-subscribe archi-
tectures [69], live sequence charts [57, 87], and supervisory control [136].

22



wait for
WaterLow

request
AddHot

request
AddHot

request
AddHot

WhenLowAddHot

wait for
WaterLow

request
AddCold

request
AddCold

request
AddCold

WhenLowAddCold

wait for AddHot
while blocking

AddCold

wait for
AddCold while

blocking AddHot

Stability

⋯
WaterLow

AddHot
AddCold
AddHot
AddCold
AddHot
AddCold

⋯

Event Log

Figure 2.2: The Incremental development of a system for controlling water level in a tank with
hot and cold water sources. Whenever the water level in the tank is too low, we assume a
WaterLow event is triggered. The b-thread WhenLowAddHot repeatedly waits for WaterLow
events and requests three times the event AddHot. WhenLowAddCold performs a similar action
with the event AddCold, reflecting a separate requirement, which was introduced when adding
three water quantities for every sensor reading proved to be insufficient. When WhenLowAd-
dHot and WhenLowAddCold run simultaneously, the six water addition events — three AddHot
events and three AddCold events — can be triggered in any order. A new requirement is then
introduced, to the effect that water temperature should be kept stable. We add the b-thread
Stability, to interleave AddHot and AddCold events.

2.2 The Underlying RWB Model

While behavioral programming is geared towards natural and intuitive development using al-
most any programming language, its underlying infrastructure can be conveniently described
and analyzed in terms of transition systems in the RWB model. There are several ways to
define these transition systems; we give here the definition proposed in [7].

A b-thread BT over event set E is a tuple BT = ⟨Q,δ ,q0,R,B⟩, where Q is a set of states
(one for each synchronization point), q0 is the initial state, R ∶Q→ 2E and B ∶Q→ 2E map states
to the sets of events requested and blocked at these states (respectively), and δ ⊆ Q×E ×Q is a
transition relation. When δ is a deterministic, i.e. when

⟨q,e,q1⟩ ∈ δ ∧ ⟨q,e,q2⟩ ∈ δ ⇒ q1 = q2

we say that BT is a deterministic thread. When ⟨q,e, q̃⟩ ∈ δ we sometimes write q̃ ∈ δ(q,e); and
if δ is also deterministic, we sometimes abuse notation and write that δ(q,e) = q̃.

Behavioral programs are created by composing b-threads. The parallel composition of
threads BT 1 = ⟨Q1,δ 1,q1

0,R
1,B1⟩ and BT 2 = ⟨Q2,δ 2,q2

0,R
2,B2⟩ over the common event set

E yields the b-thread defined by BT 1 ∥ BT 2 = ⟨Q1 ×Q2,δ ,⟨q1
0,q

2
0⟩,R

1 ∪R2,B1 ∪B2⟩, where
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⟨q̃1, q̃2⟩ ∈ δ(⟨q1,q2⟩,e) if and only if q̃1 ∈ δ 1(q1,e) and q̃2 ∈ δ 2(q2,e). The union of the la-
beling functions is defined in the natural way; i.e. e ∈ (R1 ∪R2)(⟨q1,q2⟩) if and only if e ∈

R1(q1)∪R2(q2). A behavioral program P comprised of b-threads BT 1,BT 2, . . . ,BT n is the
composite thread P =BT 1 ∥ . . . ∥BT n. We sometimes refer to this composite thread as the state

graph of P. If threads BT 1, . . . ,BT n are all deterministic, we say that P is deterministic.
Let P = ⟨Q,δ ,q0,R,B⟩. An execution of P starts from q0, and in each state q along the run

an enabled event is chosen for triggering, if one exists (i.e., an event e ∈R(q)−B(q)). Then, the
execution moves to state q̃ ∈ δ(q,e), and so on. An execution can be infinite, or finite if it ends
in a state with no successors (a deadlock state); and it can be formally recorded as a (possibly
infinite) sequence of states and triggered events, ε = q0

e1
→ q1

e2
→⋯. The matching set of events,

without states, is called a run. The set of all runs of the program is denoted by L(P).
Note that when implemented in a standard programming language, we assume that b-threads

do not share data, and rely solely on events for input and output. This results in the abstraction
that a behavior thread is “in a state” only when synchronized with others, and that the state
transition caused by executing program instructions between synchronization points is atomic.

In Chapter 9 we describe how the individual transition systems underlying b-threads can
be automatically extracted from high level code and then composed, in order to formulate a
program’s underlying transition system. This procedure is highly useful for analysis purposes.
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Chapter 3

Summary of Contributions

In this chapter we present a summary of the results that we have obtained so far and explain
how they connect to the general theme of our thesis. These results span eight papers. For each
result we provide here only a brief overview; they are each discussed in depth in the following
chapters. Our results are logically partitioned into two groups: those appearing in Part II of
the thesis discuss how writing programs using theRWB model can facilitate analysis, whereas
those in Part III show how this relatively simple model can be applied in the development of
large systems.

3.1 Automatic, Non-Intrusive Repair of RWB Programs

This work, which appeared in [6] and is discussed in Chapter 4, studies the amenability of the
RWB model to program repair.

Software maintenance is a difficult and error prone task, which poses a serious burden on
engineers. As errors (bugs) are discovered and requirements are added or changed, the de-
velopers work hard to modify existing code without introducing new errors. They are often
constrained by limited knowledge of possible side-effects, since undocumented interdependen-
cies might have been forgotten or might be known only to different people (usually, the original
developers) who are unavailable. Research on automated program aims to address these and
related challenges.

Several approaches to program repair have emerged over the years. Some focus on er-
ror localization — identifying the module responsible for the problem, and then removing it
and synthesizing a replacement module [104, 143, 142]. Another approach called genetic pro-

gramming involves repeatedly creating various mutations the code, comparing them against a
specification, and at each phase selecting the mutation that does best [150]. This approach is
sometimes extended by mutating the specification too, not just the program [21]. See [111]
for a survey. The approach we take here is complementary: we seek to study whether certain
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concurrency idioms could make program repair easier.

As it turns out, the presence of the blocking idiom in a program’s underlying concurrency
model can serve to facilitate its repair. Consider, for instance, a program that typically performs
well, but occasionally malfunctions (i.e., it violates a safety property). Intuitively, we could use
the blocking idiom to block event sequences that lead to violations, retaining just the good
behavior of the program. Further, consider cases in which a program gets stuck in an infinite
loop without achieving its goals (i.e., it violates a liveness property). Blocking could likewise
be used to force the execution out of the infinite loop and direct it towards fulfilling its specifi-
cation. In both cases, a major advantage in applying this form of repair (made possible due to
the blocking idiom) is that it results in a non-intrusive patch: a piece of code that is added to
the program automatically, without making changes to the original code. We show that these
patches do not introduce new bugs and do not affect the rest of the program’s functionality.

3.2 Module-Based Abstraction and Repair of RWB Programs

In this work, which appeared in [7] and is discussed in Chapter 5, we continue our study of
the automatic repair of RWB programs. Specifically, we study the compatibility of our repair
approach with abstraction/refinement capabilities. Our work in [6] presented repair techniques
that are useful for RWB programs, but which require traversing the input program’s state
graph — thus limiting the scalability of the approach. To mitigate this difficulty, we turned to
abstraction techniques, which are a widely employed strategy in combating state explosion.

Intuitively, an abstract program forms an over-approximation of the original program: it
contains all the behaviors of the original program and perhaps additional, spurious behaviors
(there also exist under-approximation techniques, but this is beyond the scope of this thesis).
Abstract programs are useful because their representations are typically smaller. Thus, in cases
where analysis tools can operate on the abstract program instead of the concrete one, their
scalability is improved. In this work we thus set out to combine abstraction techniques with
our program repair techniques.

To demonstrate how abstraction techniques may be applied to the RWB model, we define
an abstraction operator that transforms anRWB-thread into a new thread, that has fewer states
and is more permissive than the original one. Intuitively, this is straightforward to perform,
given the RWB idioms: we simply combine sets of states (which correspond to sets of syn-
chronization points) into a single state that requests additional events or blocks fewer events (or
both) compared to any of the original states. We formally prove that abstracting one or more of
the program’s threads in this way results in an over-approximation of the entire program, and
propose a methodology (and tool support) for producing these abstract programs in practice.

Having defined the abstraction operator, we propose an abstraction-based repair scheme
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for safety violations in RWB programs, which generalizes our previous work [6] and, again,
utilizes the blocking idiom. At first glance, one might be tempted to simply apply the original
technique to an abstract program, which is, itself, an RWB program. However, due to the
fact that states in the abstract program represent multiple concrete states, doing so may result
in blocking behaviors that are in fact permitted in the original program. We resolve this by
introducing a novel counter-example guided abstraction/refinement (CEGAR) [51] approach to
program repair.

In CEGAR-based model checking, one begins with a coarse abstract program and model
checks it to see if a given property holds. If the model checker replies in the affirmative, the
property is known to hold for the concrete program as well. Alternatively, whenever a counter-
example is produced, it is tested on the concrete system to see if it is genuine; and if it is not,
the abstract program is refined in a way that eliminates the spurious run. The process is then
repeated iteratively, until a conclusion is reached

Our adaptation of CEGAR to program repair follows in this spirit: our repair algorithm is
run on the abstract program and returns a patch. If we determine that this patch would also
block good runs of the system because the abstraction is too coarse, we refine the program in a
way that causes the repair algorithm to not generate this patch again; otherwise, we apply the
patch and are done. To the best of our knowledge, this is the first application of CEGAR-based
techniques to program repair. We evaluated our technique on a large RWB implementation of
a TCP/HTTP protocol stack, and obtained encouraging results.

3.3 On the Succinctness of RWB Programs

In this work [4], also discussed in Chapter 6, we take a more rigorous view of theRWB model
in comparison to other models of concurrency. In particular, we study the model’s descriptive

succinctness — a criterion for comparison of models that has been used ever since the Rabin-
Scott work on nondeterministic automata [135]. Intuitively, this criterion measures the size
of the smallest program in a model that can produce a certain language. The significance of
using succinct models lies in the strong connection between succinctness and software relia-

bility [129], indicating that succinct software is easier to develop, maintain and reuse. Further,
the descriptive succinctness of a model is often connected to the complexity of various deci-
sion problems in it [100], and may be relevant to various verification problems — as we later
demonstrate in Chapter 7.

Here, we compare the RWB computational model to three well-known types of automata:
automata with classical nondeterminism [135], automata with universal (“and”) nondetermin-
ism, and bounded concurrent automata [66]. Each of these models is known to be exponentially
more succinct than deterministic, non-parallel automata [66]. Further, all three types are or-
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thogonal, meaning that their descriptive succinctness is independent of the others and additive
with respect to them. In particular, [66] shows that the model with all three idioms (existential
nondeterminism, universal nondeterminism and bounded concurrency) affords a tight triple-
exponential gap in succinctness compared to non-parallel automata.

The first issue we address is the classification of RWB with respect to these fundamental
models. We show that any RWB program is polynomially reducible to a bounded concurrent
automaton — and that hence, RWB can be regarded as a fragment of languages that are based
on these automata, such as Statecharts [78]. Next, we observe that, succinctness-wise, RWB
is a proper subset of bounded concurrent automata: there exist languages that have a succinct
description using bounded concurrent automata, but that incur an exponential blowup when
described using an RWB program. However, we show that not all is lost, as RWB programs
may still be exponentially more succinct than deterministic, non-parallel automata.

Having classified RWB as a fragment of bounded concurrent automata, we examine its
relationship with the other two models — nondeterministic and universal automata. We are
able to prove that when the three idioms are combined, the resulting model is triple-exponential
more succinct than the deterministic non-parallel model. This strengthens the result of [66], by
showing that one can achieve the same succinctness even when limited to the RWB fragment
of Statecharts.

In the last part of this work we explore the contribution of each of the RWB idioms (re-
questing, waiting-for and blocking of events) to the succinctness of the framework as a whole.
We show that the contribution of each of the idioms is exponential; i.e., their removal results in
an exponential blowup for some languages.

This research is highly pertinent to the general theme of our thesis, for two reasons:

1. By showing that the RWB model is succinct, and that this succinctness is orthogonal to
that provided by nondeterministic and universal automata, we establish the power of the
RWB idioms. The importance of this result is not by showing that concurrency leads
to succinctness — indeed, this is widely known — but that even very simple idioms,
like requesting, waiting-for and blocking, suffice in this respect. Combined with the
usefulness of these idioms, as discussed in, e.g., Chapters 4 and 7, this demonstrates the
benefits of models that employ the RWB idioms.

2. Our results include an attempt at characterizing the cases in which each of the individual
idioms leads to succinct programs. This could help programmers tailor a model to their
specific needs, by picking only those idioms that are useful for the problem at hand —
thus retaining “just enough concurrency” to program effectively and succinctly, while
also keeping the programs simple and maintainable.
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3.4 Compositional Verification of RWB Programs

One analysis task that has received a great deal of attention is that of formal verification [52].
In formal verification, one takes as input a program P and a specification φ , and attempts to
prove that P satisfies φ — or provide evidence that it does not (typically, a faulty execution).
Like many other analysis techniques, verification is prone to the state explosion problem, and
is notoriously difficult.

The difficulty in verifying large systems has been studied extensively over the years. One
of the prominent techniques for tackling it is that of compositional verification: a divide-and-
conquer approach, in which smaller portions of the system are verified in isolation, and in a
manner that implies system-wide correctness (see, e.g., [128, 133, 97, 53], among many others).
Unfortunately, compositional verification, and in particular automated versions thereof [67], is
a difficult challenge in its own right [54].

In this work [1], also discussed in Chapter 7, we adopt a software-engineering based ap-
proach to compositional verification: if compositionally verifying an existing program is diffi-
cult, perhaps one can design the program in the first place in a way that makes it more amenable
to such techniques. In particular, we attempt to exploit the properties of programs written in
theRWB model (primarily the fact that components therein communicate through a strict pro-
tocol) to facilitate compositional verification.

The first step in compositional verification is to divide the program in question into compo-
nents. In the context of RWB, the natural approach is to have each thread form a component,
and indeed this is the path we take. Then, one must define the desired properties of each of
the threads. This part, which is the only non-automated part in our proposed approach, is
performed by the programmer, who most probably already has the properties of the thread in
mind when he or she defines it. Here, the RWB infrastructure plays a key role: the fact that
inter-thread interfaces are strict and well defined simplifies the process of characterizing the
properties of single modules.

The next step is to verify that each of the implemented threads satisfies its respective prop-
erties. This is performed by directly model checking the implemented threads, using the tech-
nique of [86]. By checking each module in isolation, as opposed to the composite program, we
significantly reduce the number of states that need be explored. This statement is supported by
the fact thatRWB modules may be significantly more succinct than the composite program [4]
(see Chapter 6).

Finally, one must show that the thread properties imply the desired system-wide property.
For this task we employ Z3 [60] — a state-of-the-art SMT solver and theorem prover. When the
program in question deals with theories known to Z3, such as integer arithmetic or bit vectors,
run times may be exponentially shorter than those of a traditional model checker.
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Our experimental results were inconclusive. On some examples our approach performed
very well, sometimes greatly out-performing direct model checking of the composed program.
On other examples, however, the results were worse than those of direct model checking. Still,
we consider the approach to be advantageous: indeed, it imposes very little overhead upon the
programmer, and in some cases it significantly speeds up verification; and whenever it fails to
do so, the programmer can always default to traditional model checking.

3.5 Theory-Aided Compositional Verification of Concurrent
Transition Systems

In this work [8], discussed in Chapter 8, we improve and generalize the direction presented
Chapter 7. In particular:

1. We strengthen the interfaces with the SMT solver used in proving global correctness.
This allows us to both improve performance in many instances, and also to quickly rec-
ognize instances for which the approach will not do well, informing the users that they
had better use direct model checking.

2. We automate the generation of thread properties, the only part of the original approach
that was manual, thus making the technique fully automatic.

After the completion of [1], we attempted to gain a deeper understanding of the difficul-
ties we encountered. Our research showed that the need to translate RWB programs into
the language of the SMT solver was a major bottleneck. In particular, modern SMT solvers
“speak the language” of e.g., linear arithmetic, bit-vectors and uninterpreted functions, and are
ill-equipped to handle transition systems such as RWB programs. In order to address these
difficulties, we introduce in this work a rigorous formalization and implementation of an SMT
theory solver for a theory of transition systems (T S) within the context of CVC4 [26] — a lazy,
DPLL(T) based SMT solver [130]. The T S solver takes as input formulas describing a pro-
gram’s concurrent threads (given as transition systems) and the assertion that a certain safety
property is violated, and it answers UNSAT if the program is safe, or SAT if it is not. Thus, the
T S solver enables the SMT solver to operate directly and more effectively on RWB inputs,
resulting in significant performance improvement.

In its basic form, the T S solver performs explicit model checking: it explores the space
of reachable states of the given system in order to determine its safety, and this exploration
is driven by the SMT solver’s underlying SAT engine. However, the larger portion of our
work here is devoted to enabling the T S solver to analyze the input threads and look for pre-
supplied patterns: structural properties of the threads that may be expressed as assertions in
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the languages of other theories supported by the SMT solver, such as arithmetic or arrays.
Through these assertions, other theories can “understand” the input program and efficiently
discover, e.g., that a certain branch of the search space cannot lead to a violation. This allows
the T S solver to quickly prune the search space, greatly reducing the number of states that
need to be explored. A key fact here is that each thread/transition system is analyzed separately
— and hence the compositionality of our approach: the analysis complexity is proportional to
the size of the program and not to that of its state space. This process can be regarded as the
automation of the manual property derivation described in [1].

A critical aspect of this approach is the discovery of useful thread properties: properties
that can imply the global correctness, or prune large portions of the search space, but which are
easy to discover in individual threads. Here the simple idioms of the RWB model again come
into play, as the strict synchronization mechanism of the model makes it easier to formulate the
properties of individual threads. Indeed, our empirical results are quite promising [8], and show
that even a small number of stored patterns can already apply to a large variety of programs,
accelerating verification.

While our work here focuses solely on the RWB models, we believe that the technique
may be applied to discrete event models with other concurrency idioms.

3.6 Distributed RWB Programs

Heretofore, we have shown how the simple idioms of the RWB model render it amenable to
various forms of analysis. The beneficial traits of RWB that we discussed originated in part
from the model’s highly synchronous nature — and in particular, from the fact that all threads
must repeatedly synchronize globally throughout the run. However, while this synchroniza-
tion is clearly beneficial for analysis tasks, it entails high costs, time- and communication-wise,
which could harm the performance ofRWB software. It also seems to limitRWB’s applicabil-
ity in distributed settings and in settings where various threads operate on different time scales.
In [2], discussed also in Chapter 9, we develop techniques through which these difficulties may
be mitigated.

A key observation made in [79] is that although formallyRWB requires every thread to syn-
chronize at every synchronization point, this is often unnecessary. For instance, if all threads
but one have synchronized and event e is requested and is not blocked (by the synchronized
threads), and the remaining, unsynchronized thread is known to never block e, then e may be
triggered immediately — without violating the semantics ofRWB. The unsynchronized thread
is then notified that e has been triggered so that it may process this information at some point
in the future (when it reaches its synchronization point). In some cases, e.g., when the unsyn-
chronized thread is known to “not care” about e, it need not even be notified, thus reducing
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communication costs. In the meantime, the rest of the system may continue with its execution.
This form of execution is called eager synchronization.

In Chapter 9 we demonstrate how eager synchronization can help in implementing dis-
tributed RWB programs. In particular, we show how this process can be mechanized, by
automatically analyzing threads and discovering, e.g., the events they never request or block.
This information is gathered, and is used in determining whether events may be triggered when
threads are not yet synchronized. We also discuss the automatic discovery of logical mod-
ules in the program. Finally, we prove that applying the relaxed synchronization mechanism
in distributing RWB programs does not change the language that the programs generate. In
other words, all previously discussed techniques, such as program repair and verification, re-
main sound; they may be safely applied to a fully centralized version of the program, even if a
distributed version thereof is used in practice, and the results will remain valid.

3.7 Scaling-Up RWB: Steps from Basic Principles to Appli-
cation Architectures

In Section 1.2 we mentioned that there is a certain trade-off between amenability to analysis
and ease of programming: the more concurrency idioms we add to a model the more attractive
programmers are likely to find it, but this will likely make the model harder to analyze. Thus,
in the line of work discussed in [3] and in Chapter 10, we set out to check whether the simple
RWB idioms suffice for the programming of a real world system — in this case, a functioning
web-server, comprised of TCP and HTTP stacks. This case-study exposed a few limitations of
the RWB model, which we addressed by adding extensions to it. However, these extensions
were small and in line with the general approach of theRWB model. Hence, we conclude that
the RWB principles are indeed suitable for the programming of large systems.

The most significant issue that we had to address, where we felt the traditional RWB id-
ioms were not entirely adequate, was in dealing with time. Indeed, the eager synchronization
extension to RWB [2] allows one to handle timing constraints to some extent, but we felt that
a more fundamental solution was in order. In this work we solve this difficulty by introducing a
timeout idiom to the thread synchronization interface, by which, if a synchronization point has
not been resolved in the specified amount of time, a thread may change states without waiting
for the triggering of an event. Other, smaller changes that we propose, aimed mainly at provid-
ing programmers with more convenient interfaces, include the addition of parametrized events,
the ability to define a program-specific event selection strategy, and allowing the dynamic cre-
ation of threads. We show how each of the proposed idioms plays a role in the programming of
our case-study, and also provide a formal semantics for the resulting extended model.
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3.8 An Initial Wise Development Framework for RWB

In Chapter 11 we seek to bring together several of our aforementioned results, by providing an
interactive and proactive framework for developing RWB programs [5] — which utilizes our
previously developed analysis tools.

As discussed in Section 1.1, one of the key reasons for the great difficulty in developing
reliable reactive software is the growing complexity of many kinds of reactive systems, which
increasingly prevents the human mind from managing a comprehensive picture of all their
relevant elements and behaviors. Over the years it has been proposed, in various contexts,
e.g., [138, 137, 43, 82], that a possible strategy for mitigating these difficulties could lay in
changing the role of the computer in the development process. Instead of having the computer
serve as a tool, used only to analyze or check specific aspects of the code as instructed by
the developer, one could seek to actually transform it into a member of the development team
— a proactive participant, analyzing the entire system and making informed observations and
suggestions. This way, the idea goes, the computer’s superior capabilities of handling large
amounts of code could be manifested. Combined with human insight and understanding of the
system’s goals, this synergy could produce more reliable and error-free systems.

In this work we follow this spirit, and present a methodology and an interactive framework
for the modeling and development of complex reactive systems, in which the computer plays
a proactive role. Following the terminology of [82], and constituting a very modest initial
effort along the lines of the Wise Computing vision outlined there, we term this framework
a wise framework. Intuitively, a truly wise framework should provide the developer with an
interactive companion for all phases of system development, “understand” the system, draw
attention to potential errors and suggest improvements and generalizations; and this should
be done via two-way communication with the developer, which will be very high-level, using
natural (perhaps natural-language-based) interfaces. The framework presented here is but a
first step in that direction, and focuses solely on providing an interactive development assistant
capable of discovering interesting properties and drawing attention to potential bugs; still, it
can already handle non-trivial programs, as we later demonstrate through a case-study.

A main novel aspect of our approach is in the coupling of the notion of a proactive and
interactive framework with the RWB model. It is now widely accepted that a key aspect in
the viability of analysis tools and environments is that they are sufficiently lightweight to be
integrated into the developer’s workflow without significantly slowing it down [139, 56]. We
attempt to achieve this by leveraging the simplicity of the RWB model. As demonstrated in
Chapter 11, the proactiveness of our approach and its tight integration into the development
cycle can lead to early detection of bugs during development, when they are still relatively easy
and cheap to fix.
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Part II

Formal Analysis of RWB Programs
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Chapter 4

Automatic, Non-Intrusive Repair of RWB
Programs

4.1 Introduction

Software maintenance is a difficult and error prone task. As errors (bugs) are discovered and
requirements are added or changed, developers work hard to modify existing code without in-
troducing new errors. They are often constrained by limited knowledge of possible side-effects,
since undocumented interdependencies might have been forgotten or might be known only to
different people (usually, the original developers) who are unavailable. Research on automated
program repair and, more generally, program synthesis from specifications, aims to address
these and related challenges. Such automation may prove particularly valuable for handling
failure/bug reports from users who simply press the “Send to Software Vendor” button. In such
cases, the software engineer cannot discuss with the user the context of the problem, or possible
generalizations thereof.

In this chapter we focus on programs written using the RWB model, and our work is cen-
tered on the idea of repairing by carefully forbidding existing faulty execution paths. This
technique is highly suitable for (a) non-intrusive incremental repair; i.e., large parts of the
system are already developed and are not modified by the repair process; (b) methodological
integration of the repair process with standard, ongoing development during and after the re-
pair activity; and (c) practical techniques for dealing with the complexity of the use of model
checking when creating local patches in the repair process.
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4.2 Outline of the Repair Approach

In the present chapter we utilize the model checker of [86] to automate elements of manual
program-repair processes, using a principle that can be summarized as “taking the road not
taken”. For illustration, assume that a system was tested, or even model checked, to satisfy
its specification, and a new requirement was then introduced, or a bug reported, highlighting a
required property not previously articulated, and thus neither tested nor model checked. Our
method calls for first adding the new property to the specification. We then model check the
program to find distinct violating runs. In the case of violated safety properties (“bad things
never happen”), for each such run we add a special b-thread that waits for the sequence of all
events in the run, up to the last one requested by the program (rather than by the environment).
The repair b-thread then blocks this event. Some other pending requests might then be trig-
gered. Violated liveness properties (“good things eventually happen”) are handled similarly:
when the system is traversing a loop in which “good things do not happen”, the repair b-thread
applies blocking to steer the run in another direction. In the liveness case blocking is only
performed with some small probability, thus injecting bias towards certain desirable execution
paths without forbidding other paths which are also permitted.

For example, consider a faulty game-strategy b-thread, whose event request leads to a loss.
When this event is blocked, another b-thread, perhaps one that requests a set of default moves,
comes into play (so to speak), offering an alternative. The elimination process continues until
“the right” default move is the choice at that state. The new corrective wait-and-block behavior
is non-intrusive, in that its implementation does not require changing the existing program
code.

We refer to such a repair b-thread as a patch, and to the process as patching, or simply,
repairing. We hope that combined with the behavioral-programming principles, our approach
will help make the concept of patching seem less a “necessary evil” and more a useful, main-
stream software maintenance practice.

As the full repair algorithm may not scale up to large programs due to the state explosion
problem, we also discuss the case where patching can be limited to a bounded “neighborhood”
of a specific operation scenario; for example, when we are provided with a bug report sent from
a user.

We formally prove correctness and analyze the method, characterize the programs on which
it can be used, and exemplify its usage with our proof-of-concept tool — implemented within
the BPJ framework for behavioral programming in Java [89].

The rest of this chapter is organized as follows. Basic definitions regarding the model
checking of behavioral programs are given in Sections 4.3 and 4.4, respectively. The repair of
safety violations of loopless programs is discussed in Section 4.5, followed by a repair algo-
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rithm for safety violations in general programs in Section 4.6. Next, in Section 4.7 we extend
the algorithm to also handle liveness violations. A method for handling large programs, called
limited-depth patching, is described in Section 4.8. Related work is discussed in Section 4.9,
and we conclude with Section 4.10.

4.3 Definitions

We use here a slightly extended version of the definitions of an RWB program given in Sec-
tion 2.2. These definitions are needed to discuss the model checking of behavioral programs.

A deterministic behavior thread over a set of atomic propositions AP is a tuple BT =

⟨Q,δ ,q0,R,B,L⟩. The definitions of Q,δ ,q0,R and B are as in Section 2.2. L is a labeling
function, L ∶Q→ 2AP, that maps each state to a set of atomic propositions that hold in that state.

The composition of behavior threads with atomic proposition is, again, performed similarly
to the composition define in Section 2.2. The only addition is that in the composition of threads
BT 1 = ⟨Q1,δ 1,q1

0,R
1,B1,L1⟩ and BT 2 = ⟨Q2,δ 2,q2

0,R
2,B2,L2⟩, over the common event set E

and common atomic proposition set AP, the atomic propositions assigned to a composite state
are given by:

L1∪L2(⟨q1,q2⟩) = L1(q1)∪L2(q2)

For a deterministic behavior program over a set of atomic propositions AP, we associate
each run ρ ∈L(P) with a trace of atomic propositions. Specifically, for a run ρ = e1,e2, . . ., such
that the execution corresponding to ρ is q0

e1
Ð→q1

e2
Ð→q2 . . ., we define Tr(ρ)=L(q0)L(q1)L(q2) . . .

and define the set of all traces of P to be

Tr(P) = {Tr(ρ) ∣ ρ ∈L(P)}

In the context of repair, it is useful to distinguish between system events, which are events
controlled by the system, and environment events which are controlled by the system’s environ-
ment (for example, the user). We denote these two sets of events as Esys and Eenv, respectively.
The set of all program events E is the disjoint union of Esys and Eenv.

Repairing a program is always done with respect to a violated specification:

Definition. A specification for a behavioral program P is a linear time (LT) property Φ (i.e. a

subset of (2AP)
ω ). We say that P satisfies Φ, denoted P ⊧Φ, iff Tr(P) ⊆Φ.

Since this definition assumes infinite runs, when dealing with systems of finite runs we pad
any finite run with the trace ∅ω .

It is important to note, that the same set of b-threads can satisfy Φ with one event selec-
tion mechanism, and not with another. We adopt a wider perspective here, and ensure that the
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patched set of b-threads satisfies Φ with all event selection mechanisms. Such patching imme-
diately detects and fixes any bugs that could have remained hidden with a certain mechanism,
but which may emerge later. An approach that takes a specific event selection mechanism into
account may also be useful for some applications.

In this context we focus on two major types of LT properties: safety properties and liveness
properties. We define safety properties first, and give also the related definitions of invariants
and deadlocks.

Definition. An LT property Φ over AP is called a safety property if for all σ ∈ (2AP)ω −Φ there

exists a finite prefix σ̄ of σ such that

Φ∩{σ
′ ∈ (2AP)

ω
∣ σ̄ is a finite prefix of σ

′} = φ .

Intuitively, a safety property states that no “bad” sequences of events may happen. Any run
that causes such a sequence has a bad prefix; after it the run does not satisfy the property no
matter how it continues.

The notion of invariants plays a key role in the model checking of safety properties:

Definition. An LT Φ property over AP is an invariant if there is a propositional logic formula

ϕ over AP such that Φ = {A0A1A2 . . . ∈ (2AP)
ω

∣ ∀ j ≥ 0,A j ⊧ ϕ}.

Intuitively, invariants are properties of the current state of the system, and do not reflect the
history of events leading to it.

Through invariant checking one can handle regular safety properties: those safety proper-
ties for which the associated bad prefixes are recognizable by some finite automaton [23], or,
in our case, there is a b-thread that marks its state as bad when the bad prefix is recognized. By
applying the invariant model checker to a program with these threads added, we can effectively
handle general regular safety properties.

Definition. We say that a (finite) run ρ = (e1,e2, . . . ,en) causes a deadlock if it leads to a state

s that has no enabled events (all requested events are also blocked).

Much like invariants, deadlocks too are properties of states in the system, and not of runs.

When patching against safety violations, we will receive as input a program P and an in-
variant Φ. We will implicitly check that the system has no deadlocks; if it does, the patching
algorithm will try to remove them. In particular, we will make sure that no new deadlocks are
created while patching; otherwise we could “patch” a system by simply blocking all enabled
events at its initial state.

The other type of properties we consider is liveness properties. The following is adopted
from [23]:
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Definition. An LT property Φ over AP is called a liveness property if any finite word can

be extended such that the resulting infinite trace satisfies Φ. Formally, let pref(σ) = {σ̄ ∈

(2AP)∗ ∣ σ̄ is a finite prefix of σ} and pref(Φ) =⋃σ∈Φ pref(σ). Then Φ is a liveness property if

and only if pref(Φ) = (2AP)∗.

In the case of regular safety properties, invariant checking plays a key role. When it comes
to liveness properties, a similar role is played by persistence checking:

Definition. An LT property Φ over AP is called a persistence property if it states that a certain

condition holds forever, from some point in Φ. Formally, Φ is a persistence property if there ex-

ists a propositional logic formula ϕ such that Φ = {A0A1A2 . . . ∈ (2AP)ω ∣ ∃i such that ∀ j≥i, A j ⊧

ϕ}. Formula ϕ is called the persistence (or state) condition of Φ.

As discussed in, e.g., [23], the model checking of regular liveness properties is reducible to
persistence checking. The latter is performed by portioning the states of the system into two
sets: states in which ϕ holds, termed “cold” states, and states in which it does not hold, termed
“hot” states. Then, the property holds if and only if there are no reachable cycles consisting
strictly of hot states (which we refer to as reachable “hot cycles”). This can be checked, for
instance, using a nested DFS algorithm.

When patching against liveness violations, we will receive as input a program P and a
persistence property Φ. In practice, this property is given by an indicator thread that marks the
system’s states as either hot or cold.

4.4 Extending the Model Checking of Invariants and Dead-
locks

In order to prepare the ground for the correction of various safety and liveness violations,
we begin by describing how to check that a behavioral program satisfies an invariant and is
deadlock-free. We follow the algorithm in [23, Section 3.3.1], and the implementation in [86].

Any state that violates the invariant or is deadlocked is marked as “bad”. We construct
the state graph of the program, traverse it using DFS (trimming when arriving at a previously
visited state), and check that all states reachable from the initial state are not bad. From each
state we explore all enabled events (which reflects our decision to cater for all possible event
selection mechanisms).

The runtime complexity of this algorithm, implemented as in [86], is as follows. Let G =

(VG,EG) denote the state graph constructed, and let n be the number of threads and e = ∣E ∣

the number of events in the original program. ∣VG∣+ ∣EG∣ operations have to be performed to
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traverse the graph. Further, for each state ∈VG we have to perform n ⋅ e operations in order to
find all its enabled events. This yields:

Tmc =O(∣EG∣+ ∣VG∣ ⋅(n ⋅e)) .

This complexity is the minimum price one has to pay for running a model checker on a
behavioral program. Since our technique is based on model checking, it will necessarily be
forever linked in complexity to that of model checking [146, 23], and the progress made there,
for better or for worse. Tmc thus serves a base point with which to compare the complexity
of our patching algorithms, and we are interested in how much additional overhead they incur
above it.

We actually use a slightly different algorithm. For our purposes, the usual model checking
that returns a single violating run does not suffice: we want to explore all runs that violate the
invariant or cause a deadlock.

This is achieved as follows: we traverse the state graph using the same DFS, but whenever
we reach a bad state we store that information in its predecessor states. Each state already
visited in the graph will thus contain information on all its bad successors. If the state is
reached again, through another route from the root, we need not traverse its subtree again: we
simply update the relevant states using the data already stored (see Figure 4.1).
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Figure 4.1: When a “bad” state is reached, all its predecessors store the relative path from that
point to the violation. When a node in this path is reached through a different path, the data is
propagated. The DFS continues until the root stores all violating paths.

The added complexity of this algorithm is measured using the number of violating runs, ϒ

(OOPSilon: pun intended), and the depth of the state graph D. For each violating run we prop-
agate at most D events to the predecessors, causing an overhead of 1+2+ . . .+D per violating
run. The total runtime complexity is thus:

T = Tmc+ϒ ⋅(1+2+ . . .+D) = Tmc+O(ϒ ⋅D2).
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Finally, if all direct successors of a state are bad, then the state itself can be considered bad;
this is because the patching technique we discuss will cut off the violating children, rendering
the state a deadlock. We thus add the following modification: if, during the DFS, all of a state’s
successors are violating or deadlocked, the state itself is marked as violating; thus its successors
can be ignored. The runtime worst-case complexity remains unchanged.

4.5 Safety Patches for Loopless Programs

4.5.1 Generating Linear Safety Patches

Before discussing the safety violation patching of general programs, we begin with the simpler
case of finite programs that are loopless: their state graph contains no cycles. In a loopless
program, every run is finite.

Definition. A linear safety wait-block patch for event sequence (e1,e2, . . . ,en,elast), such that

elast ∈ Esys, is a b-thread with the following properties:

• The patch waits for events e1, . . . ,en, blocks elast once and then terminates.

• If the run deviates from the sequence e1, . . . ,en, the patch terminates.

• The patch never requests events and does not label states (R(q) = L(q) =∅ for all q).

Intuitively, the patch is designed to prevent one bad run from occurring. Events e1, . . . ,en

will be chosen according to violating runs found by the model checker. The patch will intervene
before the last event, causing another event to be triggered, thus preventing the violation.

The patch only interferes with runs starting with events e1, . . . ,en; other runs remain un-
changed. Formally:

Lemma 1 (The Locality Lemma). Let P be a collection of b-threads, let p be a linear safety
wait-block patch for event sequence (e1, . . . ,en), and let P′ = P∪{p} denote the patched pro-
gram. Then for any run ρ of P that does not start with events e1, . . . ,en, the events of ρ constitute
a valid run ρ ′ of P′, and Tr(ρ) = Tr(ρ ′).

Proof. To prove that ρ ′ is a valid run of P′, we need to show that at each synchronization
point during ρ ′, the triggered event is also enabled; namely, it is requested and not blocked.
By definition, if a run does not start with events (e1, . . . ,en), then the patch never requests or
blocks events. Further, the original b-threads will reach the same states during ρ ′ as they did
during ρ , consequently requesting and blocking the same events. It follows that the program P′

has the same requested and blocked events as P in each state during the run. Thus, the events
triggered by ρ ′ are enabled, and the run is indeed valid.
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Finally, since the original b-threads reach the same states during ρ ′ as during ρ , they will
have the same atomic propositions associated with them. Since the patch has no atomic propo-
sitions associated with its states, we get that Tr(ρ) = Tr(ρ ′).

The Locality Lemma is our motivation for patching: it states (in this case, for linear patches)
that when we add a patch to negate a single bad run, other runs remain unharmed, meaning that
the patch is local. This is an advantage of our method as compared to traditional, manual,
patching: our patches do not create new errors in unexpected parts of the code.

The distinct bad runs representing the bug or emanating from the new safety requirement
are found by model checking:

Algorithm 1 Linear Safety Patching(P,Φ)

1: Run the model checker on (P,Φ)
2: if P ⊧Φ then
3: return P
4: P’ ← P
5: for each violating run (e1, . . . ,en) do
6: if ∀i, ei ∈ Eenv then
7: return Failure
8: else
9: Find the largest k such that ek ∈ Esys

10: Create a linear safety wait-block patch p for (e1, . . . ,ek)
11: P′← P′∪{p}
12: return P′

The idea is straightforward: the model checker finds all runs violating Φ and we add a
patch per run to prevent them. Because Φ is a safety property and P is loopless, there are
only finitely many violating runs. The algorithm guarantees that the blocking performed by
the patches creates no deadlocks, by first recursively marking as “bad” any state that has only
“bad” children. Furthermore, because the model checker works with respect to all possible
event selection mechanisms, any bugs that emerged after the patching are fixed. The Locality
Lemma guarantees that no good runs “far away” from the patch are harmed. If the algorithm
returns a patched program, we thus know that it satisfies the specification Φ and causes no
deadlocks.

There is also the case where the algorithm returns a failure notice, as a result of the model
checker returning a violating run in which there were no program-requested events. This, of
course, means that the program cannot be repaired through wait-block patching. Formally:

Lemma 2 (The Patchability Lemma). Let P be a loopless program with state graph G= (VG,EG)

and let Φ be a safety property. Then the following three statements are equivalent:

1. The algorithm succeeds in returning a patched program P′.
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2. There exist linear safety wait-block patches p1, . . . , pk, such that P∪{pi} ⊧Φ.

3. There exists a graph G′ = (VG,EG′) with EG′ ⊆ EG and EG−EG′ ⊆Esys, such that no states
violating Φ or causing deadlocks are reachable from the initial state in G′.

Proof. (1)⇒ (2) is trivial.

For (2)⇒ (3): Take the original state graph G, and for each pi remove the edge corre-
sponding to the event it blocks. Since the patched program satisfies Φ and does not deadlock,
all reachable states in the graph obtained in this way satisfy Φ and do not cause deadlocks.
Furthermore, by the definition of a wait-block patch, all edges removed are in Esys, as needed.

For (3)⇒ (1): Without loss of generality, assume that P starts with an initialization event
einit ∈ Esys. If this does not hold we can change to a new initial state q′0 and add a thread that
forces event einit to be chosen before proceeding to the original program.

Suppose that G′ exists but that the algorithm returned a failure notice. We conclude that it
deadlocked on the very first state, q′0. This, in turn, means that state q0 was marked as bad, so
that all paths starting in q0 lead to bad states. This contradicts the existence of G′, thus proving
the claim.

Condition (3) means that the original program was “not too far” from satisfying Φ: it
contained some good runs and some bad runs, and through some blocking the bad runs could
be averted. Observe that the equivalence of (1) and (2) is really the validity of the algorithm.

The worst case runtime complexity of the algorithm is just that of the modified model
checker, namely T = Tmc +O(ϒ ⋅D2). This shows the dependence of our algorithm on the
number of violating runs in the original program. If their number and lengths are small enough
our automatic patching is not much worse than regular model checking. This also demonstrates
why using this algorithm for synthesis could be costly. If the program is “far away” from
satisfying Φ, as could be the case when trying to synthesize a program from scratch (say, from
a general program that constantly requests all possible events), then ϒ could be polynomial in
the size of the state graph, greatly slowing the process.

4.5.2 Patching for a Specific Event Selection Mechanism

The above algorithm patches the program so that it satisfies Φ, regardless of the event selection
mechanism used. However, it may be useful to patch the program for the specific mechanism M

to be used, as it could speed up the patching process, reduce the number of generated patches,
and most importantly, block less events, leaving open more options for further behavior refine-
ments and repair, as explained in Figure 4.2.

In this case, the model checking algorithm is modified to return as output all violating
runs of the original program, as well as all (and only) violating runs that would be created
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Figure 4.2: In state s, a patch that considers all event selection mechanisms will block b,c, and
e. A patch that considers only, say, an ESM that chooses events alphabetically, needs to block
b and c, but can leave e unblocked, relying on the selection of d.

by blocking previously discovered bad transitions. Bad runs that will not be possible in the
patched program, under the specific ESM, are ignored. This technique is readily applicable
also to patches for programs with cycles and for liveness patches, discussed in the sequel.

4.5.3 Example: Patching Tic-Tac-Toe

We demonstrate the use of the linear safety patching algorithm on the loopless Tic-Tac-Toe
behavioral program from [86]. It is loopless since the fact that each step adds a new move to
the board means that its state graph has no cycles.

Suppose that the original program is developed without a model checker. At the time of
development, the programmer is convinced that the program always achieves its goal, i.e.,
never loses (observe that this is a safety property — bad things do not happen). Various testers
support this statement. The program is then deployed. Some months later, a customer defeats
it and sends in the game’s trace. However, the original software engineer has long quit the firm,
and it would take a long time for a new engineer to repair the code. A suitable solution would
be to apply an automatic patching algorithm to the malfunctioning software.

To simulate this, we took the complete program from [86], and omitted the more complex
threads — those that handle situations where our opponent creates, simultaneously, two ways
to win. If the human player does not try the complex strategy that create such double attacks,
the program does indeed seem to work, but a skilled player can defeat it.

The automatic proof-of-concept tool is easy to use, requiring little modifications to the orig-
inal program. The input is the behavioral program and the safety property Φ, given as b-threads
marking bad states (e.g., victory of the opponent). The output is code files for new thread in-
stances which are easy to read and to integrate into the original program (see Figure 4.3).

Each such patch inherits from a parent class which implements its “main” function; see
Figure 4.4.

In our example, the patched Tic-Tac-Toeprogram contains 26 different patches, one of
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1 public patch1 () {

2 events.add( new X( 2, 2 ) );

3 events.add( new O( 1, 1 ) );

4 events.add( new X( 0, 0 ) );

5 events.add( new O( 2, 0 ) );

6 }

Figure 4.3: Example of a wait-block patch generated by the proof-of-concept tool. The patch’s
code contains a sequence of events that should be waited-for — events X(2,2), O(1,1) and
X(0,0). The last event in the list, O(2,0), is the one that should be blocked by the patch. The
automatically generated code is legible and comprehensible, as the more complicated details
are hidden away in a parent class.

1 public void runBThread () {

2 for( int i = 0; i < events.size() - 1; i++ ) {

3 bp.bSync( none , all , none );

4 if ( !lastEventWas( events.get( i ) ) )

5 disablePatch ();

6 }

7 bp.bSync( none , all , events.getLast () );

8 disablePatch ();

9 }

Figure 4.4: The patch thread’s main function, runBThread() is part of the patching library,
and is not added to the actual patched program. It waits for events defined by a particular patch
instance (as in Figure 4.3), blocking the last event and then terminating. If the events chosen
deviate from those defined in the patch instance, it terminates.
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which is demonstrated in the figure. Subsequent verification by the model checker confirms
that now the specification is indeed satisfied.

4.6 Safety Patches for Programs with Cycles

4.6.1 Generating Safety Patches for Cycles

The correctness of the algorithms for linear safety patching relies on the program’s state graph’s
having no cycles. As most reactive systems run indefinitely, periodically returning to some
“idle” state, such systems cannot be patched by linear wait-block patches. For example, fixing
a behavioral program that enters a bad state after a sequence of events of the form (a)∗b, will
call for infinitely many linear patches.

Our solution is to extend the linear safety patch associated with a single sequence of events,
into one that can keep track of an entire hierarchy of paths and cycles in the graph, blocking
the violating event as needed.

Definition. Given a state graph G′ = (VG′ ,EG′), two special vertices marked vinit and vend

and an event e ∈ Esys, a cyclic safety wait-block patch for G′ is a b-thread with the following

properties:

• It waits for all events chosen by the event selection mechanism and traverses the graph

G′ according to those events.

• Whenever state vend is reached, it blocks event e once.

• If an event occurs such that there is no edge marked with that event, it terminates.

• It never requests events and does not label states.

Intuitively, the patch is designed to prevent a family of bad runs that are similar to one
another, in that they reach their bad state by transitioning from vend via the event e. The graph
G′ will be chosen such that it contains all paths from vinit to vend , thus rendering a single patch
able to block that entire family of bad runs.

The Locality Lemma holds for the cyclic case as well: all runs of the original system, apart
from those starting in vinit and ending in reaching the violating state through vend and e, are valid
runs of the patched system. The proof is based on the fact that in any such run, the generated
patch does not request or block any events, and thus does not affect the events requested by the
program.

Linear safety patches are a particular case of the cyclic ones, in which the graph G′ is a
path, meaning there is precisely one way to reach the violating state.
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The cyclic safety patching algorithm is as follows (G denotes the full state graph traversed
by the model checker):

Algorithm 2 Cyclic Safety Patching(P,Φ)

1: Run the model checker on (P,Φ)
2: if P ⊧Φ then
3: return P
4: for each violating run (e1, . . . ,en) do
5: if ∀i, ei ∈ Eenv then
6: return Failure
7: else
8: Find the largest k such that ek ∈ Esys
9: Let qend denote the state reached after events e1, . . . ,ek−1

10: Construct the minimal subgraph G′ containing all paths in G from q0 to qend
11: Create a cyclic wait-block patch p for G′ with states vinit = q0, vend = qend , and event

ek.
12: P′← P′∪{p}
13: return P′

Constructing the minimal subgraph G′ is done using a modified BFS algorithm, in the
following manner. Given the full graph and the two vertices q0 and qend , we run a modified
BFS search from q0. Unlike a regular BFS search, where each vertex stores a single predecessor
(the first vertex from which it is found), here each vertex stores all the vertices from which
it is found. When the search is over, we begin in qend and backtrack through all possible
predecessors of each vertex, until reaching q0. The set of edges and vertices traversed this way
forms the subgraph G′ that we need.

To show that every path from q0 to qend is in G′, let p = (q0,q1, . . . ,qn,qend) be a path. If p

is simple, i.e., no state repeats itself, then clearly after n+1 iterations of the BFS search each
vertex in p has its preceeding state marked as a predecessor. Therefore, the entire path will be
traversed during the backtrack phase, meaning that p is in G′.

Now, suppose that p is a complex path with one cycle (the proof for the general case is an
easy extension). Then p can be expressed as follows:

p = (q0,q1, . . . ,qk,q′1,q
′
2, . . . ,q

′
j,qk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
the cycle

,qk+1, . . . ,qn,qend)

The states before and after the cycle are found as before. The cycle’s states, q′1, . . . ,q
′
j, are

found at the latest during the j’th iteration after the first arrival at qk. When the cycle ends, q′j
is marked as a predecessor of qk. Therefore, during the backtrack phase that passes through qk,
the entire cycle will be found. Consequently, the returned subgraph contains p.
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To see why G′ is minimal, observe that if a state is added to the subgraph it is part of at
least one path from q0 to qend , and therefore cannot be omitted from the graph.

Lemma 3. If the algorithm returns a patched program P′, then P′ ⊧Φ.

Proof. Suppose that there exists a run ρ of P′ violating Φ. Denote its states q1, . . . ,qn, and ex-
tract from them a violating run with no cycles. If qi = q j for some j > i, delete states qi+1, . . . ,q j.
Denote the remaining states as qt1, . . . ,qtk . The run corresponding to this state sequence was
found by the model checker, and a patch for some subgraph G′ which contains this run was
created. Since G′ contains all paths from q1 to qn, it also contains ρ . Therefore, the patch
would have blocked the last program-requested event of ρ , causing a contradiction.

As with the linear case, it is possible for the algorithm to return a failure notice. The
Patchability Lemma, which characterized programs that could be fixed in the linear case, holds
for the cyclic case as well; its proof is analogous.

The complexity of the algorithm is as follows: The exploration of violating runs costs, as
before, O(Tmc+ϒ ⋅D2). Constructing the relevant subgraph for each violating run costs another
∣VG∣+ ∣EG∣ times ϒ runs, yielding:

T =O(Tmc+ϒ ⋅D2+ϒ(∣VG∣+ ∣EG∣)) .

Again, this shows our dependence on the number of violating runs, ϒ. The smaller that number,
the closer our complexity is to that of the model checker; the higher it is, the closer we are to
the notorious, worst-case complexity of the synthesis problem.

4.6.2 Subgraph Representation

The generated code for a linear safety patch contains only the list of events to be waited for,
followed by the event to be blocked. This list can be readily understood and possibly manip-
ulated by a human, say, for documentation or analysis. Further, the developer may simplify
or generalize the patch; e.g., skip waiting for certain guaranteed events or consolidate patches
into fewer “symbolic” one, using BPJ’s event filters. However, when a patch traverses a com-
plex subgraph, gaining such insights is harder. Thus, we propose to represent the subgraph as
a collection of easily readable linear event scenarios, amenable to human manipulation. The
operation of the cyclic safety patch will be as before.

Specifically, We use the term line for a finite sequence of events that occur along some
contiguous path in the state graph, and along which no state is visited twice. We use the term
tail for a line whose last event would lead to a bad state in the state graph. The program’s
state graph, or parts thereof, are stored as a collection of lines, each containing its sequence of
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events, and links to other lines that are reachable by a single event from the last event in the
line. See Figure 4.5.

A B C F G X

H IDE

e4

e11

e1 e2 e7 e8 e9

e2

e10

e3

e4

e5

e6

Figure 4.5: A state graph of a buggy program. The model checker returns the violating run with
events e1,e2,e7,e8,e9. The subgraph of all paths from state A to state G (see solid states and
edges) is decomposed into: line1 = e1,e2 (successors tail, line2); line2 = e3 (successors line3,
line4); The self-loop line3 = e6 (successors line3, line4); line4 = e4,e5 (successors line2, tail) ;
tail = e7,e8 (with event to be blocked, e9). In addition to the run found by the model checker, the
patch prevents other runs, e.g., e1,e2,e3,e6,e6,e4,e5,e3,e4,e5,e7,e8,e9, where the underlined
events correspond to cycles.

Thus, each patch,

• begins by activating lines containing the initial state;

• waits for all events and traverses active lines;

• deactivates active lines when they are deviated from;

• deactivates a line and activates its successors when the line’s last event occurs;

• in a tail, prior to the event leading to the bad state, blocks that event, waits for one more
event, and deactivates the tail.

The line representation can be implemented in a data structure or in separate patch
b-threads, each beginning with waiting for a unique activation event. This results in a number of
small patches and is readily implementable in all implementations of behavioral programming.

4.6.3 Example: Patching a Coffee Machine

We demonstrate cyclic safety patching with a simple coffee vending machine example, which
is expected to repeatedly wait for a coin, wait for a coffee request, and prepare the coffee. The
main requirement is that coffee is never prepared unless a coin is first inserted. However, if
immediately after power-up the user requests coffee, the machine incorrectly allows coffee to
be requested and prepared infinitely many times without a coin. When the first coin is inserted,
the machine enters normal operation. The machine’s state graph is depicted in Figure 4.6.
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Figure 4.6: The buggy coffee machine’s state graph. After the PowerUp event, if a Cof-
feeRequested event occurs (before a coin is inserted), free coffee can be obtained infinitely
many times, until a coin is inserted. The loop on the right-hand side of the graph represents
the desired operation. The problematic state (marked q1) has two enabled events: CoffeeReady,
which is immediately requested (and selected), and the environment event CoffeeRequested.
We expect the patch to block the CoffeeReady event.

Observe that the bug is a safety bug — coffee is served without first inserting a coin. When
it is discovered and automatic patching is attempted, the first step is to have a new b-thread
identify and mark bad states (namely, q2).

The automatic patching algorithm generates a single patch, corresponding to the subgraph
depicted in Figure 4.7.

q1 Init
coffee req.

coffee req.

power up

Figure 4.7: The subgraph of the program’s state graph for which a patch is created. It shows all
paths from the graph’s initial state to state q1, in which event CoffeeReady must be blocked to
prevent violations.

Finally, the graph of the patched program is depicted in Figure 4.8, and the code generated
by the proof-of-concept tool is shown in Figure 4.9.

4.7 Dealing with Liveness

Up to this point, we dealt with safety properties — those that assert that “nothing bad happens”.
Another important class of properties is those involving liveness, asserting that “good things
eventually happen”. In this section we show how wait-block patches can be applied in order to
fix liveness violations too.
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Figure 4.8: The patched program’s state graph (states of the patches themselves are omitted for
clarity). The violating CoffeeReady event has been blocked, and the bad state no longer exists
in the state graph.

1 public cyclicPatch1 () {

2 line1Events.add( new PowerUp () );

3 line1Events.add( new Cof f e eReque s t ed () );

4 line1 = new LineComponent( line1Events );

5

6 line2Events.add( new Cof f e eReque s t ed () );

7 line2 = new LineComponent( line2Events );

8

9 tailEvents.add( new Cof feeReady () );

10 tail = new TailComponent( tailEvents );

11

12 line1.addSuccessor( tail );

13 line1.addSuccessor( line2 );

14 line2.addSuccessor( line2 );

15 line2.addSuccessor( tail );

16

17 this.addActiveComponent( line1 );

18 }

Figure 4.9: The automatically-generated Java code for representation of the subgraph in Fig-
ure 4.7. The first line contains events PowerUp and CoffeeRequested, and the second line
contains CoffeeRequested. The tail contains only the event to be blocked, CoffeeReady. The
code is readily understandable.
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In the case of safety properties, ensuring that a property holds is reducible to rendering
all “bad” states unreachable, and so it was straightforward to use blocking in order to correct
malfunctioning programs. Recall that in Section 4.3 we mentioned that liveness violations
correspond to reachable cycles of “hot” states (i.e., “hot cycles”) in the program’s state graph,
and so it is less clear how to apply blocking. One natural approach might be to identify when
the system is traversing a hot cycle, and then block one of the cycle’s transitions (when an
alternative exists), forcing the run to leave the cycle. This has several drawbacks:

1. Unlike in the safety case, where a bad state was never to be visited, in the liveness case
it is legal to traverse the hot cycle any finite number of times. Consequently, safety-like
patching would destroy good runs, which is highly undesirable.

2. Naı̈vely forcing the run to leave a hot cycle does not guarantee that it reaches a cold state;
it could enter another hot cycle.

3. We would need to keep track of the hot cycles in the graph — the number of which could
be very large.

To overcome these difficulties, we adopt a different perspective. Instead of considering runs
and the hot cycles they traverse, we consider the hot states themselves. We show how, using
wait-block patches, one can enforce a state-based policy that forces every run to visit cold states
infinitely often, thus ensuring that the liveness property in question holds.

Our technique works by distinguishing between two types of hot states: hot-trap states and
hot-escapable ones. Hot-trap states have the property that once they are visited, a liveness vio-
lation cannot be prevented; i.e., the system can never force the run into a cold state again. Con-
sequently, hot-trap states are considered as “bad” states, and we use safety wait-block patches
to render them unreachable. The hot-escapable states are those from which the system could
force the run to visit a cold state, via some transitions; however, we cannot assume that these
transitions may ever be traversed. In particular, it is possible for the system to continuously
choose transitions that keep the run in hot states, although transitions to cold states are always
enabled. We handle the hot-escapable states by enforcing fairness: we make sure that if a tran-
sition is enabled infinitely often, it will eventually be traversed. This type of fairness can be
enforced using probabilistic wait-block patches, which we also call liveness patches. Through
their use we can ensure that any liveness violations are effectively eliminated.

In the remainder of the section we discuss the liveness patching process more thoroughly.

4.7.1 Classifying Hot States

The first step in our repair algorithm is partitioning the hot states in the state graph into the
two types mentioned. These two sets are formally defined by the algorithm below, which takes
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as an input the state graph of the program G = (VG,EG), and returns the sets of hot-escapable
and hot-trap states. For each hot-escapable state the algorithm also outputs its escape-distance,
denoted δ : this is the length of a path from the hot-escapable state that reaches a cold state, and
which the system can enforce regardless of the environment’s behavior. See Figure 4.10 for an
illustration.

Algorithm 3 Classify Hot States(VG,EG)

1: A←ColdStates(VG), B←HotStates(VG), iteration← 1
2: continue← true
3: while continue do
4: continue← f alse, New← φ

5: for each state s ∈ B do
6: if at least one outgoing edge (internal or external) from s leads to a state in A, and no

outgoing external edge from s leads to a state in B then
7: continue← true
8: New←New∪{s}
9: δ(s)← iteration

10: iteration++
11: B← B−New, A← A∪New
12: HotEscapable← A∩HotStates(VG)
13: HotTrap← B
14: return (HotEscapable,HotTrap)

The algorithm performs a fixpoint computation of the set A of states that are either cold
or from which the system can force the execution to reach a cold state. When the algorithm
terminates, this set contains the hot-escapable states.

The key point in the algorithm is line 6, which contains the condition based on which a new
hot state enters A. For a state to become hot-escapable, all its external edges must lead into
A, which expresses the fact that these events are beyond our control, and are controlled by the
environment. Since we cannot prevent (block) them, we require that they cause no problem
in the first place — namely, that they lead to states that have already been classified as hot-
escapable by their being in the set A. Another condition, which handles the case where a state
only has internal events enabled, is that there be at least one edge going into a state of A. The
key fact is that if either condition holds, the blocking idiom can be applied to block all edges
that do not lead to A.

The escape-distance value, δ , of a hot-escapable state indicates the number of the iteration
in which it joined A. It measures the shortest guaranteeable distance to a cold state — that is,
the length of the shortest such path that can be enforced by blocking.

Observe that while this algorithm serves to define hot-escapable and hot-trap states, it is
not efficient — primarily because of the loop in line 5. By considering, at every iteration, only
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nodes that have successors that were determined hot-escapable in the previous iteration, the run
time complexity can be reduced to O(∣VG∣+ ∣EG∣).

1 T

21 T

T

Figure 4.10: Hot-trap and hot-escapable states. Hot states are marked red and contain either
a number or the letter T; cold states are marked blue and are empty. Solid edges correspond
to internal events, and dotted edges correspond to external events. A number inside a hot state
designates the state as hot-escapable and indicates the escape-distance. The letter T designates
the state as hot-trap.

4.7.2 Handling Hot-Trap States

As discussed previously, once the run enters a hot-trap state the system cannot guarantee that
it ever reaches a cold state. Consequently, we are forced to block that entrance in the first
place. This is done by applying safety wait-block patches, using the technique discussed in
Section 4.6, which renders all hot-trap states unreachable.

Observe that this may remove potentially good runs too — namely, runs that go through
a hot trap state yet still visit a cold state eventually. This can happen, for example, when an
external event leading to another hot trap state is not triggered and, instead, an internal event
that leads to a cold state is triggered. However, since we cannot depend on external events
being triggered or not, our only way to ensure that no violations occur is to make hot-trap states
unreachable.

4.7.3 Hot-Escapable States and Transition Fairness

The criterion used in determining the set of hot-escapable states ensures that careful use of the
blocking idiom can force the run from a hot-escapable state into a cold state. The actual tech-
nique we propose is aimed at harming as few good runs as possible, and is based on fairness.
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The notion of fairness assumptions [121] is used widely in formal verification, typically in
order to rule out violating runs of the system because they are not realistic. Here, we discuss a
special kind of fairness, called transition fairness [18]: if a transition is enabled infinitely often
(i.e., its state of origin is visited infinitely often), then it is traversed infinitely often. We also
allow a set of transitions originating from the same state to form a single constraint: if the state
is visited infinitely often, then at least one of the transitions in the set is traversed infinitely
often. Note that, unlike in the traditional setting where fairness is assumed for verification
purposes, here we aim to enforce it within a malfunctioning system.

Intuitively, hot-escapable states have the property that if the event selection mechanism
were to choose the triggered events uniformly at random, a run that visits them would eventually
lead to cold states. It turns out that one can also settle for assumptions that are weaker than
truly random event selection. We express these required assumptions as transition fairness
constraints, and then discuss how to enforce them. Formally:

Definition. Let P be a behavioral program with state graph G. A transition fairness constraint
c on G is a set of one or more transitions (edges) in the graph, {e1, . . . ,en}, all originating from

the same node v. We say that P satisfies c, denoted P ⊧ c, if it has the following property: if a

run ρ of P visits v infinitely often, transitions from c are traversed infinitely often.

Let C = {c1,c2, . . . ,ck} be a set of transition fairness constraints. We say that P satisfies C,

denoted P ⊧C, if ∀1≤i≤kP ⊧ ci.

We now define a set of specific transition constraints for each of the hot-escapable states in
the graph, and then show that they suffice for guaranteeing the liveness property in question.

Definition. Let P be a behavioral program with state graph G = (VG,EG), and let

Vhot−escapable ⊆VG be its set of hot-escapable states with respect to some liveness property Φ.

For each v ∈Vhot−escapable, the transition fairness constraint of v, τ(v), is defined as follows:

• if v has transitions corresponding to external events, τ(v) is the set of these transitions.

• otherwise, v has a neighbor, u, such that u is a cold state or δ(u) < δ(v). In this case, we

define τ(v) to be the edge leading from v to u.

Observe that for every hot-escapable state v, τ(v) can be found during the hot state classi-
fication algorithm at no additional cost. We define the set of transition fairness constraints of
the entire program to be the set of transitions fairness constraints on all its hot-escapable states,
namely τ(P)=⋃v∈Vhot−escapable τ(v). The following proposition justifies our choice of constraints:

Lemma 4. Let P be a behavioral program and let Φ be a liveness property. If P has no hot-trap
states with respect to Φ and P ⊧ τ(P), then P ⊧Φ.
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Proof. Suppose, towards contradiction, that P ⊭Φ. Then there exists a run ρ of P and a hot
state v0 ∈Vhot , such that v0 appears infinitely often in ρ . Since P has no hot-trap states, v0 is
hot-escapable.

By our assumption that the constraints of τ(P) hold, there exists a neighbor of v0, denoted
v1, that also appears infinitely often in ρ , and this v1 is either a cold state or a hot-escapable
state with δ(v1) < δ(v0). If the former holds, then ρ ⊧Φ and we are done. If the latter holds,
we reapply the same logic iteratively. Clearly, this produces a chain of hot-escapable states
v0,v1, . . . ,vn, all appearing infinitely often in ρ , with δ(v0) > δ(v1) > . . . > δ(vn). Since δ(v0)

is finite, this process ends in visiting a cold state infinitely often, again implying that ρ ⊧Φ.

Note that the lemma assumes that P has no hot-trap states. However, this is not a real
limitation, since, as previously explained, we can first apply safety patching to make such
states unreachable.

4.7.4 Liveness Patches

We have characterized fairness constraints that are sufficient for correcting the liveness vio-
lation. Unfortunately, behavioral programs are not guaranteed to be fair. This is an intrinsic
property of the event selection mechanisms commonly used in behavioral prgramming. For
example, in arbitrary or priority-based selection certain transitions might be enabled infinitely
often but never triggered. Consequently, we introduce a new type of patch, termed a liveness

wait-block patch, aimed at enforcing a transition fairness constraint on the program.

Definition. Given a state graph G = (VG,EG), a probability η , a hot-escapable state v ∈V and

its transition fairness constraint τ(v), a liveness wait-block patch for v is a b-thread with the

following properties:

• It waits for all events chosen by the event selection mechanism and traverses the graph

G according to them.

• It keeps track of the present state and notes when the execution reaches v.

• Whenever in v, with probability 1−η the patch does nothing. With probability η , it blocks

all transitions except those in τ(v).

• It does not request events and does not label states.

Intuitively, liveness wait-block patches are a way of incrementally injecting fairness into
specific states of an already existing program, without modifying existing code. When the
patch is applied to a hot-escapable state, it enforces the fairness constraint of that state; in
runs in which the state is visited infinitely often, at least one of the transitions specified by
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the constraint will be triggered infinitely often. Indeed, the probability that edges in τ(v) are
not traversed after after m visits to v approaches 0 as m tends to infinity, and this is true even
for very small values of η . Note that, despite their probabilistic nature, these are essentially
wait-block patches: they wait for a sequence of events, and then apply blocking to steer the run
in the right direction.

Observe that it is indeed always possible to block all the transitions except those in τ(v).
The only events that cannot be blocked are the external ones; and if there are external transitions
in v, they are all in τ(v) by definition. Further, observe that by their definition liveness patches
cannot cause deadlocks in states that were deadlock-free before the patching — as the patch
always leaves unblocked at least one event that was already enabled.

Our motivation for using probability-based blocking is the desire to leave good runs unaf-
fected. Choosing η to be small still guarantees that the fairness constraint holds, but makes it
likely that runs that scarcely visit the state remain unaffected.

As in the case of cyclic safety patches (Section 4.6.2), liveness patches can be represented
as a collection of lines and tails to make them more comprehensible.

We point out that so far we have dealt strictly with deterministic behavioral programs.
Our probabilistic liveness patches, however, introduce nondeterminism into the system. This
nondeterminism is not “against the grain” of behavioral programming, and indeed, extending
behavioral programming definitions to support nondeterminism is straightforward, and is omit-
ted.

4.7.5 The Liveness Patching Algorithm

Based on the discussion in the previous sections, we now present the patching algorithm itself:

Observe that, as in the safety patching algorithm of Section 4.6, it may be impossible to
create safety patches for hot-trap states in certain cases. One extreme example is when the entire
state graph consists of hot-trap states only, so that attempting to render these states unreachable
produces a trivial program that deadlocks in its initial state. In such cases, the algorithm returns
a failure notice.

The correctness of the algorithm is established by the following lemma:

Lemma 5. Let P′ be a patched program returned by the algorithm, and let ρ be a run of P′.
Then with probability 1, ρ ⊧Φ.

Proof. By the previously proved correctness of safety patching (Lemma 3), the algorithm en-
sures that there are no reachable hot-trap states in P′. By Lemma 4, it suffices to show that P′

satisfies the constraints in τ(P) with probability 1. This claim is immediately derived from the
definition of a liveness wait-block patch (Definition 4.7.4) and the discussion following it.
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Algorithm 4 Liveness Patching(P,Φ)

1: P′← P
2: Run the model checker on (P,Φ)
3: if P ⊧Φ then
4: return P
5: Run Classify Hot States on the state graph
6: for each hot state vh ∈V do
7: if vh is a hot-trap then
8: if creating a safety patch to prevent runs from reaching vh is impossible then
9: return Failure

10: Create a safety patch ps
vh

that prevents runs from reaching vh
11: P′← P′∪{ps

vh
}

12: else
13: Create a liveness patch p`vh

for vh
14: P′← P′∪{p`vh

}
15: return P′

Part of our motivation for using wait-block patches in repairing violated safety properties
was the Locality Lemma, which stated that any good runs remain unchanged. Unfortunately,
that lemma cannot be proved for the liveness case; in fact, any liveness wait-block patch, by
definition, might affect good runs as well as bad ones. We settle for the following:

Lemma 6 (The Weak Locality Lemma (Liveness)). Let P be a collection of b-threads, let p be
a liveness wait-block patch for hot-escapable state sh, and let P′ denote the patched program
P∪{p}. Any run ρ of P that does not reach sh constitutes a valid run ρ ′ of P′, and Tr(ρ) =

Tr(ρ ′).

The proof is similar to that of the safety case and is omitted. The result is weaker, in the
sense that if sh is hot-escapable then good runs that pass through it might, with some proba-
bility, become invalid in the patched program. That probability increases the more times they
pass through sh. However, the effect on good runs can be reduced by decreasing the patches’
blocking probability η .

The complexity of the liveness patching algorithm is as follows. The model checking phase
costs O(Tmc). Classifying the hot states is linear in the size of the state graph. Each hot-trap
state is then handled as a safety violation, adding O(∣Vhot−trap∣ ⋅ (D2 + ∣VG∣+ ∣EG)). Finally,
for every hot-escapable state, we must construct the sub-graph needed to check when it is
visited, yielding another O(∣Vhot−escapable∣ ⋅(∣VG∣+ ∣EG)). Combining these, the total worst-case
complexity becomes:

T =O(Tmc+(∣Vhot ∣+1) ⋅(∣VG∣+ ∣EG∣)+ ∣Vhot−trap∣ ⋅D2) .
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The runtime complexity shows the algorithm’s dependence on the number of hot states: the
smaller it is, the closer our complexity is to that of regular model checking. In the next section
we discuss a heuristic-based approach for reducing this in practice.

4.7.6 Minimal Fairness Enforcement

In the algorithm just discussed, we first rendered all the hot-trap states in the state graph un-
reachable and then enforced a set of transition fairness constraints in the hot-escapable states.
By Lemma 5, we are guaranteed that this repairs any liveness violations in the program. How-
ever, the number of enforced fairness constraints is rather large — it is approximately the
number of hot-escapable states in the program. Despite this, in some cases one can settle for
fairness constraints that are far less extensive. For instance, consider the graph in Figure 4.11.

Figure 4.11: An instance where the liveness repair algorithm would enforce more fairness than
is required. The graph above has three hot-escapable states, and the algorithm would enforce
transition fairness on the three edges leading from them into the cold state. Clearly, it suffices to
settle for just one of these three constraints in order to guarantee that the cold state is eventually
reached. Similar, larger constructions show that our algorithm might enforce any number of
fairness constraints where just one would suffice.

Decreasing the number of fairness constraints being enforced is highly desirable, for two
reasons. First, as we mentioned earlier, we wish to perform as few modifications to the original
program as possible, and enforcing fewer constraints clearly serves this goal. Second, the size
of the automatically generated code module is in correlation with the number of constraints that
it enforces. Hence, fewer constraints means shorter modules, which are easier to maintain.

A natural question thus arises: can one identify a minimal-size set of fairness constraints
that need be enforced on a given behavioral program in order to ensure that a given liveness
property holds? Formally, we define the minimal fairness problem MFopt , as follows: Given a
behavioral program P with state graph G = (VG,EG) and a liveness property Φ, such that G has
no hot-trap states with respect to Φ, find a minimal-size set C of transition fairness constraints
such that P ⊧C⇒ P ⊧Φ.

Unfortunately, it turns out that this problem is NP-complete. In [47], the authors study the
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problem of synthesis in the face of incomplete knowledge about the system’s environment. In
particular, they show that the problem of finding a minimal fairness assumption on the environ-
ment in order to make a given specification realizable is NP-complete. It is straightforward to
show that this problem is reducible to MFopt and that MFopt is in NP, rendering it NP-complete.

Given this fact, we propose a greedy algorithm for approximating MFopt in practice. The
algorithm starts with an empty constraint set, and adds new constraints iteratively, in a manner
similar to the way algorithm Classify Hot States finds the set of hot-escapable states.

Throughout its iterations, the algorithm maintains a growing set of already “handled” hot-
escapable states. This is the set of states for which enforcing the current set of fairness con-
straints guarantees that they partake in no liveness violations. In other words, a run that visits
any of these states infinitely often will reach a cold state infinitely often too.

The set of handled states is increased in each iteration. There are two ways for a state v to
become handled:

1. By direct fairness enforcement: this happens when the algorithm chooses to enforce a
fairness constraint leading from v into the set of already handled states.

2. By indirect domination: if, due to previous fairness constraints, all of v’s successors are
already handled, then v itself can be immediately marked as handled.

At each iteration, the algorithm imposes one fairness constraint, meaning that precisely
one vertex becomes handled through method 1. Our criteria in choosing this particular vertex
is trying to maximize the number of states that will become handled through method 2. The
actual choice is performed by looking at all the candidates, namely nodes that can become
handled through the enforcement of a single constraint. Each candidate is then assigned a
value, which is its number of hot-escapable predecessors that are not yet handled (observe that
these predecessors are precisely the vertices with potential to become dominated by choosing
this vertex). Finally, the highest valued candidate is selected, and the corresponding fairness
constraint is enforced. Here is pseudo-code outline of the algorithm:

Algorithm 5 Approximate MFopt(V,E)

1: A←HotStates(V), handled ← φ , constraints← φ

2: while A ≠ φ do
3: candidates← FindAllCandidates()

4: max← MaxValuedCandidate()

5: Add a constraint that handles max to constraints
6: Move max to from A to handled
7: while there are nodes in A dominated by handled do
8: Move dominated nodes from A to handled
9: return constraints
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The two subroutines, FindAllCandidates and MaxValuedCandidate, are omitted. As
with Classify Hot States, an efficient implementation of the algorithm and its subroutines runs
in time that is linear in the size of the program’s state graph.

4.7.7 Example: Liveness Patching for the Dining Philosophers

We implemented our liveness patching algorithm (including the greedy approximation algo-
rithm) within our proof-of-concept tool. For evaluation, we used the dining philosophers prob-
lem [63]. A behavioral implementation thereof includes the events of a philosopher picking up
and putting down a given fork, a b-thread for the behavior of each philosopher and a b-thread
for each fork. Each philosopher’s b-thread is subject to a strict event sequence: pick up one
fork, pick up the other, put down one fork, put down the other. Each fork’s b-thread waits for
events that change its state, and blocks illegal events (e.g., a second picking up, or, a putting
down by the “wrong” philosopher). In [86] we model checked this problem and variations
thereof for safety and liveness properties.

For our experiment, we used a variant where the first n−1 philosophers are left-handed and
the last one is right handed, which prevents deadlocks. All events in the program are internal,
and so no hot-trap states exist. Finally, the liveness property used was this: “Philosopher #1
eats infinitely often”. The results are shown in Table 4.1.

Table 4.1: Comparing the results of the naı̈ve repair algorithm and the greedy approximation
repair algorithm for the dining philosophers problem, with 9 - 12 philosophers. The States
column shows the total number of states in the program. The Patches (Naı̈ve) and Patches
(Greedy) columns show the number of patches generated by the naı̈ve and greedy algorithms,
respectively. Observe that since the naı̈ve algorithm generates one fairness constraint per hot-
escapable state, the Patches (Naı̈ve) column reflects the number of hot-escapable states as well.
Finally, the Reduction column shows the percentage of patches saved by using the greedy
version.

#Philosophers #States #Patches (Naı̈ve) #Patches (Greedy) Reduction
9 Philosophers 19682 17495 9913 43%

10 Philosophers 59048 52487 30760 41%
11 Philosophers 177146 157463 93989 40%
12 Philosophers 531440 472391 287283 39%

Each fairness constraint is translated into the actual code that enforces it, using the same
mechanism as for safety patches. Although there may be many patches (as the example demon-
strates), each of them is fairly comprehensible. The possibly high number of patches was part
of our motivation for using the greedy algorithm; coming up with better algorithms to further
reduce this number remains a topic for future work.
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4.8 Limited-Depth Repair

4.8.1 Automatic Repair from Field Error Reports

Many facilities exist for end-users to send reports of software failures to the software vendor
(see, e.g., Figure 4.12). Typically, these reports correspond to violated safety properties (e.g.,
“the system never crashes”).

Figure 4.12: Event logs from bug reports are used in patch construction.

For behavioral programs, we propose a methodology for using such failure reports in order
to cope with the state-explosion problem inherent to model checking, and to patch programs
with many violating runs:

• The failure report contains an event log.

• Using the fact that the effect of a patch is local, we constrain the model checking depth
to a neighborhood of the path of the failure (the bad run), followed by a limited fan-out
of possible continuations, past the blocked transition.

• This is enforced by a dedicated b-thread, which monitors all events, and when an event
occurs that is not along the reported bad path, it starts counting the distance from the bug
report. When the distance is greater than a given parameter, the b-thread calls a model
checker API to prune the search.

• Finally, the safety patch is generated as above.

Such patching prevents the failure reported by the end-user, along with any other failures
“not far” from it, and can help when full model checking and patching consumes too much
resources. As with bounded model checking techniques [32], the search-depth parameter is key
and needs to be adjusted per repaired program; higher depth means repairing more violations,
but poorer performances. It is up to the user to use knowledge of the program’s state graph, or
run tests, in order to come up with the best choice.

4.8.2 Example: Limited-Depth repair of the Dining Philosophers

Again consider the dining philosophers problem [63], this time where all philosophers are left
handed. The reported bug fixed is the classical deadlock where all philosophers pick up the
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fork on their left. Table 4.2 shows the results of patching for the single bad run that we gave
the patcher.

Table 4.2: Patching the dining philosophers problem using bounded depth patching. Receiving
a bug report (e.g., each philosopher picked up a single fork), the algorithm searches for event
sequences that deviate from, or continue, the event trace in the bug report by no more events
than the search depth parameter. The patches handle cycles discovered within the search depth
(e.g., one of the philosophers completing a full cycle of picking up and putting down her two
forks, while the others do not proceed). The tests were carried out on a PC with a Intel Quad
Core Q6600 CPU @ 2.40GHz.

Search Depth 3 Philosophers 6 Philosophers 9 Philosophers

3
3 patches
3 loops
0.5 seconds

1 patch
2 loops
4.2 seconds

1 patch
2 loops
30 seconds

4
15 patches
30 loops
1.2 seconds

2 patches
4 loops
22 seconds

3 patches
6 loops
4.5 minutes

5
20 patches
380 loops
3.2 seconds

12 patches
1200 loops
2 minutes

12 patches
2580 loops
45 minutes

4.9 Related Work

The research in [143, 142, 104] presents fault localization and automatic repair of programs,
where a set of software components that are suspected to cause a fault is replaced by a set of
synthesized components, such that the resulting system is guaranteed to meet the full specifi-
cation. Automatic repair of concurrency bugs (e.g., accessed to shared memory), is presented
in [103]. The detection mechanism uses bad runs associated with bug reports, and the analysis
involves actual execution. The repair is manifested in modification to existing code. Genetic-
programming-based repair of legacy C programs is demonstrated in [150]. The repair relies on
changes to existing code in order to correct problems that were assumed to be local in nature.
In [21], genetic-programming is combined with co-evolution of the test cases against which the
program is evaluated. Naturally, any work on automatic-repair would be considered a particular
case of program synthesis [134, 36].

As mentioned in Section 4.7.6, our work on repairing liveness violations relates to that
of [47], where the authors show how to synthesize fairness assumptions the environment must
uphold in order for a specification to be realizable. Our work tackles similar difficulties, but in
a different setting: the environment is fixed, and fairness constraints on the system are synthe-
sized. Our repair algorithm then imposes those constraints on the previously designed system.
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As for other approaches for coordinating simultaneous behaviors, such as Esterel, BIP or
Linda (see related work in [90, 89] for a comparison of behavioral programming with these
approaches), we believe that comparable localized repair mechanisms would be possible. The
key would be implementing the equivalent of blocking which, combined with ability to sub-
scribe to all events, is central to our solution. This, of course, is possible, as it was in Java and
Erlang, and could also benefit other aspects of incremental development in these environments.

4.10 Conclusion and Next Steps

The contribution of this chapter is in the proposed automated approach, in which faulty com-
ponents are neither identified nor modified. Instead, the system is non-intrusively augmented
with additional components, to yield desired overall system behaviors. The entire approach is
made possible by the incrementality and modularity of behavioral programs. The new compo-
nents are readily understandable by humans, and can be documented, enhanced, or generalized
as part of standard development. The generated patches can then be distributed to users with-
out re-distributing the original software. Finally, contributing to the on-going and up-hill battle
with state explosion, we propose a methodology and a practical technique for constructing local
patches using limited-depth model checking.

This research is a step in the direction of developing methodologies and tools for the repair
of behavioral programs. An important next step is to enrich the tool with interactive capabilities,
allowing the developer to examine the state graph and enhance the proposed repairs: consol-
idating similar patches, generalizing or constraining patch functionality, or perhaps changing
existing code after all.

Future research problems include repairing the program with regard to time-related prop-
erties, as well as integration with other formal methods tools and techniques, including other
synthesis algorithms, symbolic model checking, and compositional verification. Our tool could
be combined with Java Pathfinder [148] or other tools to explore support of richer inter-process
communication beyond solely behavioral events, and possibly solving concurrency problems
among b-threads, as in [103].

We hope that with further developments in incremental, non-intrusive development, sup-
ported by powerful repair automation, the task of software maintenance may eventually shed
its present (often lackluster) image, becoming a rewarding undertaking, allowing software en-
gineers to quickly address customer needs in a productive, satisfying manner.
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Chapter 5

Module-Based Abstraction and Repair of
RWB Programs

5.1 Introduction

Explicit model checking algorithms operate by spanning a program’s state graph and comparing
it to a given specification. This method becomes infeasible for large systems, as the state graphs
tend to grow exponentially in the size of the program (the state explosion problem). Abstraction
techniques [52] are among the most important methods for coping with state explosion and
increasing the scalability of model checking algorithms.

The key idea underlying abstraction techniques is to replace the concrete system model
(i.e., the program’s state graph) with a smaller abstraction thereof. Typically, the abstraction
constitutes an over-approximation — it includes the behaviors of the concrete system, and may
also include other behaviors. In the case of model checking, proving that a given property holds
for the abstract model implies that it holds for the concrete model as well. Since the abstract
model is more succinct, the state explosion problem is hopefully mitigated.

We study the application of abstraction techniques to the BP framework, and to RWB
models in general. Recall that in BP, programs consist of behavioral threads — threads of code
that run in parallel, each designed to affect a specific behavior of the system. In the first part
of our work, we present a formulation of BP’s semantics that supports the notion of modules,
which are logically related threads grouped together, and discuss abstracting these modules. We
then demonstrate how the composition of module abstractions yields an over-approximation of
the entire behavioral program.

In the second part of this chapter we discuss model checking abstract behavioral programs,
and propose a counterexample guided abstraction refinement (CEGAR) [51] scheme for BP.
When model checking over-approximations, counterexamples found by the model checker may
prove spurious, i.e. nonexistent in the concrete system. In CEGAR, one validates each coun-
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terexample against the concrete system and, if it is spurious, refines the abstract model in a way
that eliminates it. The process is then repeated iteratively until the property is proven or a gen-
uine counterexample is found. Based on our module-based abstraction of behavioral programs,
we propose a two layer abstraction-refinement scheme, similar to that of [49], in which spurious
counterexamples of the composed system are used to refine module abstractions. In our setting,
module interdependencies make it impossible to resolve spurious counterexamples by examin-
ing modules individually; our algorithm compensates by considering these interdependencies
and refining multiple modules simultaneously when needed.

In the third part of the chapter, we combine our abstraction techniques with a program
repair algorithm. In Chapter 4 we demonstrated how safety violations can be eliminated from
behavioral programs by adding separate, non-intrusive behavioral threads to the program. Since
that repair technique included spanning the program’s concrete state graph, it was susceptible
to the state explosion problem. Here, we modify the technique to work on abstract state graphs
instead of concrete ones, without affecting the algorithm’s correctness and soundness. We
observe that a given abstraction might not allow finding a correct repair even if one exists, in
which case we use the desired repair as a means for refining the abstraction further. We believe
that similar repair-driven refinement techniques may also be applicable to other frameworks,
besides BP.

The rest of this chapter is organized as follows. We begin by defining abstract behavioral
programs in Section 5.2. We then discuss applying CEGAR to BP in Section 5.3, and sug-
gest an abstraction-based repair algorithm in Section 5.4. Our experimental results appear in
Section 5.5. Discussion of related and future work appears in Section 5.6.

5.2 Abstractions for Behavioral Programming

Given behavioral programs P and P, we say that P is an over-approximation of P if and only
if Tr(P) ⊆ Tr(P). Thus, for any LTL formula Φ over AP, Tr(P) ⊧Φ implies Tr(P) ⊧Φ, and so
verifying that Tr(P) ⊧Φ shows that the original program is correct (for an introduction to LTL
see, e.g., [23]). In this section we focus on constructing a suitable program P that is smaller
than P, so that checking whether Tr(P) ⊧Φ is easier than checking whether Tr(P) ⊧Φ.

5.2.1 Abstracting a Behavioral Thread

We begin by defining abstractions of b-threads. Let BT = ⟨Q,δ ,q0,R,B,L⟩ be a thread over
event set E and propositions AP, and let π be a AP-preserving partition of Q, i.e., q1 ≡π

q2 Ô⇒ L(q1) = L(q2). Let ηπ ∶ Q→ Q/π , termed the abstraction function induced by π , be
a function that maps each state to its equivalence class under π . ηπ gives rise to a b-thread
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BT = ⟨Q,δ ,q0,R,B,L⟩, called the abstraction thread of BT induced by π , defined in the fol-
lowing manner. The states of BT are the equivalence classes Q = Q/π , and its initial state is
q0 = ηπ(q0). For every state q ∈ Q, the mapping functions are given by R(q) =⋃q∈η−1

π (q)R(q),
B(q) = ⋂q∈η−1

π (q)B(q) and L(q) = L(q) for (every) q ∈ η−1
π (q). The transitions relation δ is

derived from δ by:
q

e
→ q̃

ηπ(q)
e
→ ηπ(q̃)

Note that for every q, R(q)∩B(q) =∅, and that q has a transition for every e ∉B(q). Hence,
BT is a valid b-thread. The definition is designed to make BT more permissive than BT — that
is, to ensure that replacing BT with BT within a given program results in an over-approximation
of that program. In particular, the abstraction preserves atomic proposition of states, and ab-
stract states request at least as much and block no more than their matching concrete states.
Formally, we present the following Lemma

Lemma 7. Let P = [BT 1 ∥ . . . ∥ BT n] be a behavioral program. Let π be an AP-preserving
partition of the states of BT 1, and let BT 1 be the abstraction of BT 1 induced by π . Finally, let
P = [BT 1 ∥ BT 2 ∥ . . . ∥ BT n]. Then Tr(P) ⊆ Tr(P).

Proof. Observe that, without loss of generality, we may assume that n = 2; otherwise, we would
first calculate the composition BT ′ = BT2 ∥ . . . ∥ BT n, and then deal with P = [BT 1 ∥ BT ′].

In order to prove the lemma, we look at an execution ε of P, and prove that there exists an
execution ε of P such that Tr(ε) = Tr(ε) — and hence, Tr(P) ⊆ Tr(P).

Let ε = q0
e1
→ q1

e2
→ . . . be an execution of P. Each state qi is comprised of two components,

q1
i and q2

i , denoted qi = ⟨q1
i ,q

2
i ⟩, such that q j

i is a state of thread BT j. We look at an execution
ε = q0

e1
→ q1

e2
→ . . ., with same events as ε . The states are set to qi = ⟨ηπ(q1

i ),q
2
i ⟩, where ηπ is

the abstraction function mapping each state to its equivalence class under partition π . We next
show that this ε is a valid execution of P, and that it has the same trace as ε .

By definition, every state qi is indeed a state of P. Further, L(qi) = L(ηπ(q1
i ))∪L(q2

i ) =

L(q1
i )∪L(q2

i ) = L(qi), and consequently Tr(ε) = Tr(ε). It only remains to prove that for each
qi, the transition to qi+1 is legal — namely, that event ei+1 is enabled at state qi and that the
transition qi

ei+1
→ qi+1 exists in P.

To see why event ei+1 is enabled, recall that by definition R(ηπ(q1
i )) ⊆ R(q1

i ). Hence:

ei+1 ∈ R(q1
i )∪R(q2

i ) Ô⇒ ei+1 ∈ R(ηπ(q1
i ))∪R(q2

i )

And so, if ei+1 is enabled in state ⟨q1
i ,q

2
i ⟩ then it is also enabled in state ⟨ηπ(q1

i ),q
2
i ⟩. Finally,

by the abstraction’s definition, the transition q1
i

ei+1
→ q1

i+1 in BT 1 implies the transition ηπ(q1
i )

ei+1
→

ηπ(q1
i+1) in BT 1; and, in turn, the transition ⟨ηπ(q1

i ),q
2
i ⟩

ei+1
→ ⟨ηπ(q1

i+1),q
2
i+1⟩ in P. Thus, ε is a

valid execution of P; the claim follows.
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By definition, a thread’s abstraction is determined by the AP-preserving partition π in use.
Clearly, an abstraction of a minimal number of states is achieved when π is the AP-partition
itself, i.e. q1 ≡π q2 ⇐⇒ L(q1) = L(q2). As our goal is to minimize the number of states of
the composed program, this partition is of special interest. We refer to this abstraction as the
coarsest abstraction of BT , and denote it by B̂T .

5.2.2 Abstracting a Behavioral Program

Due to BP’s composite nature — where sets of composed threads are threads themselves —
thread abstraction can be applied at various points throughout the composition process. In
choosing when to apply it, our goal is to end up with an over-approximation that is neither
too concrete (to mitigate state explosion), nor too abstract (so that it is meaningful). In our
experiments, the best results were achieved by first grouping threads that are logically related
and composing them into modules. Intuitively, this entails clustering threads that assign similar
atomic propositions to their states into the same module. Each module is then abstracted indi-
vidually, effectively ignoring threads that deal with other atomic propositions. Finally the ab-
stractions are composed, generating the desired over-approximation. In this section we provide
motivation for this approach, and propose an automated way for grouping together logically
related threads.

To illustrate the benefits of using modules, we first discuss two of the more natural alterna-
tives. One approach is to apply abstraction at the last step of the composition process: i.e., to
compute BT = BT 1 ∥ . . . ∥ BT n and then set P = [B̂T ]. While this method produces meaning-
ful abstractions, it entails calculating the very large b-thread BT , which has at least as many
states as P. Hence, this technique suffers from the state explosion problem that we have been
trying to avoid. Another natural approach is to abstract each of the basic threads, i.e. calculate
P = [B̂T 1 ∥ . . . ∥ B̂T n]. While this method does indeed circumvent the state explosion problem,
our experiments show that the abstractions it tends to produce are too coarse to be of any prac-
tical use. Specifically, behavioral programming promotes writing threads that are small and
specific, and tend to contain a single atomic proposition. Thus, early abstraction usually col-
lapses the threads into a couple of states each, abstracting away most implementation details.
Later, during verification tasks, multiple rounds of refinement are needed until a meaningful
model is obtained.

The module based method can be seen as a middle ground between these two extreme
alternatives. On one hand, as abstraction is applied during the early phases of the composition
process, the state explosion problem is averted. On the other hand, as it is applied to threads
that are sufficiently complex, the resulting over approximation is more likely to be meaningful.

The rationale behind grouping together logically related threads, as opposed to just using an
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arbitrary partitioning of the threads, is the desire to generate small modules: logically related
threads tend to share atomic propositions, and request and block similar events. Consequently,
the resulting abstractions tend to contain fewer states, and the approximation labeling functions
R and B tend to be tighter, reducing the number of edges in the final over-approximation.

We conclude this section by discussing an automated method for grouping together log-
ically related threads. As the above discussion suggests, such threads tend to share atomic
propositions and requested/blocked events, and indeed this is how we attempt to group them.
Let BT be a thread with states q1, . . . ,qm, and let ap ∈ AP. We define the correlation between
BT and ap as:

cor(BT,ap) =
∣{i ∣ ap ∈ L(qi)}∣

m
A thread’s correlation to an atomic proposition is thus the fraction of states to which the label-
ing function assigns the proposition. Intuitively, threads that have high correlation to the same
atomic proposition may be logically related. Setting a threshold M, say 0.5, induces a parti-
tioning of the threads into modules, denoted ≡M. At first each thread is considered to reside in
a separate module, and then pairs of modules are iteratively joined by the rule:

cor(BT i,ap) ≥M⋀cor(BT j,ap) ≥M Ô⇒ BT i ≡M BT j

Analogous correlation can be defined between threads and events, by considering the fraction
of states in which a thread requires or blocks the event. These correlations are easy to compute
using static analysis of the threads, and are supported by the BPC framework.

Further information that can be taken into account when looking for related threads in-
cludes various string distance metrics applied to their respective names and locations in the
directory structure — as programmers tend to group similar threads together and give them
similar names. These measures are also straightforward to compute using automated methods.
Finally, any or all of the above measures can be combined into a single metric, yielding the
desired partition into logically related modules.

We summarize the resulting module-based abstraction algorithm:

Algorithm 6 Module-Based Abstraction

1: Partition the threads into modules BT M1 , . . . ,BT Mm

2: For each module BT Mi , calculate B̂T Mi

3: return P = [B̂T M1 ∥ . . . ∥ B̂T Mm]

By iteratively applying Lemma 7, we get the following corollary:

Corollary. Let BT 1, . . . ,BT n be threads over event set Σ and atomic propositions AP. Let

P = [BT 1 ∥ . . . ∥ BT n], and let P be the program returned by Algorithm 6. Then Tr(P) ⊆ Tr(P).
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5.3 Counterexample Guided Abstraction-Refinement

Given a behavioral program P and an LTL property Φ, we attempt to prove that P ⊧ Φ by
calculating an over-approximation P and proving that P ⊧Φ. However, it may be the case that
P ⊧Φ but P ⊭Φ, because P is too abstract (see an illustration in Figure 5.1). Model checking
P then results in a spurious counterexample, i.e. one that exists in P but not in P. A standard
technique for handling this problem, known as counterexample guided abstraction refinement

(CEGAR) [51], uses such spurious counterexamples in order to refine P in a way that eliminates
them. The process is repeated until a genuine counterexample is found, or until the property is
shown to hold.

In this section, we describe an implementation of CEGAR in the context of BP. The two
main phases of the technique — determining whether a counterexample is spurious or gen-
uine and refining the abstraction in order to eliminate spurious executions — are discussed in
Sections 5.3.1 and 5.3.2, respectively.

For simplicity, we limit the discussion to safety properties, for which counterexamples are
finite executions. The method can be extended to liveness properties and the associated loop
counterexamples through loop unwinding; see [51].
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Figure 5.1: A concrete state graph (on the left), and a matching abstraction (on the right). The
atomic proposition labeling appears inside the states. The two states with identical labeling
(b) are abstracted into a single state. The abstract state graph contains fewer states, but it also
allows spurious executions. While some properties, such as G(a→X¬a), hold for both graphs,
the property G(a→G¬c) holds in the concrete case but not in the abstract one, because of the
spurious execution fragment i

e1
→ a

e3
→ b

e3
→ c.

5.3.1 Determining if an Execution is Spurious

Suppose that on checking whether P ⊧Φ, the model checker replies in the negative, providing
a finite counterexample ε . We wish to determine whether ε is a valid execution of the original
system. The idea, based on [51], is to simulate ε on the concrete program in order to check if
it constitutes a genuine execution. During this simulation, we must take into account the two
layer structure of our abstraction scheme, as well as the role of requested and blocked events,
in determining whether runs are valid.
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Let P = [B̂T M1 ∥ . . . ∥ B̂T Mm] be an abstract program, composed of m abstract modules, and
let ε = q0

e1
→ q1

e2
→ . . .

en
→ qn be a finite execution of P. It is tempting to say that ε is a valid

execution of the concrete system if and only if its projections onto the modules form valid
executions of the modules; indeed, a similar technique is used in [49]. However, in our context,
this approach does not suffice. Consider, for instance, the case where the transition labeled e1

in ε exists in each of the concrete modules, but that none of them requests event e1. In this
case, looking at each module separately, we would have no way of knowing whether event e1

is indeed enabled on the program level. Thus, our scheme must take into account the mutual
effect modules have on each other.

We begin with some notation. For a set of states S, we denote by R(S,e) the subset of states
of S in which event e is requested. We use Post(S,e) to denote the set of successors of states
in S when event e is triggered. Finally, let q = ⟨q1,q2, . . . ,qm⟩ denote an abstract state, and let
η j denote the abstraction function of module BT M j . We use η to denote the global abstraction
function, i.e. η(⟨q1, . . . ,qm⟩) = ⟨η1(q1), . . . ,ηm(qm)⟩. This function and its inverse function are
not stored explicitly, as doing so for every state in P would entail enumerating all states of P

— negating the advantages offered by our two layered approach. Instead, η is only computed
locally for specific states, on demand, by invoking the module abstraction functions.

Our technique follows the idea of [51], and defines a series of sets {Si}, representing the
concrete states the system can actually reach in each step of ε . These sets are computed by
using the concrete module state graphs. The definition of Si is given by S0 = {⟨q1

0,q
2
0, . . . ,q

m
0 ⟩}

for the concrete initial states and Si = Post(R(Si−1,ei),ei)∩η−1(qi) for 1 ≤ i ≤ n.
The idea behind this definition is to walk on the abstract graph according to the execution,

and for each abstract state identify the concrete states that are truly reachable along this specific
execution, using the Si sets. As we later prove, a run is genuine if and only if it corresponds to
a series of non-empty sets. Each set is derived from its predecessor by looking only at states in
which the next event is requested, and calculating their successor states. Out of these successors
we only keep those that are abstracted to the next state of the abstract execution, as expressed
by intersecting with η−1(qi).

The actual algorithm for checking whether an execution is spurious is thus:

Algorithm 7 Check If Spurious

1: for i ∶= 0 to n do
2: Calculate Si; if it is empty, return True
3: return False

The algorithm’s correctness is established via Lemma 8:

Lemma 8. Let ε be an execution of P. Then ε is spurious, i.e. is not a valid execution of P, if
and only if Algorithm 7 returns True.
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Proof. We show that the algorithm answers False if and only if the run is genuine.

First Direction: A Genuine Run.

Suppose that ε = q0
e1
→ q1

e2
→ . . .

en
→ qn is a genuine execution of P; i.e., there exists an execution

ε = q0
e1
→ q1

e2
→ . . .

en
→ qn of P, such that for every qi = ⟨q1

i ,q
2
i , . . . ,q

m
i ⟩ and qi = ⟨qi

1,qi
2, . . . ,qi

m⟩ it
holds that η j(q j

i ) = qi
j for every j. Further, in every concrete state qi (for 0 ≤ i < n), event ei+1

is enabled.

A straightforward inductive argument on i = 1. . . . ,n shows that for the i’th step of ε , set Si

contains the concrete state ⟨q1
i ,q

2
i , . . . ,q

m
i ⟩, and is thus non-empty. As this state requests and

does not block the next event of the execution, it follows that qi+1 ∈ S j
i+1. Hence, for all i we get

Si ≠∅, which in turn implies that the algorithm returns False, as needed.

Second Direction: Algorithm returns False.

Suppose that on execution ε = q0
e1
→ q1

e2
→ . . .

en
→ qn, the algorithm answers False. We show that

this implies the existence of a genuine run ε that corresponds to ε .

By the algorithm’s answer, we know that the computed sets Si are not empty for all 0 ≤ i ≤ n

and. We use these sets, backtracking from i = n to i = 0, reconstructing the genuine run as we
go.

For i = n, we pick an arbitrary qn = ⟨q1
n, . . . ,qm

n ⟩ ∈ Sn. Then, for state qn−1, we pick a state
q ∈ Sn−1 such that en ∈ R(q) and qn ∈ Post(q,en); such a state exists by the way the Si sets are
defined. This process continues iteratively, until ε = q0

e1
→ q1

e2
→ . . .

en
→ qn is constructed. It is

straightforward to see that it constitutes a valid run of P. The claim follows.

Observe that computing the Si sets is performed using the concrete state graphs of the mod-
ules, and does not entail constructing the explicit state graph of P. Every state q ∈ Si is stored
as the set of module states to which it corresponds. The sets R(q,e) and Post(R(q,e),e) can
be computed locally from these states. Further, there is no need to actually compute η−1(qi),
which is costly; instead, for every q ∈ Post(R(Si−1,ei),ei), we check whether η(q) = qi by ap-
plying the module abstraction functions to its components, which is substantially cheaper.

5.3.2 Refining in order to Eliminate a Spurious Execution

We now discuss refining P in order to eliminate a spurious counterexample, thus allowing
another round of model checking. The iteration on which Algorithm 7 halted indicates where
the refinement should occur. Indeed, this is where the abstract and concrete graphs diverge, and
so splitting the previous abstract state into multiple states could render the spurious execution
invalid.
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Suppose that the Check If Spurious algorithm stopped because Si+1 = ∅. This indicates a
problem with transition qi

ei+1
→ qi+1 of the execution: either the concrete system can only reach

states that are not mapped to abstract state qi+1, or event ei+1 is not even enabled in the concrete
program — although it is enabled in the abstract one. Each case is characterized and handled
differently:

Case 1.

For all concrete states in Si, transitions labeled ei+1 do not lead to abstract state qi+1, i.e.
Post(Si,ei+1)∩η−1(qi+1) = ∅. In this case, we split qi into 2 abstract states: state q′i that
corresponds to the concrete states Si, and state q′′i that corresponds to the remaining states,
η−1(qi)−Si. By definition, execution ε would visit abstract state q′i instead of qi, from which
there would be no transitions to qi+1. Thus, ε would no longer be a valid execution of the
abstract program. This case corresponds to the technique used in [51].

Case 2.

There exists a state q ∈ Si such that Post(q,ei+1) ∈ η−1(qi+1). However, ei+1 ∉ R(q); if that were
not so, we would get Si+1 ≠∅. In this case, state q is waiting for event ei+1 without requesting
it. The request for ei+1 is made by a different state in η−1(qi). As both states are mapped into
the same abstract state, the outcome is the edge qi

ei+1
→ qi+1.

In this case, performing refinement as in Case 1 might not suffice, as the state requesting
event ei+1 might also be in Si. We thus resort to two rounds of refinement: first, we split state qi

into q′i and q′′i , as before. Then, we further refine state q′i, in order to separate states requesting
event ei+1 from those that do not. Formally, we split q′i into state qR

i corresponding to concrete
states q ∈ Si such that ei+1 ∈R(q), and state qNR

i corresponding to concrete states q ∈ Si such that
ei+1 ∉ R(q). By definition, execution ε would visit abstract state qNR

i instead of qi, from which
there would be no transitions to qi+1, making it an invalid execution of the abstract program.

The following Lemma immediately follows from the above discussion:

Lemma 9. Let ε be a spurious execution of P, and let P′ be the refined program obtained by
the above refinement step. Then ε is not a valid execution of P′.

Observe that the iterative verification process entails explicitly computing η−1(q) once per
each refinement step. While this step is expensive, hopefully the number of iterations is small.
Reducing the number of iterations is part of our motivation for using logically related modules
— see discussion in Section 5.2.2.

We note that the resulting refinement is defined in terms of a global abstract state that should
be split into smaller states. However, as η is not stored explicitly, this refinement cannot be
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applied directly. Constrained by our two layered setting, we may only perform refinements on
the module abstraction functions η1, . . . ,ηm, indirectly refining η . Thus, a set of refinements
for the η1, . . . ,ηm functions needs to be derived from the desired η refinement. This can be
performed by separating (within the modules) any pair of concrete states that do not always
appear simultaneously in the new global abstract states. However, as not every refinement of
η can be expressed as refinements of η1, . . . ,ηm, the resulting global refinement may be finer
(i.e., produce more states) than the desired one.

5.4 Repair using Abstractions

In this section we discuss how our proposed abstraction scheme can prove useful in the context
of repairing violated safety properties. Repairing safety violations in behavioral programs was
discussed in Chapter 4; we provide a short recap here.

Our scope includes fixing safety violations in existing programs. Finding these violations
can be reduced to invariant checking [23]. Thus, without loss of generality, a program is correct
if its state graph has no reachable “bad” states. This, along with the event blocking idiom of BP,
enables an elegant method of repair by trimming: correcting the program by removing edges
from its state graph using the blocking idiom, so that bad states become unreachable.

The repair is non-intrusive, i.e. performed strictly by adding new threads to the program
(termed “wait-block patches”), and without modifying existing code. The patch threads are
passive, in the sense that they never request any events or assign any atomic propositions to
states, thus keeping the repaired program as close to the original as possible. Only when the
execution gets dangerously close to a bad state does the patch block events that would cause a
violation, forcing the system to choose a different execution path. In Chapter 4 it is shown that,
for programs with deterministic threads, this method does not eliminate correct executions, as
events are blocked only when they are guaranteed to lead to a violation. Further, no deadlocks
are created as a result of such patching.

This repair technique is adequate for systems that are capable of generating the desired
(“good”) behavior but may, in some scenarios, produce erroneous output. For instance, patch-
ing may be applied to a variety of bugs resulting from race conditions between parallel compo-
nents — fixing them by temporarily blocking one of the components, forcing it to yield to its
counterpart. However, not all systems can be repaired in this way, and the repair algorithm fails
gracefully in this case. A soundness result shows that if a correct patch exists, it will indeed be
found by the repair algorithm.

The algorithm operates by analyzing a program’s state graph and looking for the smallest
fixpoint set of states that can be removed from the graph in order to render qb, the single bad
state, unreachable. Specifically, the algorithm backtracks from qb, attempting to isolate it by
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trimming edges without creating deadlocks. Whenever all the successors of a state are bad, it is
marked as bad itself; see Figure 5.2. Below is the repair algorithm’s pseudo-code; Pre denotes
the predecessor states of a given set of states.

Algorithm 8 Concrete Safety Patching

1: BAD← {qb}
2: PRE ← Pre(BAD)
3: while ∃q ∈ PRE such that ∀e,Post(q,e) ∈ BAD do
4: Move q from PRE to BAD
5: if q is the initial state then return Failure
6: PRE ← Pre(BAD)
7: return a patch that blocks edges from PRE to BAD

q1

q2 q3

q4 q5

qb

I q1

q2 q3

q4 q5

qb

II q1

q2 q3

q4 q5

qb

III q1

q2 q3

q4 q5

qb

IV

Figure 5.2: The algorithm for trimming the concrete state graph of a program in order to correct
a safety violation. Graph I depicts the initial configuration, with the only bad state, qb, marked
in red. The edges from states in PRE to states in BAD cross the dotted red line, and are
candidates for blocking. In the first iteration, blocking these edges would cause a deadlocked
in state q4. Thus, in graph II state q4 is also marked as bad, and q2 joins PRE. Unfortunately,
now a deadlock would be caused in state q2, and the algorithm iterates again, putting q2 in BAD.
The next iteration puts q5 in BAD. Only then, in graph IV, can edges crossing the dotted line be
safely removed without causing deadlocks. The states in BAD are thus rendered unreachable,
fixing the safety violation.

As this algorithm uses the program’s concrete state graph, it does not scale to large pro-
grams. We thus seek to adjust it so it can use an over-approximation instead. Unfortunately,
directly applying the concrete patching algorithm to an abstract graph yields erroneous results.
In particular, the algorithm might fail when a correct answer exists, or the resulting patches
might also eliminate good executions — traits that did not exist in the concrete version. See
Figure 5.3.

Intuitively, the reason for these failures is the fact that patch-incompatible concrete states
are abstracted into the same abstract states. By patch-incompatible, we mean that the concrete
algorithm would block a different set of events in each of the concrete states. In the abstract
graph, however, such blocking becomes impossible, resulting in the algorithm’s undesired be-
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e1

e3

e4

e2

e3

e4

e1,e2

e3 e3

e4 e4

Figure 5.3: A concrete state graph on the left, and its abstraction on the right. The atomic
propositions appear inside the states. The safety property in question is the invariant G¬b,
which is violated when the states in red are reached. In the concrete graph, a simple patch can
fix the problem: by blocking e1 in the initial state, the red state is made unreachable, and no
deadlocks are caused. On the abstract graph, however, no repair is possible without causing a
deadlock somewhere in the program. As a result of the nondeterminism in state a, where two
edges correspond to the same event, we are unable to block one edge while leaving the other
enabled.

havior. In order to overcome this difficulty, we incorporate a refinement phase into the repair
algorithm; however, instead of using counterexamples as means of guiding the refinement, the
driving force is the need to create abstract states that correspond only to patch-compatible con-
crete states.

The algorithm uses an over-approximation of the state graph, in which qb is the single ab-
stract bad state, corresponding to qb. As in the concrete case, we assume the concrete b-threads
are deterministic. Here is the pseudo-code:

Algorithm 9 Abstract Safety Patching

1: BAD← {qb}
2: while True do
3: PRE ← Pre(BAD)
4: if ∃q ∈ PRE such that NeedToRe f ine(q) then
5: Re f ine(q)
6: else if ∃q ∈ PRE such that ∀e,Post(q,e) ⊆ BAD then
7: Move q from PRE to BAD
8: if q is the initial state then return Failure
9: else

10: return a patch that blocks edges from PRE to BAD

The core of the algorithm remains the same as in the concrete case: we start at the bad state qb,
backtracking and marking states that only lead to bad states as bad themselves. Once we reach
a setting in which all states in PRE also have edges leading to good states (as to not create
deadlocks), we return a patch trimming the edges from PRE to the bad states. The refinement
phase prevents good executions from being likewise trimmed:

In order to determine if an abstract state q needs to be refined, we look at the events that
we would like to block in it (set E). If there exists a concrete state in η−1(q) for which e ∈ E
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Algorithm 10 NeedToRefine(q)

1: E ← {e ∈ Σ ∣ Post(q,e)∩BAD ≠∅}
2: if exists q ∈ η−1(q),e ∈ E such that e ∈ R(q) and η(Post(q,e)) ∉ BAD then
3: return True
4: if exists q ∈ η−1(q) such that R(q) ⊆ E then
5: return True
6: return False

is requested and leads to a good state, refinement is needed to prevent good executions from
being eliminated. Similarly if there exists a state in η−1(q) that has no requested events that
would remain unblocked, refinement is needed in order to avoid causing a deadlock. The actual
refinement is performed as follows:

Algorithm 11 Refine(q)

1: For every q ∈ η
−1(q) calculate B(q) = {e ∈ R(q) ∣ η(Post(q,e)) ∈ BAD}

2: Form a partition η
−1(q) =C1 ⊍C2 ⊍ . . .⊍Ck ⊍Cdeadlock such that if B(q) = R(q), then q ∈Cdeadlock;

else, q1,q2 ∈Ci ⇐⇒ B(q1) =B(q2).
3: Split abstract state q into k + 1 new states q1, . . . ,qk+1 such that η

−1(qi) = Ci for 1 ≤ i ≤ k, and
η
−1(qk+1) =Cdeadlock.

Set B(q) contains the events to be blocked in q. The refinement splits the problematic abstract
state into multiple abstract states, each representing concrete states in which the same events
need to be blocked. Observe that state qk+1, in which the necessary blocking will introduce a
deadlock, will be put in BAD in one of the following iterations of the main algorithm.

For correctness and soundness, we present the following theorem, which is analogous to
the one for the concrete algorithm presented in [6]; hence, it demonstrates that the improved
scalability does not come at the expense of the concrete version’s desirable qualities.

Theorem. For a behavioral program P and a violated safety property Φ,

1. A patch returned by Algorithm 9 eliminates all bad executions of the program, does not

eliminate good executions, and does not create deadlocks.

2. If there exists a wait-block patch that corrects P with respect to Φ, such a patch will be

found by Algorithm 9. Otherwise, the algorithm will issue a Failure notice.

Proof. We begin with a side note about the meaning of a patch eliminating executions. As the
patch is intended to be integrated into the program as a thread, it will change the program’s
underlying state graph. Hence, it is not immediate that executions of the original system have
any meaning in the context of the patched program.
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We resolve this issue by making the following observation. Due to the special structure of
the patch — namely, that it follows the program’s state graph and only blocks events, with-
out requesting events or assigning atomic propositions — the program graph of the patched
program is isomorphic to that of the original program, except for the edges being removed.
Hence, any execution of the original program corresponds to a unique execution of the patched
program, and it makes sense to discuss such executions being eliminated. For simplicity, for
the rest of the proof we ignore this issue, regarding patches as eliminating transitions in the
original state graph without modifying its states.

The theorem’s proof relies mainly of the following invariant of the algorithm, which we
prove as a separate proposition:

Proposition 1. Let q denote an abstract state that the algorithm puts in set BAD. Then for any
concrete state abstracted into q, i.e. for every q ∈η−1(q), any execution ε of P that visits q must
violate Φ.

Proof. We prove the proposition using induction on the algorithm’s iteration index. Observe
iteration i, the first iteration in which some state q is about to enter set BAD. At the beginning
of this iteration, set BAD contains only the abstract state qb. Since q is about to enter set BAD,
it must be that q ∈ PRE. Further, the NeedToRefine subroutine returned False on q — meaning
that any event that is not blocked in q leads to qb. If there existed a concrete state q ∈ η−1

i1
(q)

and an event e ∈ R(q) such that Post(q,e) ≠ {qb}, a matching transition would also appear in
the abstract graph, and q would not be put in BAD. Hence, Post(q) = {qb}. In other words, any
concrete execution passing through any concrete state associated with q is bound to visit qb and
cause a violation.

Now, suppose that the claim holds for the first i iterations, and observe iteration i+1. Sup-
pose a new state q joins BAD in this iteration. The reasoning is the same as before: q is put in
BAD only if for every q ∈η−1(q) and every event e ∈R(q), q

e
→ q′ implies that η(q′) ∈BAD. By

the inductive hypothesis, an execution that visits q′ is thus bound to cause a violation. Since
this applies to every successor of every concrete state q ∈ η−1(q), the claim follows.

A second observation that we prove separately is that the algorithm always halts:

Proposition 2. The Abstract Safety Patching algorithm always halts.

Proof. Observe the algorithm’s main loop. If the algorithm does not stop, it must make in-
finitely many iterations of this loop. Each iteration that does not lead to termination is devoted
to either performing a single refinement of the abstract program, or to moving an abstract state
into the growing set BAD. We show that both types of iterations can only be performed a finite
number of times, proving the proposition.
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Begin with iterations dedicated to refinement. Any refinement step splits an abstract state
into at least two states; hence, each such step increases the number of states of the abstract
program by at least one. Since this number is bound from above by the number of states of the
original program, only a finite number of refinements can be performed. Once the abstract and
concrete program coincide, the NeedToRefine subroutine will return False on every state, and
the algorithm will cease attempting to refine the program.

We now turn to iterations in which states are moved to BAD. Observe the set of concrete
states mapped to BAD in iteration i, denoted η−1

i (BAD). These sets start with η−1
1 (BAD) =

{qb}, and for each iteration i that puts a new state in BAD we have ∣η−1
i (BAD)∣ > ∣η−1

i−1(BAD)∣.
Since the size of ∣η−1

i (BAD)∣ is also upper bounded by the number of states in the concrete
program, we get that the number of such iterations is also finite. We thus conclude that the
algorithm always halts.

We now use these propositions to prove part 1 of the theorem. Consider a patch BTP pro-
duced by the repair algorithm. This patch eliminates transitions leading to all states in set BAD,
effectively disconnecting them from the state graph. In particular, all executions leading to
state qb are eliminated. Since the existence of a concrete execution leading to qb implies the
existence of an abstract execution leading to qb, it follows that the patch indeed eliminates all
bad executions in the concrete system.

Next, we show that no good executions are eliminated. All transitions that were removed
from the state graph lead to states in BAD. By Proposition 1, any execution that visits these
states is bound to cause a violation; hence, none of the affected executions are good.

Finally, we show that no deadlocks are created by the algorithm. A deadlock is created if
and only if there exists a state in q ∈ η−1(PRE) for which the set of requested events, R(q),
coincides with the events to be blocked. Hence, when the state graph is finalized, state q would
have no outgoing transitions.

Observe state q = η(q). This state is in PRE, and is not moved to BAD; hence, it has
outgoing transitions that lead to good states. These transitions cannot originate in q; hence,
there is another state, q′ ≠ q, such that η(q′) = q and q′ would not become deadlocked when
the patch is applied. This contradicts the fact that q ∈ PRE at the time the algorithm halts, as
subroutine NeedToRefine would return True for state q =η(q), leading to its being refined. This
refinement would cause states q and q′ to be mapped into separate abstract states; and in the
algorithm’s next iteration, the abstract state of q would be put in BAD. Hence, no deadlocks
can occur as a result of patching, and the first part of the theorem is proven.

We now turn to part 2 of the theorem. Here, we must show that the algorithm does not
return a Failure when a correct patch exists. Suppose, then, that a correct patch BTP exists.
This patch corresponds to a set of transitions that are to be blocked, cutting off some of the
concrete program’s states. Also, this patch does not create deadlocks. We mark the set states
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to be cut off by S. Again we observe the series of sets η−1
i (BAD) that our algorithm grows

through its iterations. By Proposition 1, for every i the set η−1
i (BAD) consists only of states

that must lead to a violation of Φ. Since BTP is correct, it follows that it, too, cannot allow
executions to reach states in η−1

i (BAD). In other words, for every i we have η−1
i (BAD) ⊆ S.

Our algorithm only issues a Failure notice if it reaches a state where the initial state of the
concrete system, q0, is in η−1

i (BAD). However, by the correctness of BTP, set S cannot contain
q0, or else it would create deadlocks. Hence, our algorithm will not return a Failure notice.
As Proposition 2 establishes that the algorithm must halt, we conclude that it will return some
patch. Finally, by the first part of the theorem, this patch will be correct. We conclude that our
algorithm will indeed output a correct patch if such a patch exists, as needed.

In this algorithm, the inverse global abstraction η−1(q) is computed multiple times; indeed,
this is an expensive step. However, for programs that are “close to being correct”, the repair
algorithm may only need to perform a few refinements, hopefully terminating in reasonable
time. As discussed in Section 5.3.2, not every refinement is obtainable in our two layered
structure; see discussion therein.

5.5 Experimental Results

For our experiments we used the BPC framework for BP in C++, available online [9]. We
implemented the algorithms presented in the previous sections, namely thread abstraction,
partitioning into modules, CEGAR verification and abstraction based patching, as a proof-
of-concept tool on top of BPC. Since our goal was to show the improved scalability offered by
the abstraction techniques, we also implemented concrete versions of the same algorithms in
BPC. All implementations are explicit; symbolic implementation is left for future work.

We tested our algorithms on a BP based web-server application. The server, a work in
progress, implements basic TCP and HTTP protocol stacks and is compatible with the Firefox
browser. Due to the server’s size of several million states, BPC ran out of memory when
attempting to verify it concretely.

In contrast, the abstraction based methods were able to produce an initial abstraction of the
system within 22 seconds. The automated module partitioning algorithm successfully divided
the threads into logically related modules along the lines of the TCP and HTTP layers, grouping
the HTTP threads into a single module and dividing the TCP threads between a few modules.
The resulting over-approximation contained 800 states and some 12500 transitions.

We then used this over-approximation to identify and repair a bug where the TCP stack
would, under certain conditions, acknowledge a FIN message for already closed connections.
Identifying this bug using the CEGAR-based verification algorithm took 9.5 minutes, and in-

82



cluded 3 refinement phases, at the end of which a genuine counterexample was produced.
Producing a patch that fixes the bug using Algorithm 9 then took 38 minutes.

Our experiments were run on a 2.66 GHz T500 laptop. The model and some of the proper-
ties used for our tests are available from [107].

5.6 Related Work and Conclusion

The main contribution of our work is in applying abstraction techniques to behavioral program-
ming. In particular, we propose a technique for efficiently generating over-approximations of
programs, which can later be used in analysis algorithms. We demonstrate two such algorithms:
a CEGAR based method for model checking behavioral programs, and an abstraction based al-
gorithm for the repair of safety violations. We regard this research as a step in the direction of
developing more scalable methodologies and tools for formal analysis of BP.

Another contribution of our work is in the field of program repair, where we show an ab-
straction based algorithm that uses repair-guided refinement. Program repair is closely related
to the synthesis problem, where various abstraction-refinement schemes have been proposed
(e.g., [95, 59]); thus, we feel that this is a useful concept that could potentially improve the
scalability of existing repair methods, not necessarily restricted to BP.

The use of abstraction-refinement based techniques to expedite model checking has been
extensively studied (e.g., [51, 52, 125, 19]) and has been implemented in several frameworks,
such as SLAM [25] and BLAST [96]. Among these, the work most closely related to ours
is the MAGIC framework [44, 49]. There, the authors similarly propose a two layer CEGAR
approach, in which modules are abstracted separately and their abstractions then composed.
However, the setting of [44, 49] allows spurious counterexamples to be checked against each
module separately — whereas in the setting of BP, checking involves all modules simultane-
ously. Analogously, refinements may not be confined to a single module.

In the area of program repair, recent work has focused on locating faulty components and
then using synthesis to alter or replace them. In [104, 142], the authors seek corrections in
the form of strategies that may be implemented without introducing new states (memoryless
strategies), in order to alter the original program as little as possible. We address the same need
by only adding code, leaving the original program unmodified. The work of [75] discusses
repairing boolean programs by using abstractions of these programs. This approach is similar
to ours, but does not include a refinement phase in case spurious executions in the abstract
program prevent finding a repair. In [109], the authors tackle state explosion by maintaining
an under-approximation of a repair candidate, at each iteration adding more constraints that it
must fulfill. New constraints are produced by checking the candidate against the concrete faulty
system. This technique appears orthogonal to our own, in which the program is abstracted and
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the repair candidate is calculated explicitly. Attempting to combine the two methods seems
promising, and is left for future work.

A different repair approach includes using genetic and co-evolutionary programming [21,
150], where a set of candidate programs is iteratively evaluated against the specification. Pro-
grams with high fitness survive, and are mutated to produce the next iteration’s candidates, until
a correct program is obtained. This approach handles more general bugs than ours (as it is not
limited to trimming), but may extensively alter the original program’s code.

In the future, we plan to extend our abstraction-based repair algorithm to handle violated
liveness properties, as well safety ones. Indeed, some preliminary work we have done shows
promising results. Another direction we hope to pursue is improving the performance of BPC
by enhancing it with symbolic capabilities. Finally, another interesting line of work is strength-
ening our module-partitioning algorithm: we feel the programmer-created b-threads contain
currently untapped meta data about the structure of the system, which could be utilized in mak-
ing “smarter” partitions. We hope that tapping this meta data will also prove useful in the
context of automated compositional verification.
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Chapter 6

On the Succinctness of RWB Programs

6.1 Introduction

As is well known, many measures of computational complexity are used to compare solutions
to algorithmic and software development problems. However, when it comes to comparing
the methods, languages and tools that are used to construct those solutions, one needs quite
different criteria for comparison. One of the main approaches to this, which has been used ever
since the Rabin-Scott work on nondeterministic automata [135], is the size of the description.
Size comparisons are usually carried out on the finite automata level of detail, and the most
common metric, often called descriptive succinctness or state complexity, is the total number
of states needed by the automata to express certain languages.

A large amount of work has been dedicated to descriptive succinctness in recent decades.
A few notable models whose succinctness has been studied in detail are nondeterministic and
universal automata, alternating automata, reverse automata, unary automata, and also various
kinds of grammars and language formalisms (see, e.g., [100] for a survey). These studies have
been motivated by the strong connection between succinctness and software reliability [129],
indicating that succinct software is easier to develop, maintain and reuse. Further, the descrip-
tive succinctness of a model is often connected to the complexity of various decision problems
in it [100], and hence can be relevant also to verification problems.

In this chapter, we set out to analyze the descriptive succinctness of various idioms used
in concurrent programming, seeking, as in most previous studies, exponential gaps in descrip-
tive power. In particular, we study whether the addition of certain idioms to a programming
model exponentially improves that model’s succinctness, and in what cases. In addition to the
considerations mentioned above and to our desire to better understand the fundamental nature
of these concurrency idioms, our motivation has another aspect: a careful selection of concur-
rency idioms may make resulting programs more amenable to formal analysis. Thus, a better
characterization of concurrency idioms and of the types of problems which they are suitable for
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solving could allow programmers to more carefully tailor the programming model used to the
problem at hand — on the one hand retaining “just enough” concurrency to efficiently solve
the problem, while on the other hand keeping the model simple and amenable to analysis [83].

Here, we focus on the three fundamental concurrency idioms defined in Section 2.2: re-
questing, blocking and waiting for events. As previously mentioned, the requesting and
waiting-for idioms are fairly common in discrete-event programming languages, with versions
thereof appearing as first-class citizens in, e.g., publish-subscribe architectures [69]; whereas
the blocking idiom is somewhat less common, appearing, e.g., in the live sequence charts

(LSCs) formalism [57]. All three idioms can, of course, be implemented in any high level
language. Combined, they also form the behavioral programming (BP) model [90]. Research
suggests that using these idioms may lead to simple code modules that are aligned with the
specification [90].

Following the required definitions presented in Section 6.2, this chapter’s contributions ap-
pear in Sections 6.3, 6.4 and 6.5. In Section 6.3 we study a model containing the requesting,
waiting-for and blocking idioms (which we call the RWB model), and position it in compari-
son to other well known models. Specifically, we show that RWB is polynomially expressible
as automata with cooperative concurrency a la statecharts [66], but that cooperative concur-
rency can be exponentially more succinct than RWB. We then show that despite this gap,
the RWB model, which affords greater encapsulation, shares some of the cooperative model’s
strength and offers considerable advantages when compared to non-parallel automata. Next,
we show that the succinctness of RWB is additive to that of classical nondeterminism and
universal (“and”) nondeterminism, and that a combination of all three features yields a triple-
exponential improvement in succinctness. This last result establishes a hierarchy of succinct-
ness relations indicating, e.g., that the (more practical) nondeterministic or universal RWB
models are double-exponentially more succinct than non-parallel automata.

Next, in Section 6.4, we study the separate contribution of each of RWB’s idioms to the
model’s descriptive succinctness. We define variants of RWB in which each of these idioms
is omitted, and show that the full RWB model has exponential succinctness advantages over
each of the variants.

Finally, in Section 6.5 we show that each of the downgraded versions of RWB has suc-
cinctness advantages over one or both of the other downgraded versions and over non-parallel
models. This establishes the fact that each of the idioms makes its own unique contribution
to succinctness, and is not subsumed by its counterparts. Notable among these results is the
fact that event blocking, which is less common as a first-class concurrency idiom, provides
exponential savings in succinctness. Further, we show that the succinctness afforded by each
of these three idioms is not of equal power: for instance, the waiting-for idiom is weaker than
the requesting one.
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Related work appears in Section 6.6, and we conclude with Section 6.7.

6.2 Definitions

6.2.1 Request-Wait-Block Automata

In this chapter we use a slightly modified (although equivalent) version of the definitions given
in 2.2. The reason for this is our desire to study the RWB idioms on the automata level, in
order to maintain compatibility with the large existing body of work in this field.

An RWB-automaton consists of orthogonal components called RWB-threads:

Definition. A Request-Wait-Block-thread (RWB-thread) is a tuple ⟨Q,E,δ ,q0,R,B⟩, where Q

is a finite set of states, E is a finite set of events, δ ⊆Q×E ×Q is a transition relation and q0 is

an initial state. We require that δ be deterministic, i.e. ⟨q,e,q1⟩ ∈ δ ∧⟨q,e,q2⟩ ∈ δ Ô⇒ q1 = q2.

For simplicity of notation, we use δ̄ to indicate the effect event e has in state q (or its absence):

δ̄(q,e) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

q′ ; if exists q′ ∈Q such that ⟨q,e,q′⟩ ∈ δ

q ;otherwise .

The mapping functions R,B∶Q → 2E associate a state with the set of events requested and

blocked, respectively, by the RWB-thread in that state.

Observe that there is no labeling function for waited-for events: the notion of waiting is
expressed via the transitions between states. If state q has a transition labeled with event e that
was not requested at q, the thread is considered to be waiting for event e in state q.

A composition of RWB-threads yields an RWB-automaton, defined as follows:

Definition. AnRWB-automaton (RWBA) A over a finite event set E is a finite tuple ofRWB-

threads ⟨T1, . . . ,Tn⟩, denoted Ti = ⟨Qi,E i,δ i,qi
0,R

i,Bi⟩, such that E i ⊆E for all i, and the Qi state

sets are pairwise disjoint.

A configuration of an RWBA is the state of its threads, i.e. an element of Q1 × . . .×Qn. A

configuration ĉ = ⟨q̂1, . . . , q̂n⟩ is a successor of configuration c = ⟨q1, . . . ,qn⟩ with respect to an

event e ∈ E, denoted c
e
Ð→ ĉ, whenever

e ∈
n
⋃
i=1

Ri(qi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e is requested

⋀ e ∉
n
⋃
i=1

Bi(qi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e is not blocked

n
⋀
i=1

((e ∈ E i Ô⇒ q̂i = δ̄
i(qi,e))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
affected threads read the event

and change state if needed

∧(e ∉ E i Ô⇒ q̂i = qi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unaffected threads
stay in the same state

).

Observe that, since the threads have deterministic transition functions, each configuration
can have at most one successor with respect to a specific event. It may, however, have multiple
successors, each with respect to a different event.
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An execution of A is a sequence of configurations c0c1c2 . . . such that, for all i, ci+1 is a
successor (with respect to some event) of ci and c0 = ⟨q1

0, . . . ,q
n
0⟩ is the initial configuration.

An execution may be an infinite sequence of successive configurations, or a finite sequence
that ends in a terminal configuration, i.e., a configuration with no successors. Every execution

ε = c0c1c2 . . . of an RWBA induces a set runs(ε) = {ρ ∈ E∗ ∪Eω ∶∀0≤i<∣ε ∣,ci
ρ[i]
ÐÐ→ ci+1 }. These

runs are also sometimes referred to as the words associated with ε . Note that runs(ε) ⊆ E∗ or
runs(ε)⊆Eω , depending on ε being finite or infinite, respectively. We say that a run ρ ∈E∗∪Eω

is accepted by an RWBA A if there is an execution ε of A such that ρ ∈ runs(ε). The language

of A, denoted L(A), is the set of all runs accepted by A.
The acceptance condition in this definition is simple — all valid runs are accepted. Of

course, the formalism can be modified to cater for more elaborate acceptance conditions, such
as conventional accepting states or the various acceptance conditions for ω-automata. The
motivation for the present choice is that we regardRWB as representing the underlying models
of programming approaches. As such, languages are seen as generated by, rather than accepted
by, a program; indeed, we use these two terms interchangeably.

Next, we define our notion of size, to be used in the analysis of the descriptive succinctness
of various variants of RWBAs and other models.

Definition. The size of an RWB-automaton A with threads {⟨Qi,E i,δ i,qi
0,R

i,Bi⟩}n
i=1 is ∣A∣ =

∑
n
i=1 ∣Qi∣+ ∣{⟨q,e, q̂⟩ ∈ δ i}∣, namely the total number of states and transitions in the threads. For

simplicity, the requested and blocked events in every state are omitted from the calculation.

They contribute no more than ∣E ∣ ⋅ ∣Qi∣ to the size of each thread, and have no effect on the size’s

order of magnitude as ∣E ∣ is considered constant.

6.2.2 Finite Parallel Automata

In order to measure the advantages of RWB and of other parallel models, we define the fol-
lowing non-parallel model to serve as a reference point:

Definition. A deterministic looping automaton (DLA) A is a tuple ⟨Q,E,δ ,q0⟩, where Q is a

set of states, E is an alphabet, δ ⊆ Q×E ×Q is a deterministic transition relation and q0 ∈ Q

is an initial state. As it reads an input word, A traverses its states according to δ , in the usual

manner. A accepts infinite words, as well as finite words that end in terminal states (states

with no successors). A word is rejected if it contains a letter for which there is no matching

transition, or if it ends in a non-terminal state. The language L(A) is the set of words accepted

by A, and the size of A is ∣A∣ = ∣Q∣+ ∣{⟨q,e, q̂⟩ ∈ δ}∣, namely the number of states plus the number

of transitions in A.

We now discuss other parallel models, focusing on the three fundamental notions: nondeter-

minism [135] (E-automata) and its dual, pure parallelism (A-automata), which when combined
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yield alternating automata [46], and cooperative concurrency (C-automata) [66]. The first two
notions take the form of ∃- and ∀-states in alternating automata, whereas cooperative automata
play a role in formalisms and languages such as statecharts [78].

All three features — E , A and C — may co-exist. Further, it is shown in [66] that each fea-
ture contributes exponentially to the succinctness of the model, independently and additively,
so that, e.g., (E ,A,C)-automata allow for triple-exponentially more succinct representations
than is possible without these features. Below we give the definition of (E ,A,C)-automata; the
other models are regarded as restrictions thereof.

Definition. An alternating cooperative automaton (an (E ,A,C)-automaton) over a finite alpha-

bet E is a tuple M = ⟨M1,M2, . . . ,Mn,Φ⟩ where each Mi is a triple ⟨Qi,δ i,qi
0⟩. Qi are pairwise-

disjoint state sets and qi
0 are the initial states. δ i ⊆Qi×E×Γ×Qi are transition relations, where

Γ is the set of propositional formulas over the states of all components, ⋃n
i=1 Qi. Elements from

Γ serve as guards: a transition can be applied only if its guard evaluates to true. For example,

for q1 ∈ Q1 and q2 ∈ Q2, the guard q1∧¬q2 evaluates to true precisely when component M1 is

in state q1 and component M2 is not in state q2. Finally, Φ ∈Γ is the E-condition — a condition

that, when true, implies that the configuration is existential (an E-configuration); otherwise, the

configuration is universal (an A-configuration). In [66], these automata include a termination

condition as well, but as we deal with the simple variant of looping automata, we may omit it.

A configuration of M is an element of Q1×Q2× . . .×Qn×(E∗∪Eω)×N, indicating the state

of each component, the (finite or infinite) input word, and the position of M in that word. A

configuration c satisfies a guard condition γ ∈ Γ if γ evaluates to true when assigned the states

of c. Let ρ = ρ0ρ1 . . . ∈ E∗∪Eω and let t = ⟨q,a,γ, p⟩ be a transition in δ i. We say that t is ap-

plicable to a configuration c = ⟨q1, . . . ,qn,ρ, j⟩ if ρ j = a, qi = q and c satisfies γ . A configuration

⟨p1, . . . , pn,ρ,m⟩ is a successor of c if for each i there is a transition ⟨qi,ρ j,γ i, pi⟩ ∈ δ i that is

applicable to c, and m = j+1.

A computation of M on input word ρ can be described as a tree. It starts at the initial

configuration ⟨q1
0,q

2
0, . . . ,q

n
0,ρ,1⟩, and reads a letter. If the state has multiple successors, the

computation “splits”, and progresses in parallel for all possible successor states. The process

then continues. Any infinite path in this tree is said to be accepting. A finite path is accepting iff

it ends in a terminal configuration (a configuration with no successors). An E-configuration is

accepting iff there exists an accepting path starting at that state, whereas an A-configuration

is said to be accepting iff every path starting at that state is accepting. Word ρ is accepted by

M iff the root of its computation tree is accepting.

If each configuration of M has a single successor (i.e., all transitions are deterministic),
we have a C-automaton, which we might call a cooperative automaton. When n = 1 it is in
fact an (E ,A)-automaton: an alternating looping automaton. When n = 1 and Φ = true, M is
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a nondeterministic looping automaton; and when n = 1 and Φ = f alse it is a universal looping
automaton. Finally, when both n= 1 and every configuration has a single successor, M is simply
a deterministic looping automaton — a DLA.

Definition. The size of an (E ,A,C)-automaton M is defined to be the sum of the sizes of its con-

dition and components; i.e. ∣M∣= ∣Φ∣+∑
n
i=1 ∣Mi∣, where ∣Mi∣= ∣Qi∣+∑⟨q,a,γ,p⟩∈δ i ∣γ ∣. A condition’s

size is defined as the length of the formula that represents it.

6.2.3 Succinctness Gaps

We next lay out the method of comparing the succinctness of two models. Informally, we say
that a computational model M1 is more succinct than model M2 if there are programs that
have descriptions in M1 that are significantly smaller than the smallest possible descriptions
for those programs in M2. In this chapter we consider a gap to be significant if it is at least
exponential. Following [66], we define upper and lower bounds on gaps in succinctness:

Definition. Let M1,M2 denote two computational models. We write M1
p
→M2 (resp.,

M1
⋅→ M2) if there is a polynomial p (resp., a polynomial p and a constant k > 1) such that for

any automaton M1 ∈M1 of size m there is an automaton M2 ∈M2 such that L(M1) = L(M2),

and M2 is of size no more than p(m) (resp., kp(m)). In this case, we say that M1 is at most
polynomially (resp., exponentially) more succinct thanM2.

We writeM1 →⋅ M2 if there is a family of ω-regular languages Ln, a polynomial p and a

constant k > 1, such that Ln is accepted by an automaton M1 ∈M1 of size p( f (n)) for some

monotonically-increasing function f , but the smallest M2 ∈M2 accepting it is at least of size

k f (n). In this case, we say thatM1 is at least exponentially more succinct thanM2.

6.3 RWB and Parallel Automata

In this section, we investigate how RWB-automata fare when considered in the context of E-,
A- and C-automata; that is, how the special RWB idioms relate to the conventional idioms of
and- and or-nondeterminism and bounded concurrency. We observe that, of the three models,
RWB seems most closely related to C — as the threads of an RWBA constitute cooperating
components running in parallel — although this cooperation is more limited than in the C
model. The first part of this section validates this observation, by proving that RWB

p
→ C, but

that C →⋅ RWB. This establishes a firm succinctness relationship between C and RWB: the

former is strictly stronger.

The proof that C →⋅ RWB revolves around counting — a task for which the C model is

particularly suited, as it allows one to count to n using automata of size only O(log2 n) [66].
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As we prove, in the general case of counting, RWB-automata must be of size n, which is
exponentially worse. This result gives rise to the question: doesRWB retain any of C’s power,
i.e. is it succinctness-wise better than non-parallel automata?

We answer the question in the affirmative, in two parts. First, we show that RWB shares
some of the power of C automata; e.g., in certain cases it is possible to count to n with RWB-

automata of size O(log2 n ⋅ loglogn), and soRWB →⋅ DLA. Second, we study the relationship

between RWB and the E and A models, and show that RWB can sometimes replace C in
(E ,A,C)-automata, while preserving that model’s descriptive succinctness.

The relationship between E ,A and C has been extensively studied in [66], where it is shown
that they are orthogonal, i.e. that their descriptive succinctness is independent and additive.
In particular, [66] shows that the (E ,A,C) model offers a tight triple-exponential gap in suc-
cinctness compared to non-parallel automata. Our proof that the (E ,A,RWB) model affords
the same triple-exponential gap thus strengthens the original result of [66], as it shows that a
model in which components cannot freely observe other components’ states, and is thus more
encapsulated than C, suffices for obtaining the triple exponential gap.

6.3.1 RWB-Automata and C-Automata

Of the three models E ,A and C, it is natural to defineRWB programs in terms of C-automata, as
the underlying parallel components of both make transitions that depend on other components.
C-automata take the most general form, allowing components to query the internal states of
other components. This is established in the following proposition.

Proposition 3. RWB
p
→ C

Proof. Consider an RWB-automaton A with threads T1, . . . ,Tn, each described by a tuple Ti =

⟨Qi,E i,δ i,qi
0,R

i,Bi⟩. This naturally gives rise to a C-automaton M, in the following manner.
The alphabet E of M is the set of all thread events, E = ∪E i. M has n components M1, . . . ,Mn,
each corresponding to a single thread. Component Mi has the same states and initial state as its
corresponding thread, Qi and qi

0.
The transition relation of Mi is defined as follows: For every e ∈ E, let

R(e) = {q ∣ ∃i,q ∈Qi,e ∈ Ri(q)}, B(e) = {q ∣ ∃i,q ∈Qi,e ∈ Bi(q)}

denote the set of states in which individual threads request/block event e. For every event e ∈ E

and every thread Ti, for each state q ∈ Qi we define a transition in Mi by ⟨q,e,(⋁u∈R(e)u)∧

(¬⋁v∈B(e) v), q̂⟩, where if e ∈ E i then q̂ = δ̄ i(q,e), and if e /∈ E i then q̂ = q. Thus, the transitions
imitate the operation of the RWBA, while their guards guarantee that they are applicable iff the
event is requested by at least one thread and is blocked by none. Recall that for e ∈ E i, qi and
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e uniquely determine q̂i — and so the definition is sound. It is clear that both automata accept
the same language. Further, the resulting C-automaton is of size polynomial in the size of A. In
particular, we introduce at most ∣A∣2 edges and at most ∣A∣ guards, each of size at most ∣A∣.

We next show that the converse does not hold; i.e., that there exists a family of languages
that can be expressed succinctly using C-automata, but that the smallest RWBAs that can ex-
press them are exponentially larger.

Proposition 4. C →⋅ RWB

Proof. For n ∈N, consider the language Ln = (0+1)n0ω . For every n, there exists a C-automaton
of size O(log2 n) that accepts Ln, as follows. The automaton consists of logn components, each
representing a single bit of a (logn)-bit counter that counts to n. Carries are performed using
the guards: bit number i+1 moves from state 0 to 1 if and only if all previous bits 1 . . . i are in
state 1. A final transition occurs when the counter reaches n, into a state that only allows 0s.
As the logn components can have size logn because of the transition guards, the automaton is
of size O(log2 n). See [66] for details.

Now, let us consider the same language in the RWB model. Suppose that an RWB-
automaton A with threads T1, . . . ,Tk accepts Ln. We show that at least one of these threads
has to have Ω(n) states, thus proving the claim. Intuitively, the proof relies on the fact that
while A reads the n-bit prefix of the word the threads cannot use events to communicate be-
tween themselves, and so a single thread has to handle the counting up to n.

Suppose, contrary-wise, that all threads have fewer than n states, and consider the word
ρ = 0n−1 ⋅1 ⋅0ω ∈ Ln. Examine an arbitrary thread Ti as it reads the σ = 0n−1 prefix of ρ . By
our assumption, thread Ti has fewer than n states. Consequently, by the pigeonhole principle, it
has a state s1 that it will visit at least twice as it reads σ . The portion of the path of states that
it traverses between these two visits, denoted s1

0
Ð→ s2

0
Ð→ . . .

0
Ð→ sαi

0
Ð→ s1, constitutes a cycle of

length αi in the thread’s state graph. This holds for every thread Ti, and so all the threads must
traverse cycles of lengths α1, . . . ,αn as they read σ .

We now use a pumping argument to show that A accepts a word that is not in Ln. Let
β =∏

n
i=1 αi. Consider the word ρ ′ = 0n−1 ⋅0β ⋅1 ⋅0ω , and its prefix σ ′ = 0n−1 ⋅0β . The word 0ω

is in Ln, and σ ′ is a prefix of this word; hence, the automaton cannot reject the input word after
reading σ ′. However, as the threads are traversing cycles of lengths that divide β , they will
each be in the same state after reading σ ′ as they would be after reading σ . Thus, as they read
the 1 ⋅0ω suffix of ρ ′, they would accept the word — just as they would accept ρ . Since ρ ′ ∉ Ln,
this is a contradiction.

We note that the gap shown by Proposition 4 is tight, in the sense that C-automata are at most
(single) exponentially more succinct thanRWB-automata. See Proposition 7 in Section 6.4 for
the proof.

92



6.3.2 Counting with Succinct RWB-Automata

Proposition 4 implies that perhaps the RWB model is not much stronger than non-parallel
automata; indeed, for the task of counting, an RWBA requires as many states as a DLA —
exponentially many more than a C-automaton requires. However, the main difference in power
between C and RWB is in the ability of one component in a C-automaton to observe the state
of another without any restrictions, whereas in RWB a marker event (a sentinel) must be trig-
gered for such an observation to be made. Thus, when a sentinel is present, the difference in
succinctness between C-automata and RWB-automata diminishes greatly:

Proposition 5. For every n ∈N, there exists an RWB-automaton An that accepts the language
Ln = 0n1ω , such that An is of size O(log2 n ⋅ loglogn).

Proof. We use the first appearance of 1 to mark the end of the counting phase. Let k ∈ N be
the smallest number such that the first k prime numbers p1, . . . , pk satisfy ∏k

i=1 pi > n, and let
⟨α1, . . . ,αk⟩ be defined by αi = n mod pi for all 1 ≤ i ≤ k. By the Chinese Remainder Theorem,
n is the only integer in the range [1..∏k

i=1 pi] that has these remainders. Consider the RWB-
automaton An that has k threads T1, . . . ,Tk, where thread Ti is given by:

0
0 ⋯ αi

0 0 ⋯ pi−1
0

0

1
R={0}
B={1}

R={0}
B={1}

R={1}
B=∅

The sets of events requested (R) and blocked (B) in each state are listed by that state. In state
αi the thread requests 1 and blocks nothing, and in the other states it requests 0 and blocks 1.
To see that this automaton accepts Ln, note that if even one of the threads is not in its respective
αi state, the next event in any accepted word has to be 0, because that thread requests 0 and
blocks 1 and no thread ever blocks 0. On the other hand, once all threads are in their αi states
the only requested event is 1, resulting in a 1ω suffix. Finally, The Chinese Remainder Theorem
guarantees us that the first time the threads are all in their αi states is precisely at the nth step,
as required.

Since we chose the smallest k for which ∏k
i=1 pi > n, it follows that k = O(logn). By the

Prime Number Theorem we have pi = O(i log i). Combining the two, we get that the total size
of An is indeed O(log2 n ⋅ loglogn).

From Proposition 5 it follows that RWB →⋅ DLA. Further, because RWB
p
→ C and

C ⋅→ DLA [66], we get that RWB ⋅→ DLA, i.e. that the bound is tight.
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6.3.3 Combining RWB with E- and A-Automata

One of the main results of [66] establishes a tight triple-exponential gap in succinctness between
(E ,A,C)-automata and DLA. Specifically, there exists a family of languages Ln expressible by
(E ,A,C)-automata of size O(log2 n), but that require at least 22n

states when expressed by a
DLA. In this section we quantify the succinctness gap between the (E ,A,RWB) model —
where C is replaced by RWB— and the DLA model.

The semantics of an (E ,A,RWB)-automaton is as follows: as before, the threads run in
parallel, and a transition may occur if the event is requested by at least one thread and is blocked
by none. In this model, unlike in RWB, we allow nondeterministic transitions in threads, and
so a state may have multiple outgoing transitions labeled with the same event. We also adapt
the E-condition to operate in an RWB-like fashion, by allowing threads to request/block that a
configuration be universal. Thus, a configuration is existential by default, but becomes universal
if this was requested by at least one thread and blocked by none (this E-condition is somewhat
arbitrary — other definitions could be used as well). Observe that this form of E-condition is a
restriction (i.e., a special case) of the E-condition of [66]. The acceptance criteria is the same
as for (E ,A,C) (see Definition 6.2.2).

Having shown in Proposition 3 that RWB
p
→ C, it follows that the upper bound of [66]

holds; that is, a program in the (E ,A,RWB) model will incur at most a triple-exponential
blowup when transformed appropriately into a DLA. Next, we show that this bound is tight, by
establishing a corresponding lower bound. The family of languages that we use is an adaptation
of a similar family from [66]:

Ln = {(0+1+#)∗#w#(0+1+#)∗#$w�0ω ∣ w ∈ {0,1}n} ∪ {(0+1+#)ω}

over the alphabet of {0,1,#,$,�}. Intuitively, an automaton that accepts Ln encounters a se-
quence of words, separated by #s. Then, it encounters a $, followed by a word w, terminated
by �. The automaton must then decide if this w is of size n, and whether it was encountered
before, in the initial sequence of words. If the answer is yes, the automaton accepts the word if
it ends in an infinite sequence of 0s; otherwise, it rejects the word. The automaton also accepts
all words in which the $ and � signs never appear.

Pigeonhole and pumping arguments show that a non-parallel automaton that recognizes the
language has to remember, by the time it reaches the $ sign, all the words of length n that
it has encountered previously. Thus, it must have at least 22n

states [46, 127]. However, an
(E ,A,RWB)-automaton for Ln may be triple-exponentially smaller, as we now show:

Proposition 6. Ln is recognizable by an (E ,A,RWB)-automaton of size O(log2 n ⋅ loglogn).

Proof. We provide here only the core of the proof. Our strategy, inspired by [66], is as follows:
in words where the $ and � signs appear, the automaton’s nondeterminism is used to “guess”
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when the first instance of w is encountered. Then, universality is used to compare all n bits of
the two occurrences of w simultaneously. Finally, ensuring that both copies of w are of length
n, and performing the necessary counting to compare each pair of bits, is performed efficiently
by the automaton’s RWB-threads.

More explicitly, theRWB idioms are used for 3 tasks: (1) verifying that the first occurrence
of w is of size n; (2) verifying that the second occurrence of w is of size n; and (3) comparing a
single pair of bits in the two occurrences of w. Because task (3) is performed universally for all
n bits, it ensures that the two occurences of w are equal. For task (3) the automaton counts to n,
but is suspended on # and resumed on $. Thus, when the counting is finished, the next symbol
should match the symbol on which the counting was started.

Tasks (1) and (2) can be performed succinctly by an RWBA, as both occurrences of w in Ln

are terminated by a sentinel — # or �. Thus, the construction from Section 6.3.2 suffices. The
automaton size these tasks require is O(log2 n ⋅ loglogn). Task (3), however, requires counting
without a sentinel, which — according to the proof of Proposition 4 — requires an RWB-
automaton of size Ω(n). However, we now show that in an (E ,A,RWB)-automaton such
counting can actually be performed succinctly, by leveraging the E and A idioms.

Let k ∈ N be the smallest number such that the first k prime numbers, p1, . . . , pk, satisfy

∏
k
i=1 pi > n. Let ⟨α1, . . . ,αk⟩ be the tuple of remainders, i.e., αi = n mod pi for all 1 ≤ i ≤ k. By the

Chinese Remainder Theorem, these remainders uniquely determine n in the range [1..∏k
i=1 pi].

Suppose, without loss of generality, that the symbol in the first occurrence of w was 0. Then,
our goal is to count to n and verify that we reach another 0. Consider anRWB-automaton with
k threads T1, . . . ,Tk, where Ti is given by:

0
0,1

⋯ αi
0,1 0,1

⋯ pi−1
0,1

0,1

xi

0

0,1,�

R={0,1}
B={�}

R={0,1}
B={�}

R={0,1}
B={�}

R={0,1,�}
B=∅

All states 0, . . . , pi−1 request both 0 and 1 and block �; state xi requests 0,1 and �. Finally,
thread Ti requests that the global configuration be universal if and only if it is at state xi. The
details of suspending the count on # and resuming it on $ are omitted from the figure, to reduce
clutter; this can be performed by associating each state s ∈ {1, . . . , pi} with an auxiliary state s′,
and having the appearance of # send the thread to s′, where it loops, until a later appearance of
$ sends it back to s. If the $ and � signs do not appear, then the word is accepted, as it has the
form (0+1+#)ω , which we included in Ln.

Intuitively, the automaton works as follows. All threads traverse their loops, counting to n.
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While in these loops, a � symbol causes the word to be rejected. Hence, the only way a word
that has a � sign can be accepted is if all threads escape their loops before reaching �. The only
way to escape the counting loops is through the α states. If thread Ti reaches state αi and reads
a 0 symbol, it may escape its loop, assuming the transition is existential; if it is universal, one
branch of the thread will remain in the loop, and will reject the word.

The escape transition remains existential until some thread has used it to escape. After-
wards, that thread will remain in its xi state, requesting that all successive configurations be
universal. Hence, all threads must traverse the transition from αi to xi simultaneously in order
for the word to be accepted. This can only happen if all threads are in their respective α states
— which, by the Chinese Remainder Theorem, only occurs at index n — and if the next symbol
is the required 0. Hence, since this testing is performed universally for all symbols in w, the
word is rejected if even one pair of matching symbols differs.

We stress that this solution is in line with our previous observations that RWB is weaker
than C, in that RWB cannot succinctly count without a sentinel. In this construction, the
behavior threads use the ability of the E-condition semantics to peek into the states of other
threads, thus achieving some of the power of the C-automaton guards, and enabling it to count
succinctly, even without a sentinel.

As in Proposition 5, analysis shows that the automaton is of size O(log2 n ⋅ loglogn).

We have thus established the triple-exponential succinctness gap between (E ,A,RWB) and
DLA. While (E ,A,RWB) is not a practical programming model, we observe that, combined
with the results of [66] and Proposition 3, this result immediately establishes a succinctness
hierarchy concerning other, more practical models, such as (E ,RWB) and (A,RWB). These
corollaries are depicted and explained in Figure 6.1. In particular, these results indicate that the
RWB idioms of requesting, blocking and waiting for events provide a succinctness advantage
that is additive and independent of the succinctness provided by the E and A idioms — and
that the RWB idioms are not just those of E- or A-automata in disguise. While similar results
were previously shown for the C model [66], our results are stronger as they show that a limited
version of C already suffices to uphold the hierarchy.

From a software-engineering point of view, C-automata afford their succinctness by allow-
ing each component to be aware of the internal state of each of the other components; this
liberal awareness is not provided in theRWB model, resulting in increased module encapsula-
tion, which is usually considered desirable (see, e.g., [132]).

6.4 Contributions of the Request, Wait, and Block Idioms

Whereas Section 6.3 was dedicated to comparing RWB to other parallel models succinctness-
wise, in this section we focus on its internal structure. We study each of its main idioms of
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E ,RWB RWB

E DLA

E ,A,RWB A,RWB

E ,A A

Figure 6.1: The succinctness hierarchy involving the E , A and RWB models, and their com-
binations. Arrows indicate tight exponential gaps in succinctness. By Proposition 6, the
(E ,A,RWB) model is at least triple exponentially more succinct than the DLA model; and,
applying Proposition 3, it is also at most as succinct as the (E ,A,C) model. Combining this
with the fact that (E ,A,C) is triple exponentially more succinct than DLA [66], we get that
the same holds for (E ,A,RWB). Thus, any path along the edges of the depicted cube, start-
ing at (E ,A,RWB) and ending at DLA, must include precisely 3 exponential gaps. The tight
exponential gaps depicted in the figure then follow from known results regarding alternating
automata and C-automata [66], combined with Proposition 3.

requesting, waiting-for, and blocking events, and quantify their contribution to the succinctness
afforded by RWB as a whole. Towards this end, we define the following sub-models:

1. TheWB model: Requesting is omitted. Any event that is not blocked can be triggered.
Waiting-for and blocking are allowed. This model can be viewed as having all threads
request all events in each state, which, in the notation of Definitions 6.2.1 and 6.2.1,
corresponds to Ri(qi) = E i for every state qi ∈Qi of thread Ti, for every i.

2. The RB model: Waiting is omitted; requesting and blocking are allowed. Threads are
not informed of events they did not request, and cannot change states when such events
are triggered. Formally, for every Ti, if e ∉ Ri(q) then δ i(q,e) = q.

3. The RW model: Blocking is omitted. Requesting and waiting-for are allowed, and any
requested event may be triggered. Formally, Bi(q) =∅ for every state q and Ti.

We begin by establishing a simple upper bound:

Proposition 7. For anyM1,M2 ∈ {RWB,WB,RB,RW},M1
⋅→ M2

Proof. We show that for any two models M1,M2 ∈ {RWB,WB,RB,RW}, it holds that

M1
⋅→ M2.

EveryRB- orRW-automaton is also anRWB-automaton, in which, at every synchroniza-
tion point, the waited-for or blocked events set are empty, respectively. AWB-automaton can
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also be regarded as an RWB-automaton, where all threads request all events at each synchro-
nization point. Hence,M1

p
→RWB.

By Proposition 3, we know that RWB
p
→ C. By [66], we know that C ⋅→ DLA. Finally, a

DLA can be translated into an M2-automaton with a single thread that imitates the DLA, as
follows. The thread has the same states and transitions as the DLA, and:

• ForM2 =WB, in each state the thread blocks any events for which there are no transi-
tions, and waits for the events of all outgoing transitions.

• ForM2 =RB,M2 =RW orM2 =RWB, in each state the thread only requests events
for which there are outgoing transitions, blocking no events.

It follows that DLA
p
→M2. Thus, putting these together yields:

M1
p
→ C ⋅→ DLA

p
→M2

And soM1
⋅→ M2, as needed.

Next, we establish tight bounds on the difference in succinctness of every pair of these
models, as depicted in Figure 6.2.

RWB

WB

RW RB

Figure 6.2: The descriptive succinctness of theRWB model compared to that of theWB,RW
and RB models. Each directed arrow indicates a tight exponential succinctness advantage of
the source over the destination, but no such advantage in the reverse direction, i.e., a reverse
translation is always possible with only a polynomial blowup.

We begin by proving that the RWB model is exponentially more succinct than the WB
variant, i.e., that the event requesting idiom exponentially improves the succinctness of the
model.

Proposition 8. RWB →⋅ WB
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Proof. Let n ∈ N, and let k ∈ N be the smallest number such that the first k prime numbers,
p1, . . . , pk, satisfy ∏k

i=1 pi > n. Define the family of languages Ln = {`1`2 . . .} by:

` j =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 or 1 ; ∃i such that pi ∣ #0(`1 . . .` j−1)

0 ; otherwise

Here #0(`1, . . . ,` j−1) is the number of 0s that have appeared in the word so far. The jth event
can be either 0 or 1 if there is a pi which divides this number.

In the RWB model, this language is accepted by an automaton with k threads, T1, . . . ,Tk,
where Ti is given by:

0 1 2
0 0 0 ⋯ pi

0

0

1

R={0}
B=∅

R={0}
B=∅

R={0}
B=∅

R={0,1}
B=∅

In state pi the thread requests 0 and 1, and in all other states it only requests 0. The size analysis
is the same as in the proof of Proposition 5, and the automaton is of size O(log2 n ⋅ loglogn).

Consider a WB-automaton that accepts this language and the word σ = 0ω ∈ Ln. Assume
that all threads have less than n states. By the pigeonhole principle they are traversing cycles
in their respective transition systems as the automaton reads σ .

There are infinitely many indices in which the triggering of 1 would result in a word (either
finite or infinite) that is not in Ln being accepted by the automaton. Hence, triggering 1 has to
be prevented in these indices, which, in the WB model, means it has to be blocked infinitely
often. Therefore, there is at least one thread Tj whose cycle contains a state q in which 1 is
blocked. Let β denote the length of that cycle. By our assumption, β < n. Consequently, there
is at least one prime pi such that pi and β are coprime. By the Chinese Remainder Theorem,
the automaton will eventually reach a point in the run where pi divides the number of zeroes
encountered so far, and so 1 should be allowed, but in which thread Tj is in state q, blocking 1
— thus preventing a word that is in the language from being accepted by the automaton. Hence,
there must be at least one thread with n or more states, proving the claim.

This proof affords some insight into the power of the requesting idiom. Particularly, re-
questing allows us to succinctly express or conditions — i.e., that an event only be triggered if
a disjunction of conditions holds.

We now prove that the waiting idiom also affords exponential succinctness:

Proposition 9. RWB →⋅ RB
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Proof. Note that in theRB model, since threads do not wait for anything unless they explicitly
request it, if a thread has no requests at some synchronization point it remains in that state
forever, either blocking some events forever, or doing nothing at all.

Let n ∈ N, and consider the family of singleton languages Ln = 0n1ω . In Section 6.3.2 we
saw that there exists an RWB-automaton of size O(log2 n ⋅ loglogn) that accepts Ln.

Now, suppose that an RB-automaton accepts Ln, and that all its threads have less than n

states. Consider the automaton after reading the input 0n. As all threads have less than n states,
they are all traversing cycles in their transition systems where all the edges are labeled 0. We
call these cycles 0-cycles. In the RB model, these cycles can be of two kinds:

1. Single-state cycles, where the thread does not request 0; hence, a 0 event being triggered
leaves the thread in that state.

2. Cycles in which all states request 0; in these cycles, the thread moves to a new state
whenever 0 is triggered.

Neither kind of cycle can have a state that blocks 0 inside it; otherwise the 0n prefix would
already be rejected, although it is a prefix of a word in Ln. Also, there is at least one thread in
a cycle that requests 0s; otherwise the automaton would be stuck — again, rejecting a word in
Ln.

Let us see what happens when the automaton reads the word 0ω . After reading the 0n prefix,
the threads are already traversing their cycles, in which 0 is never blocked. At least one thread
is constantly requesting 0 in every state of its cycle. Hence, the threads will continue to traverse
their cycles indefinitely as they read 0ω , accepting the word although it is not in Ln.

The language used for this proof illustrates the power of the waiting idiom. In the basic
construction of Section 6.3.2, each thread would count modulo some prime number, and would,
upon the correct remainder, request 1. However, that thread would also wait for a 0 event, thus
letting other threads supersede it; if one of them determined that it was not yet time to trigger
a 1, they would block 1 and request 0. Without the wait-for idiom, however, a thread cannot
observe events it did not request, preventing this sort of inter-thread cooperation.

We now show that RWB is exponentially more succinct than the RW variant, i.e. event
blocking also yields exponential succinctness. We consider this result to be particularly inter-
esting, as blocking is perhaps the least common, or most special, idiom of RWB.

Proposition 10. RWB →⋅ RW

Proof. Let n ∈ N, and let k ∈ N be the smallest number such that the first k prime numbers,
p1, . . . , pk, satisfy∏k

i=1 pi > n. We prove the claim using the family of languages Ln = (0N−1(0+
1))ω , where N =∏

k
i=1 pi. In the RWB model, this language is accepted by an automaton with

k threads T1, . . . ,Tk, where Ti is given by:
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1 2
0 0 ⋯ pi

0

0,1

R={0}
B={1}

R={0}
B={1}

R={0,1}
B=∅

In state pi the thread requests both 0 and 1, and in the other states it requests 0 but blocks 1.
Thus, 0 may always be triggered, but 1 may be triggered only when all threads are in their
respective pi states, as required. The size analysis is the same as in the proof of Proposition 5,
and the automaton is of size O(log2 n ⋅ loglogn).

Assume we have anRW-automaton that accepts this language, and consider the word 0ω ∈

Ln. Again, by the pigeonhole principle, the threads will, during this run, indefinitely traverse
cycles within their respective transition systems. Clearly, event 1 has to be requested infinitely
often throughout the run, in order to allow all the words of Ln to be accepted. Therefore, in at
least one of the threads’ cycles, there will be a state in which 1 is requested. Denote the length
of that cycle by α .

In the RW model, threads cannot block events. Thus, every time 1 is requested it may be
triggered. Since there cannot exist two words in the language that have 1s in indices that are
less than N steps apart, it follows that α ≥ N > n. Thus, the total size of the RW-automaton is
at least n.

The language used for the proof gives some intuition as to the power of the blocking idiom.
Particularly, it shows that blocking can succinctly enforce and conditions — e.g., that an event
is not blocked iff it gives the correct remainder for all the primes.

6.5 Comparing the Request, Wait, and Block Idioms

While Section 6.4 was dedicated to studying the contribution of the request, wait and block
idioms to the RWB models as a whole, in this section we examine how the RWB idioms fare
with respect to each other. For example, can requesting be replaced by blocking without having
to pay with an exponential decrease in succinctness? Our results, illustrated in Figure 6.3, show
that theWB andRW models, and also theRB andRW models, are incomparable — i.e., there
can be exponential gains in both directions. Also, we prove that theWB model is weaker than
the RB model, and so, in a way, requesting outpowers waiting. We also show that each of the
WB, RB and RW models is exponentially more succinct than DLA.

Proposition 11. RB →⋅ WB andWB
p
→RB
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RWB

WB

RW RB

Figure 6.3: The descriptive succinctness of the WB, RW and RB models compare to RWB,
and also compared to each other. A bi-directional arrow indicates a tight exponential gap
in succinctness in both directions — either model may be more succinct than the other. As
before, a directed arrow indicates a tight exponential succinctness advantage of the source over
the destination, but no such advantage in the reverse direction, i.e., a reverse translation is
always possible with only a polynomial blowup.

Proof. First, observe that the proof of Proposition 8, showing that RWB →⋅ WB, used an

RWB-automaton that did not utilize the waiting idiom; hence, the same proof applies here.

For the other direction, note that anyWB-automaton can be trivially translated into anRB-
automaton. In WB, a thread can be regarded as constantly requesting all events, and waiting
for only some of them. Such a thread can be converted into an equivalent thread in the RB
model: it continues to request all events, and reacts (changes state) only to events for which
the original thread waited. The resulting automaton accepts the same language as the original
automaton, and has the same size.

In light of Proposition 11, Proposition 9 is particularly surprising. It shows that although
theWB model is a weaker than the RB model, their combination affords greater succinctness
than either of them affords separately.

Proposition 12. RW →⋅ WB andWB →⋅ RW

Proof. For the first direction: The proof of Proposition 8, showing thatRWB →⋅ WB, used an

RWB-automaton that did not utilize the blocking idiom; hence, the same proof applies here.

For the other direction, we use the proof of Proposition 10, showing that RWB →⋅ RW .

The original proof was based on an automaton in which all threads requested all the events
at every state, except those that they blocked. Hence, moving them to the WB model would
produce the same language.

Proposition 13. RB →⋅ RW and RW →⋅ RB
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Proof. For the first direction: The proof of Proposition 10, showing that RWB →⋅ RW , used

anRWB-automaton that did not wait for any events (i.e., the state-changes of each thread were
caused solely by triggering events that the thread itself had requested). Hence, the same proof
applies here.

We now prove that RW →⋅ RB. Let n ∈ N, and let k ∈ N be the smallest number such

that the first k prime numbers p1, . . . , pk satisfy ∏k
i=1 pi > n. Define the family of languages

Ln = {`1`2 . . .} by:

` j =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 or 1 ; ∃i such that pi ∣ j

0 ; otherwise

In theRW model, this language can be accepted by an automaton with k threads, T1, . . . ,Tk.
Thread Ti corresponds to prime pi, and is given by:

1 2
0,1 0,1

⋯ pi
0,1

0,1

R={0}
B=∅

R={0}
B=∅

R={0,1}
B=∅

Here, in every state the thread requests 0, and in state pi (and only in that state) it also requests
1. Observe that 0 is always requested, and that 1 is requested if and only if the index is divisible
by one of the primes. In the RW model there is no blocking, and so requested events can
always be triggered — generating the desired language. As in previous proofs, the size of the
automaton is O(log2 n ⋅ loglogn).

Now, observe what happens in the RB model. Suppose towards contradiction that an RB-
automaton accepts the language Ln, and that all its threads have less than n states. Denote
N = ∏

k
i=1 pi. We will show that there exists a sequence of N consecutive integers, M,M +

1, . . . ,M +N −1, such that for every M ≤ i ≤ M +N −1, there exists a run of the automaton in
which 1 is triggered at index i. This will form a contradiction to the definition of Ln, proving
the claim. The rest of the proof shows how to construct these runs.

Observe the RB-automaton as it reads the finite sequence 0n. By the pigeonhole principle,
this sequence causes all threads to traverse cycles where all the edges are labeled 0. (0-cycles).
Note that this is true regardless of the starting configuration of the automaton — i.e., at any
point during the run, reading a 0n sequence causes all threads to traverse 0-cycles.

We begin with the following observation regarding 0-cycles:
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Observation 1. When all threads are traversing 0-cycles, 1 cannot be blocked in any of the
cycles’ states.

Proof. Observe some thread Tj and the 0-cycle it is traversing. Let α denote the length of that
cycle. Since Tj has less than n states, and ∏k

i=1 pi > n, it follows that there exists some i such
that α and pi are coprime. Suppose the remainder of the input word is just an infinite sequence
of zeroes, 0ω . By the Chinese remainder theorem, if 1 was blocked in any of the states of the
0-cycle, it would eventually get blocked at an index divisible by pi — and the automaton would
reject a word it is supposed to accept, which is a contradiction. Hence, 1 is never blocked in
any of the 0-cycles.

Clearly, when all threads are traversing their 0-cycles, 1 has to be requested infinitely often.
This means that at least one thread has, within its cycle, a state that requests 1. We now make
the following observation:

Observation 2. Suppose all threads are traversing 0-cycles, and let T be one of the threads that
request 1 infinitely often. Then eventually 1 will be requested by another thread when T is at a
state in which it does not request 1.

Proof. Suppose towards contradiction that this is not the case; i.e. that T requests 1 whenever
the index is divisible by one of the primes. Denote T ’s cycle length by α . Because T has
less than n states, there is some i such that α and pi are coprime. By the Chinese remainder
theorem, if the stream of 0s continues, every state in T ’s cycle will eventually be reached when
pi divides the run index. Hence, since T must request 1 whenever the index is divisible by pi,
every state in its cycle must request 1. Consequently, as 1 is never blocked within the 0-cycles
(Observation 1) there exists a finite index ` such that for every `′ > ` the word 0`

′

1 is a prefix of
a word accepted by the automaton — which is a contradiction. Hence, there must be a time in
which 1 is requested, but T does not request it.

We now use these two observations in order to construct the aforementioned N runs.

The first run we examine, denoted ρ0, is the one associated with input word 0ω . All threads
eventually traverse 0-cycles. Observe a fixed thread T that requests 1 infinitely often. Let β

denote the first index, after entering its cycle, in which T requests 1, and let α denote its cycle
length. Then T will request 1 at all indices β +α ⋅ t, for all t ∈N.

The second run, ρ1, is constructed as follows. The input word starts with 0n, in order to
have all threads traverse 0-cycles. We now apply Observation 2: we “feed” the automaton
more 0s, until reaching an index in which 1 is requested by some thread and not by T . We
then trigger 1, and afterwards continue with 0ω . Since there is no waiting in the RB model,
and since T did not request the triggered 1, T is oblivious to the fact that 1 has been triggered.
For the remainder of the run, the thread T is delayed by one index position. This implies that
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there is some constant T1, such that, in run ρ1, for every t > T1, thread T requests 1s at indices
β +α ⋅ t +1.

We continue iteratively. Run ρ2 is produced as follows. Up to the 1 triggered in ρ1 the
prefixes of the two runs are identical. We then feed more 0s, trigger 1 again at an index divisible
by a prime when T does not request 1, and continue with 0ω . This results in a constant T2, such
that in run ρ2 for every t > T2, thread T requests 1s at indices β +α ⋅ t +2.

The process is repeated N times, where each ρk is identical to ρk−1 up to the last 1, and a 1
is then added where T does not request it. We get a series of constants TN−1 > TN−2 > . . . > T2 >

T1 > 0, such that for every t > Ti, there exists a run in which T requests 1 at indices β +α ⋅ t + i,
and 1 is not blocked.

Set t = TN−1 + 1, so that it is larger than all the constants T1, . . . ,TN−1 above. For every
1 ≤ i ≤N, there is some run of the automaton, in which thread T requests 1 at index β +α ⋅ t + i,
and 1 is not blocked at that index. This implies that there are N consecutive integers that are
each divisible by at least one of the primes p1, . . . , pn, which is a contradiction. It follows that
our initial assumption is false; i.e. that there is some thread with at least n states, proving the
gap in succinctness as needed.

Note that the above proof that RW →⋅ RB also constitutes a stronger proof for Proposi-

tion 9, i.e. that RWB →⋅ RB.

From Propositions 11, 12 and 13 we also obtain the following corollary:

Corollary. WB →⋅ DLA, RB →⋅ DLA and RW →⋅ DLA.

Proof. By using Propositions 11, 12 and 13, we get that for everyM1 ∈ {WB,RB,RW} there

exists a M2 ∈ {WB,RB,RW} such that M1 ≠M2 and that M1 →⋅ M2. Further, the DFA

model is directly embeddable in model M2 (see explanation in the proof of Proposition 7).
The claim follows.

6.6 Related Work

In this chapter we focused on studying theRWB concurrency idioms from a succinctness point
of view. For a software-engineering oriented comparison between these RWB idioms (in the
context of Behavioral Programming) and other programming models, see [90] and references
therein. Below we discuss some notable related work on descriptive succinctness.

Starting with [135], extensive comparative analysis of expressiveness and succinctness in
various models of computations has been carried out. Examples include Büchi, Streett, and
Emerson and Lei automata [140], two-way finite automata [141, 33], sweeping automata [101],
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and — most relevant to the present work — cooperative automata [66, 99]. Expressiveness and
succinctness in timed automata are studied in [14].

The issue of counting to n using unary automata, which played a central role in Section 6.3,
was raised in [127] and has been studied extensively. It is well known that counting requires
Θ(n) states in deterministic and nondeterministic finite automata. As any deterministic unary
automaton with n states has an equivalent alternating automaton with O(logn) states [113], it
follows that alternating automata can count with size O(logn). [110] shows a Θ(

√
n) bound

for counting with universal automata, whereas cooperating automata can count to n with size
O(log2 n) [66]. Counting in other automata types has also been studied: one-switch alternating
automata, for instance, count to n with O(log2 n ⋅ loglogn) states [33].

6.7 Conclusion and Future Work

In this work we set out to analyze the descriptive succinctness afforded by various concurrent
programming idioms. Our motivation was the strong connections between the succinctness of
the software’s description and its simplicity, maintainability, reliability, analysis and verifica-
tion. We focused on three basic and common idioms — requesting, blocking and waiting for
events. We began by analyzing the succinctness of the three idioms taken together, showing
that the RWB model can be translated into cooperating automata with only a polynomial in-
crease in size, but that the converse translation might incur an exponential blowup. Hence,
the RWB model, in which components cannot directly query the state of other components, is
strictly less succinct than the C model. We continued by showing that RWB can nevertheless
succinctly perform non-trivial tasks, that its succinctness is independent and additive to that of
the E- andA-automata, and that (E ,A,RWB)-automata are triple-exponentially more succinct
than DLA — making them in some cases as strong as the more general (E ,A,C)-automata
of [66]. This result established a succinctness hierarchy, indicating the succinctness advan-
tages of models like (E ,RWB) and (A,RWB). These findings show that the RWB model,
which offers stronger encapsulation and has additional software-engineering advantages over
C-automata [90], can sometimes retain the succinctness of the more general model.

We then quantified the contribution of the requesting, waiting-for and blocking idioms to
the succinctness of RWB as a whole. We proved that they are each vital to the succinctness of
RWB, as the removal of either may cause an exponential blowup in size, and hence that they
do not subsume one another.

The contribution of the present work is thus in substantiating formally the advantages for
software engineering that the RWB idioms, in a variety of programming languages, appear
to have; and also in gaining insights into the particular tasks for which each of the idioms is
particularly useful. One natural future research direction is to study the succinctness afforded
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by additional idioms for concurrent programming, such as the lock-step progression idiom, by
which all components process a triggered event simultaneously. Another direction is to further
study the gap in succinctness between RWB and C-automata; e.g., to characterize additional
tasks, besides counting, in which C’s superiority is manifested.
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Chapter 7

Compositional Verification of RWB
Programs

7.1 Introduction

The development and verification of large scale component-based software systems pose many
challenges. During development, programmers working on separate modules may often be un-
aware of the fine details of inter-module interfaces, or these interfaces may not be well defined;
and the state explosion problem prevents the model checking of the entire system, which could
discover the resulting errors at the system level.

In recent decades, a prominent approach for tackling these issues has been that of compo-
sitional development, based on well defined interfaces, assume-guarantee contracts, and veri-
fication. This approach calls for defining the interfaces between modules, programming each
module separately, and then verifying that each module guarantees certain properties under
certain assumptions on its environment. The modules’ verified properties are then combined
in order to deduce system-wide properties. For some of the notable compositional approaches
see, e.g., [128, 105, 133, 120, 53, 76, 58, 97, 35, 70, 73, 123, 64, 54, 17, 94, 65], which are
reviewed in Section 7.4. A recent survey of behavioral interface specification languages [94]
points to outstanding research challenges in this area, including how to deal with parallel pro-
grams, to tie module specifications to requirements specifications, and to further automate the
verification process. This work aims to contribute to the pursuit of these challenges.

We present a compositional approach and a tool chain for building and verifying reactive
systems. In our proposed approach, properties of individual modules are formalized and then
used for automated verification of the composite system. The formalized module properties
serve also as part of system documentation and can be useful for other development tasks. Two
key elements of the approach are (1) a specification and programming formalism that enables
programming different aspects of system behavior independently of each other; (2) means to
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infer composite system properties from formally-specified properties of individual modules.
For system specification we use the formalism of behavioral programming (BP) [90] and

for inferring system properties from module properties the Z3 SMT solver [60]. We believe,
however, that the approach can be based on to other methods too as long as they cater to
programming separate aspects in isolation. It can also be used with other inference tools and
theorem provers.

Our goal is to improve the process of compositional development, documentation, and ver-
ification, by proposing ways that in some cases will give rise to efficient verification. Similarly
important is providing tools for formal documentation of the module properties.

The methodology behind the approach consists of the following steps (which can be per-
formed in almost any order):

Specification: Document in natural language each of the desired and undesired aspects of
system behavior.

Module Properties: Design the system such that each aspect of the behavior will be imple-
mented by its own separate program module (or a set thereof). Formalize the properties
of each such module (or set of modules) as formulas in a solver or proof assistant.

Environment Properties: Similarly, formalize the description of external environment behav-
ior and encode it in the solver or proof assistant.

Composition Properties: Specify the application-independent module-composition rules as
formulas of the solver or proof assistant.

Domain Properties: Specify the application-independent domain knowledge in the solver or
proof assistant.

Prove System Properties: Use the solver or proof assistant to prove that, given the module,
composition and domain properties, the system will behave correctly.

System Implementation: For each independent aspect of the behavior, develop the code of the
corresponding module(s). If needed for simulation purposes, also implement the external
environment behavior as a separate program module (or a set thereof).

Module Verification: Verify that the individual modules satisfy their properties as stated in
the Module Properties step. If the modules are small and simple, this step can be done,
e.g., automatically by model checking, or, by traditional testing techniques.

We present several examples to demonstrate that this technique might yield more efficient
verification in some cases, and illustrate the benefits of formally documented properties in
software comprehension, reuse and maintenance.
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This chapter is organized as follows. In Section 7.2 we show how BP’s semantics can be
formalized as a reusable application-agnostic model of the Z3 SMT solver. In Section 7.3 we
apply the proposed approach to several examples, and discuss its benefits. In Section 7.4 we
briefly review different approaches to compositional system specification and verification. In
Section 7.5 we summarize the chapter and discuss future research directions.

7.2 Formulating BP’s Idioms in Z3

In this section we show how the application-agnostic composition semantics of BP can be
defined in Z3 towards serving in compositional proofs.

We begin the definition with the concepts of time and events1:
Time = IntSort ();

Event = Datatype( ’Event’ )

. . .

Event = Event.create ()

In our implementation, time is discrete and is represented by integers, and in fact refers to
the sequence number of an event in a trace. Events are defined as a Z3 data type, followed by
the definition and creation of the application-specific event objects.

We then define functions that model the requesting and blocking of events by b-threads,
and the resulting trace of triggered events:
requested = Function( ’requested ’, Event , Time , BoolSort () )

blocked = Function( ’blocked ’, Event , Time , BoolSort () )

trace = Function( ’trace’, Time , Event )

The first line states that the function requested maps any event and time instant to a
boolean flag, which specifies whether or not the event was requested at that time by any
b-thread. Similarly, the function blocked maps an event and a time instant to a boolean flag
that is true if and only if the event was blocked at that time. The trace function associates
each time instant with the event that was triggered at that instant.

We then model behavioral programming semantics as a property of these functions.
∀e, t: trace( t ) = e ⇒ requested( e, t ) ∧ ¬blocked( e,t )

This rule states that, in order to be triggered at a particular time instant, an event must be
requested at that time and must not be blocked.

Since we want to establish the proof by analyzing each of the b-threads in isolation, we
introduce a helper function called requested by that takes the same parameters as the function

1Most of this work with Z3 was done using the Python API. For readability, the presentation here interchanges
and mixes such Python code, formatted Z3 output, and plain mathematical formulations. The code can be found
at [80].
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requested, with one additional parameter that indicates which b-thread initiated the request.
The function blocked by indicates in a similar way which b-thread initiated the blocking of
an event at a given time. We then define:

requested( e, t )⇔ ⋁
bt∈BThreads

requested by( e, t, bt )

and
blocked( e, t )⇔ ⋁

bt∈BThreads
blocked by( e, t, bt ).

I.e., an event is considered requested (respectively, blocked) if and only if it is requested (re-
spectively, blocked) by some b-thread. The set BThreads of participating b-threads is encoded
as a Z3 list.

There are various methods that can be applied in event selection, such as priority or
planning-based schemes, with which it may sometimes be more convenient to program. The
axioms corresponding to these models can also be formulated in Z3. For example, a priority-
based scheme can be formulated as follows:

Priority = IntSort ();

requested = Function( ’requested ’, Event , Time , Priority , BoolSort () )

blocked = Function( ’blocked ’, Event , Time , BoolSort () )

TraceEntry = Datatype( ’TraceEntry ’ )

TraceEntry.declare( ’TEntry ’, ( ’event’, Event ), ( ’priority ’, Priority ) )

TraceEntry = TraceEntry.create ()

trace = Function( ’trace’, Time , TraceEntry )

And the axioms that describe priority-based selection are:

∀e, t, p : ¬requested( e, t, p ) ⇒ trace( t ) ≠ TraceEntry( e, p )

∀e, t : blocked( e, t ) ⇒ event( trace( t ) ) ≠ e

∀e, t, pr: requested( e, t, pr ) ∧ ¬blocked( e, t ) ⇒ priority( trace( t ) ) ≥ pr

Finally, the requested by helper function handles priorities:

requested( e, t, pr )⇔ ⋁
bt∈BThreads

requested by( e, t, pr, bt )

The blocked by helper function remains unchanged.
Using the above axioms, each event is requested with an integer representing its priority,

and among all events that are requested and not blocked the one of highest priority is selected
for triggering. The trace function includes the priority of the event triggered at each step.

Our axiomatization presupposes that all executions of the program are infinite, since trace
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is defined to be an infinite sequence of events. However, finite executions can also be dealt
with, by adjusting the axioms to include a special nop event that is only triggered when no
other events are enabled.

7.3 Examples

In this section we demonstrate the application of the method outlined in the introduction to
several examples. In each example, we specify module and system properties, prove the latter
given the former, and, when applicable, verify that the individual implemented modules indeed
satisfy their properties. The source code for all examples (b-threads and Z3 code) is available
online at [80]. We then discuss how the basic proof of correctness of the application also
results in opening the way to possible acceleration of the proof when compared to explicit
model checking, and in benefits in documentation.

7.3.1 Counting with Small Orthogonal Modules

Before going into more practical examples, we describe a small example that highlights how
domain knowledge that leads to a particular design can be known to and used by the SMT
solver, leading to efficient verification of a composite reactive program.

Let p1, p2 . . . , pn be n large prime numbers, and let N =∏
n
i=1 pi. Let E0 and E1 be two events,

and consider the ω-regular language LN = ((E0+E1)EN−1
1 )

ω
. Thus, in every run E0 can only

be triggered at times that are divisible by N, and E1 may always be triggered.
Our goal is to create a behavioral program that generates LN and prove its correctness. For

i = 1,2, . . . ,n consider the b-threads BT1, . . . ,BTn and BTgen defined by the following pseudo-
code:

1 BTi for i ∈ {1,2, ...,n}:
2 while( true ) {

3 bSync( wait for {E0, E1} );

4 for( j = 0; j < pi - 1; j++ )

5 bSync( wait for E1 while blocking E0 );

6 }

7 }

8

9 BTgen:

10 while( true ) {

11 bSync( request { E0, E1 } );

12 }

13 }

In words, BTi blocks E0 at all time instants that are not divisible by pi, and BTgen requests
both E0 and E1 at all synchronization points. We now prove that together these b-threads
generate LN .
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We first express the properties of each of the b-threads separately (shown here for n = 2,
with p1 = 3 and p2 = 7):

∀t, e: ( ( t % 3 ≠0 ) ⇔ blocked_by( E0, t, BT1 ) ) ∧
¬blocked_by( E1, t, BT1 ) ∧
¬requested_by( e, t, BT1 )

∀t, e: ( ( t % 7 ≠ 0 ) ⇔ blocked_by( E0, t, BT2 ) ) ∧
¬blocked_by( E1, t, BT2 ) ∧
¬requested_by( e, t, BT2 )

∀t, e: requested_by( e, t, BTgen ) ∧
¬blocked_by( e, t, BTgen )

The first formula says that BT1 blocks E0 if and only if t is not a multiple of 3, that it never
blocks E1, and that it never requests any event. The second formula states similar properties
for BT2 with the difference that it blocks E0 at times not divisible by 7 instead of 3. The third
formula captures the properties of BTgen, namely, that it always requests both events and never
blocks either of them. Note that the states and transitions of the b-threads are not explicitly
modeled in this case, and that the Z3 formulas also cover what the modules do not do, i.e., do
not block or request, which is needed for our application-agnostic composition.

As these b-thread properties concentrate only on what b-threads request or do not request
and what they block or do not block, and not on which events are actually triggered, each b-
thread’s properties can be verified by model checking the b-thread in isolation from the rest of
the program. This method of model checking relies on the abstraction of a b-thread code as
consisting of atomic transitions between synchronization points, in which requests and blocked
events are declared. As each of the first n b-threads has pi states and BTgen has a single state,
model checking the individual b-threads entails examining a total of 1+∑n

i=1 pi states. In con-
trast, explicit model checking of the entire system with all b-threads would have to traverse all
the ∏n

i=1 pi reachable states in the product transition system.
When we add these properties to the Z3 model described in the preceding section, we see

that Z3 can indeed quickly verify that the system satisfies its desired property. Namely, that E0

is only enabled at times divisible by N (21 in this case), and that E1 is enabled at all times.

∀t: requested( E0, t ) ∧ ¬blocked( E0,t ) ⇔ t % 21 == 0

∀t: requested( E1, t ) ∧ ¬blocked( E1,t )

The duration it takes Z3 to verify this property is affected only negligibly by an increase
in the pi values. This illustrates the fact that the verification is performed with the aid of
additional arithmetical knowledge and not by traversing the entire state space. It yields (in
this case) the ultimate desired property of compositional verification – establishing correctness
based on proving individual modules separately, without explicitly model checking the product
transition system.

Observe that the described Z3 formulation can also be used to prove liveness properties. For
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instance, in order to prove the property “event E0 is triggered infinitely often” we would follow
the same steps described above, formulate in Z3 the property that E0 is enabled infinitely often
(at intervals of 21 steps), and let Z3 prove it. Then, using reasonable fairness assumptions, the
liveness property can immediately be deduced. Liveness property verification is also supported
by verifying liveness properties of individual b-threads or group thereof using the BPJ model
checker.

This example also shows the power of the blocking idiom in BP. Specifically, if we remove
the ability of a b-thread to block events, we can prove (to be published separately) that one
must then use at least one b-thread whose size is exponentially larger than the size of the b-
threads proposed here. This shows that, in our setting, blocking may allow for an exponential
saving in the size of the state space needed for verification, thus accelerating verification when
appropriate compositional techniques exist.

7.3.2 Simulating Constrained Movement

Consider an application simulating movement of a particle in a two-dimensional grid, as fol-
lows. The grid has (2n+1)2 points, with coordinates ⟨x,y⟩ where −n ≤ x,y ≤ n. Initially, the
particle is at the center of the grid, at point ⟨0,0⟩. In each simulation step, the particle moves
randomly from its then-current position to one of its four neighbor positions. Apart from the
particle process, the system includes processes that make areas of the grid inaccessible to the
particle. For example, we analyze the case where each such inaccessible area can be described
by a continuous function f (x) such that point ⟨x,y⟩ is inaccessible if and only if y ≥ f (x) (alter-
natively, y ≤ f (x)). In other words, the area above (or below) the curve y = f (x) is inaccessible.

The goal is to discover compositionally whether the inaccessible areas jointly prevent the
particle from reaching the grid’s boundaries.

Each process b-thread may have a rich behavior and a complex transition system unrelated
to the particle movement, where the constraining of the particle movement may be only a side-
effect of the behavior. This complex behavior is abstracted here by a b-thread with ` states,
visited sequentially in a cycle, such that the constraining effect is true in all of them. The
approach that we use may be applied also to more complex processes with branches in the
transition system and varying sets of blocked events.

The pseudo-Java code of the particle b-thread is:

1 x = 0; y = 0;

2

3 while ( true ) {

4 bSync( Request the moves:

5 Move( x+1, y ), Move( x -1, y ), Move( x, y+1 ), Move( x, y-1 ) );

6

7 /* The triggered Move event is returned in bp.lastEvent */

8 x = bp.lastEvent.x;
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9 y = bp.lastEvent.y;

10 }

Observe that the particle b-thread is “unaware” of movement constraints imposed by either the
grid or the process threads.

A b-thread corresponding to a process that forbids particle movement into the region y ≥

f (x), and has a single cycle of ` states, is:

1 state = 0

2 while ( true ) {

3 bSync( Wait for all events, while blocking moves to all ⟨x,y⟩ s.t. y ≥ f (x) );

4 state = ( state + 1 ) % `;

5 }

A direct approach to verifying this application is to span its entire state graph, and to check
that there is no reachable state where x or y equals ±n. For example, in explicit model checking
of the composite application the number of states that will be visited is on the order of n2 ⋅

∏bt∈P `bt , a quantity that grows exponentially with the size of the set P of all process b-threads.
By contrast, the compositional approach that we suggest is to model check each process

b-thread separately (with all its internal dynamics), and to employ Z3 for the compositional
part. For example, the relevant properties of the particle b-thread ParticleBT are coded in Z3
as:
∀e, t: ¬blocked_by( e, t, ParticleBT )

∀x, y:

requested_by( Move( x, y ), t, ParticleBT ) ⇔
( trace( t - 1 ).x = x - 1 ∧ trace( t - 1 ).y = y ) ∨
( trace( t - 1 ).x = x ∧ trace( t - 1 ).y = y - 1 ) ∨
( trace( t - 1 ).x = x + 1 ∧ trace( t - 1 ).y = y ) ∨
( trace( t - 1 ).x = x ∧ trace( t - 1 ).y = y + 1 )

and the properties of each process b-thread Processi (associated with function fi) are coded as:
∀e, t : ¬requested_by( e, t, Process i )

∀x, y, t: blocked_by( Move( x, y ), t, Process i ) ⇔ y >= fi( x )

Observe that this formulation holds for all `i states of the process b-thread, and there is no need
to articulate properties of individual states.

Another Z3 formula (not shown) specifies the initial position of the particle. Finally, to
define what we want Z3 to prove, we state the (undesired) property that the particle does reach
the grid boundaries:
∃t: trace( t ).x = n ∨ trace( t ).x = -n ∨ trace( t ).y = n ∨ trace( t ).y = -n

We then run Z3 to check that this model is unsatisfiable, taking advantage of Z3’s knowl-
edge of arithmetic to deduce that the inaccessible zone, as defined by the properties of the
Processi b-threads, renders the edges of the grid unreachable.
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It now remains to be verified that the original b-threads uphold the properties that we have
encoded in Z3. Fortunately, this can be performed for each b-thread separately, without com-
posing them — by using either static analysis or the BPJ model checker [90]. In the latter case,
each process b-thread is checked, along with a b-thread that repeatedly requests all possible
movements into all (2n+1)2 points of the grid. The property to be verified is that the single
b-thread blocks movements into coordinates where y ≥ f (x). The particle b-thread is also ver-
ified separately, to ensure that successive points in the movement are always connected by a
single grid edge.

Table 7.1 shows the savings when model checking each process behavior and the particle
behavior separately, as compared to checking the movement of the particle with all behaviors
together. In this example, we set n = 20 (resulting in a 41×41 grid), and chose four processes
with forbidden zones that prevent the particle from venturing outside the quadrilateral with
vertices ⟨15,15⟩, ⟨−18,16⟩, ⟨−19,−19⟩, ⟨17,−18⟩. The movement-constraining processes have
2,3,5 and 7 internal states. The run time improvement is evident.

Table 7.1: Comparing the monolithic approach to the compositional one. Rows 1 and 2 de-
scribe checking each of the b-threads separately using model checking (MC); row 3 describes
the compositional step (using Z3); and row 4 summarizes the total cost of the compositional
approach. The last row of the table describes model checking the entire system, as a single unit.

Checked entity Number of states Method of checking Run time (sec.)
Four process b-threads 2,3,5,7 MC 160 (total)
Particle 1681 MC 4
Compositional step — Z3 0.03
Total compositional proof 1698 MC+Z3 164.03
MC of Entire system 119385 MC 426

For a similar setting with n = 1017, it took Z3 approximately 7 seconds to reach a conclu-
sion. However, a related test run, in which one of the constraints was omitted and the resulting
model is satisfiable did not terminate (in a reasonable amount of time). We believe that this
is a technical issue in our implementation, and not a fundamental problem in the underlying
approach. Future work will include optimizing our implemented model to better fit Z3’s con-
straints, as well as leveraging future enhancements of Z3. Note that our present model does
permit one to use Z3 to verify, within a fraction of a second, that a given trace that reaches the
grid boundaries is valid.

We now demonstrate how a formalization of properties of the modules in Z3 supplements
the code with documentation that is useful beyond the verification process, for tasks such as
module reuse or enhancement.

Consider a requirement, which arrives from the user after the system is up and running, to
expand the application to a three-dimensional setting. That is, the grid is extended to 3D and the
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original requirement that the particle is constrained within a box around the origin and cannot
reach the grid boundaries, remains, but now is interpreted in 3D. After adding an attribute to
the Move event that gives the z axis position and adding to the particle b-thread movements in
the z direction, the question we ask next is how to enhance the b-threads for the processes that
constrain the particle movement.

In a standard development process, without the Z3 formulation, a programmer wanting to
reuse or enhance existing modules for the new requirement would need to check their code
directly. While the code in our example is simple, the code of the movement-constraining
b-threads may be complex, and the relevant properties may not readily emerge.

With the Z3 formulation, the contemplation of how to extend the system can be done in
the context of the high-level theory. In this case, the Z3 code explicitly talks about the lines
that form a closed polygon contained in the boundary of the two-dimensional grid. When
we formulate in Z3 a 3D extension of the properties, we can start by checking if the current
modules and formulated properties already satisfy the new requirement. If not, Z3 gives us a
counterexample that we can use to guide the development. From the counterexample we may
realize that, in 3D, the b-threads form infinite walls in the z dimension rising from the edges
of the 2D polygon and that it is sufficient to add a “floor” and a “ceiling”. More generally, we
see that the boundaries can be avoided by forming a set of planes in the 3D space that form a
polytope that contains the origin and is contained within the bounding box.

The role of Z3 in this process is to help the designers identify and document all the prop-
erties of the b-threads that are relevant to the requirements. When a property is missing (e.g.,
if we forget to mention that the polytope contains the origin) Z3 presents a counterexample,
from which the missing properties may emerge. When Z3 proves that all the requirements are
satisfied, we know that we have documented all the required properties of the b-threads. The
completeness of the documentation of the properties of the b-threads is important, for example,
when we want to replace a b-thread.

Once a set of sufficient properties is established in Z3, the implementation can proceed
in different directions: some properties may already exist in the current modules (but are not
documented because they were not relevant to the 2D case), others may be implemented as
changes to existing modules, and yet others may be added as new independent b-threads. The
implemented modules can then be model checked to verify that they satisfy the properties and,
if so, we can conclude that the application is correct.

7.3.3 A Job Scheduler

The following example demonstrates the development and compositional verification of a
scheduling algorithm using behavioral programming. The program is actually incremental in
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nature: when new b-threads are added, the program can be verified without rechecking existing
processes.

The problem is defined as follows. A scheduler needs to assign time slots for each of k

processes P1, . . . ,Pk. Each process Pi is associated with two parameters, mi and ni, meaning that
it requires the assignment of mi slots in each cycle of ni slots. Put differently, process Pi needs
to be assigned mi slots in cycle {kni+1,kni+2, . . . ,(k+1)ni}, for all k ∈N∪{0}.

A schedule that satisfies all these constraints exists if and only if ∑k
i=1 (mi/ni) ≤ 1, in which

case an earliest-deadline first (abbr. EDF) policy will guarantee that none of the conditions are
violated (see, e.g., [114]).

We suggest the following BP implementation. Given an instance of the problem,
⟨mi,ni⟩1≤i≤k, we program a b-thread for each process, presenting mi requests in each cycle
of ni slots in the form of events R(bt, j), where bt is the b-thread’s identity and 1 ≤ j ≤ ni is the
number of slots (scheduling opportunities for this process) before the present cycle ends. The
scheduler is implemented in BP by having all b-threads that have not yet been assigned suffi-
cient slots in the present cycle block all event requests with a higher value of j. An additional
b-thread, Idle, continuously requests the special event R(idle,∞) that is triggered only when
no process requests any event in the slot.

At each behavioral synchronization point, one of the requested events is triggered, indicat-
ing that the requesting process is assigned the present slot. All b-threads are notified when an
event is triggered and can then request to be scheduled in the next slot as needed. The b-threads
for each of the processes can be modeled in BPJ as follows:

1 BT⟨mi ,ni⟩ for i ∈ {1, . . . ,k}: {

2 while ( true ) {

3 count = 0;

4 for( j = ni; j > 0; j-- ) {

5 if( count < mi ) {

6 bSync( request R(i, j), block all events R(s,t) such that t > j, wait for all events

);

7 if( lastEvent == R(i, j) )

8 count ++;

9 }

10 else {

11 bSync( wait for all events );

12 }

13 }

14 }

15 }

Without loss of generality, we assume that ∀i,mi = 1 (for mi > 1, as we can substitute the orig-
inal process by mi processes with parameters ⟨1,ni⟩ each). The b-thread for process Pi then
has O(ni) states. Consequently, exhaustive verification of the application entails inspecting
O(∏

k
i=1 ni) states (in the worst case, assuming the ni’s are pairwise mutually prime).

A compositional alternative is to verify each b-thread separately, to ensure that it constantly
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blocks all requests by processes with further-away deadlines than its own — until its schedul-
ing quota has been filled. This can be accomplished by inspecting only O(∑

k
i=1 ni) states. If

these properties hold, then EDF scheduling is guaranteed, and it only remains to check that

∑
k
i=1(mi/ni) ≤ 1, which can be done manually, or using a calculator.

All in all, this approach yields much shorter verification times. Further, when adding a new
process ⟨mk+1,nk+1⟩ at a later time, one need not repeat the verification of the original b-threads
(assuming an upper bound on the number of threads and their cycle lengths). It suffices to check
that the new b-thread adheres to its responsibility in the EDF policy (by requesting and blocking
events correctly), and then verify that ∑k+1

i=1 (mi/ni) ≤ 1.

Another alternative solution we explored entails modeling the properties of the b-threads in
Z3, and having the tool check whether a legal schedule exists in a model that includes all of
them. In this approach, the properties of b-thread i with parameters ⟨1,ni⟩ are as follows:

∀e, t: requested_by( e, t, BTi ) ⇔
( e = ( BTi, ni - ( t - 1 ) % ni ) ∧ ¬already_scheduled( BTi, t ) )

∀e, t: ¬already_scheduled( BTi, t ) ⇒
blocked_by( e, t, BTi ) ⇔ deadline( e ) > ni - ( t - 1 ) % ni

∀e, t: already_scheduled( BTi, t ) ⇒
¬blocked_by( e, t, BTi )

where, as in the BPJ implementation, events consist of the requester’s identity and the time
remaining until its deadline, and the functions deadline and requester are used to retrieve
the respective parameters. The helper function already scheduled evaluates to true if and
only if b-thread BTi has already been scheduled in the cycle to which time t belongs.

The verification is then performed by giving Z3 the undesired property that one of the
processes is not scheduled in some cycle, and having it prove that the model then becomes
unsatisfiable. The property is given as:

∃BTi, t1: ∀t2: t1⋅ni <t2 ≤( t1 + 1 ) ni ⇒ requester( trace ( t2 ) ) != BTi

As the property to be proved is algebraic in nature, we expected the Z3 verification process
to readily display superior performance as compared with explicit model checking using the
BPJ model checker. Unfortunately, that was not the case, and the running time grew exponen-
tially with the number of processes. We believe that our implementation can be improved and
the running time greatly decreased, but we leave this for future work. Despite being applicable
only to programs with few processes, our current model is still useful: it demonstrates that the
set of thread properties we have identified is complete, and that it suffices for proving the cor-
rectness of the system. This indicates that we have documented any hidden assumptions about
the various modules, and facilitates their redesign or reuse.
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7.3.4 Dining Philosophers

In this example we demonstrate a direct approach to encoding b-threads in Z3 by capturing
their transition systems and the requested and blocked events in each state.

Consider for example a BP model for the famous dining philosophers problem.2 Assume
that this abstract problem is a specification for a larger BP application, e.g., a circle of industrial
robots where each two adjacent ones share a tool, and each robot requires both its adjacent tools
to perform its task. This behavior of the robots can be specified in BP as follows: there is a
b-thread per tool (fork), with two states — “up” (fork state is true) and “down” (fork state is
false), and a b-thread per robot (philosopher), with its four states known as the fixed cycle of
“thinking”, “picked up one fork”, “eating”, and “put down one fork”. The events are of the
form E(i,j,up) or E(i,j,down) and represent “philosopher i picked up (or put down) fork j” for
0 ≤ i ≤ n, and j = i or j = (i+1) mod n. All philosophers but one are right-handed (they first pick
up the fork on their right) and one is left-handed. Each fork thread blocks events that pick it
up when in the “up” state and events that put it down when in the “down” state, without ever
requesting events.

We proceed to explain the transition system by formulating its properties in Z3 as part
of a proof that the industrial robotic application satisfies its specification and is deadlock-free.
Below we describe parts of a model for a system with eight philosophers (hence, e.g., (fo+1)%8

is the index of the fork next to fork fo (and the philosopher of same number) in cyclic order):
Fork b-threads never request events:

∀e, t, fo : ¬requested_by( e, t, Fork( fo ) )

A b-thread for a fork that is down blocks the events of putting the fork down again (and only
these):

∀t, fo:

¬fork_state( fo, t ) ⇒
(blocked_by( E( fo, fo , down ), t, Fork( fo ) ) ∧
blocked_by( E( ( fo + 1 ) % 8, fo, down ), t, Fork( fo ) ) ∧
(∀e1:

blocked_by( e1, t, Fork( fo ) ) ⇒
e1 = E( fo, fo , down ) ∨ e1 = E( ( fo + 1 ) % 8, fo , down ) ) )

A b-thread for a fork that is up blocks the events of picking the fork up again (and only these):

∀t, fo:

fork_state( fo , t ) ⇒
( blocked_by( E( fo, fo, up ), t, Fork( fo ) ) ∧
blocked_by( E( ( fo + 1 ) % 8, fo, up ), t, Fork( fo ) ) ∧
(∀e1:

blocked_by( e1, t, Fork( fo ) ) ⇒
e1 = E( fo, fo , up ) ∨ e1 = E( ( fo + 1 ) % 8, fo , up ) )

2There are n philosophers sitting around a table. There is a fork between each two adjacent philosophers. To
eat, a philosopher needs to hold both of her adjacent forks.
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The state of the fork changes according to the pick-up/put-down actions of the philosophers on
the right or left of the fork (and only these) :

( ∀t, fo:

trace( t ) = E( fo, fo, up ) ∨ trace( t ) = E( ( fo + 1 ) % 8, fo, up ) ⇒
fork_state( fo , t + 1 ) ) ∧

( ∀t, fo:

trace( t ) = E( fo, fo, down ) ∨ trace( t ) = E( ( fo + 1 ) % 8, fo, down) ⇒
¬fork_state( fo, t + 1 ) ) ∧

( ∀t, fo:

¬( trace( t ) = E( fo, fo, up ) ∨ trace( t ) = E( ( fo + 1 ) %8, fo, up ) ∨
trace( t ) = E( fo, fo, down ) ∨ trace( t ) = E( ( fo + 1) % 8, fo, down ) ) ⇒

fork_state( fo , t ) = fork_state( fo, t + 1 ) )

Once these properties are formulated, system properties can be proven. In our case, Z3 can
verify that the system does not deadlock, i.e., that there is always an event that is requested and
not blocked in all executions of the program. Z3 does this in under 10 seconds. This verification
is performed using a slightly modified version of the axioms presented in Section 7.2, which
considers both finite and infinite executions of the program.

Note that the robotic implementation may be very different from the specification. Still, to
verify that each property in the specification holds it should suffice to model check exhaustively
only a few robots and tools.

7.3.5 Tic-Tac-Toe

In this example we demonstrate the use of Z3 to verify a slightly larger example, highlighting
that the properties of the individual modules are quite independent of each other, and refer to
the basic specification of the system. We illustrate our technique on the b-threads of the Tic-
Tac-Toe game application presented in [86]; we briefly summarize the application’s features in
a description taken from [86], and refer the reader to that paper for a more detailed explanation
of the application itself.

In the (classical) game of Tic-Tac-Toe, two players, X and O, alternately mark squares on
a 3×3 grid whose squares are identified by ⟨row,column⟩ pairs: ⟨1,1⟩,⟨1,2⟩, . . . ,⟨3,3⟩. The
winner is the player who manages to form a full horizontal, vertical or diagonal line with three
of his/her marks. If the entire grid becomes marked but no player has formed a line, the result
is a draw.

In our example, player X is played by a human, and player O is played by the application.
Each move (marking of a square by either player) is represented by a matching event, X⟨row,col⟩
or O⟨row,col⟩. The events XWin, OWin and Tie represent the respective victories and a draw. A
play of the game may be described as a sequence of events. E.g., the sequence X⟨1,1⟩, O⟨2,2⟩,
X⟨3,2⟩, O⟨1,3⟩, X⟨3,0⟩, O⟨2,1⟩, X⟨3,3⟩, XWin describes a play in which X wins, and whose final
configuration is:

122



The BP implementation of the game as described in [86] contains two types of b-threads:
game rules and strategies. Examples for game rule b-threads are the SquareTaken thread that
blocks further marking of squares already marked by X or O, and the EnforceTurns thread that
alternately blocks O moves while waiting for X moves, and vice versa (we assume that X always
plays first).

Strategy b-threads are responsible for helping the program to play “wisely” — that is, to
contribute towards ensuring that the program does not lose the game. An example for one such
b-thread is PreventThirdX: when it notices two Xs in a line, it requests the marking of an O in
the third square of this line (to prevent an immediate loss).

If neither player makes any mistakes, a Tic-Tac-Toe game ends in a draw. Therefore, we
consider our game playing application to be achieving its goals if it never loses the game —
namely, if the event XWin is never triggered in any run. In [86], this property was verified via
explicit model checking of the Java application with concurrent execution of all b-threads. By
contrast, in the present work the proof of correctness begins with the properties of the b-threads
as may be verified individually, or as may be planned or designed in early development stages.
Z3 is used to verify that these properties, when composed, yield the desired results.

In our proposed Z3 formulation, each event has three fields: x, y and type. The type field can
have values X,O,X WIN,O WIN and TIE. If the event is of one of the first two types, the x and
y fields hold the row-column coordinates of the move; otherwise, these fields are meaningless.

As in the previous examples, we formulate the properties of the various b-threads as Z3
code. For instance, the EnforceTurns thread, BTet , is formulated as:

∀t, e: ( t == 1 ) ⇒ blocked_by( e, t, BTet ) ⇔ e.type() == O

∀t, e: ( t > 1 ) ⇒ blocked_by( e, t, BTet ) ⇔
( e.type() == O ∧ trace( t - 1 ).type() == X ) ∨
( e.type() == X ∧ trace( t - 1 ).type() == O )

The code states that in the first move (t == 1) the b-thread blocks all of O’s moves, and that in
subsequent moves the b-thread blocks the player who played last.

Next, we see how the PreventThirdX b-thread, BTptx, translates into Z3 code:

∀t, e: requested_by( E( row , col , O ), t, BTptx ) ⇔
∃t1,t2: t1 < t ∧ t2 < t ∧

trace( t1 ).type ()==X ∧
trace( t2 ).type ()==X ∧
( ( trace( t1 ).x() == trace( t2 ).x() == row ) ∨

( trace( t1 ).y() == trace( t2 ).y() == col ) ∨
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( ( trace( t1 ).x() == trace( t1 ).y() ) ∧
( trace( t2 ).x() == trace( t2 ).y() ) ∧
( row == col ) ) ∨

( ( trace( t1 ).x() + trace( t1 ).y() == 4 ) ∧
( trace( t2 ).x() + trace( t2 ).y() == 4 ) ∧
( row + col == 4 ) ) )

The above code indicates that the b-thread only requests an O move in square row,col if:
(1) X has already marked two squares in that row, or (2) X has already marked two squares in
that column, or (3) The square is part of the main diagonal (row == col), and X already has two
squares of that diagonal, or, (4), if the square is part of the secondary diagonal (row+col == 4),
and X has already marked the two other squares of that diagonal.

Due to the larger extent of this example, we omit the remaining b-threads. The code is
available online at [80].

Once all the other rule and strategy b-threads have been translated into Z3 in a similar
fashion, we had the tool prove the desired property, namely that O can never lose:

∀t: trace(t).type() != Xwin

Z3 replied in the affirmative. Further, running the same test with one of O’s strategy b-threads
omitted resulted in a failure. Printing the Z3 model, the listing of the function trace reveals a
counter-example scenario in which X wins:

[ 1 → TraceEntry( E( 3, 3, X ) ),

2 → TraceEntry( E( 2, 2, O ) ),

3 → TraceEntry( E( 1, 1, X ) ),

4 → TraceEntry( E( 1, 3, O ) ),

5 → TraceEntry( E( 3, 1, X ) ),

6 → TraceEntry( E( 2, 1, O ) ),

7 → TraceEntry( E( 3, 2, X ) ),

else → TraceEntry( E (1, 1, X_WIN ) ) ]

Apart from enabling us to prove the desired property, we observe that formulating the
b-thread’s properties as Z3 axioms also provides a more precise documentation than natural-
language requirements, as well as a useful abstraction of program code. For instance, the Z3
code for the the EnforceTurns b-thread (displayed above) states explicitly, and thus documents,
the fact that player X plays first, and that neither player can make two consecutive moves. For
comparison, the (pseudo) Java code of this b-thread is:

1 while ( true ) {

2 bSync( block O moves , wait for X moves );

3 bSync( block X moves , wait for O moves );

4 }

In the Z3 code, the reader can interpret each formula separately. Even if a formula is long
— its scope is well defined and it is always complete. When reading program code like the
above the reader has to mentally follow the flow of the for loop, and the instructions within it
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and translate them into conditions and possible scenarios. We find that the combination of the
natural scenario-oriented program code with the precise yet abstract Z3 properties complement
each other in development, verification and maintenance processes. If modules from this appli-
cation are to be used in another application, or in an enhanced version of the same application,
the developers can readily see whether the existing code supports, e.g., more than two players,
changing the order of player moves, or allowing a player two consecutive moves under some
conditions.

7.4 Relationship to Other Work

Much research on compositional and modular verification has been conducted in recent years.
While most proposed approaches are similar in their underlying assume-guarantee framework,
they differ in several aspects: the modeling formalisms (for both program and specification), the
way assumptions are inferred (manual or various automatic variants), and the type of reasoning
used to deduce the desired system-wide property from the module properties. In this section
we review some of these approaches.

In [128], [105] and [133], the authors study assume-guarantee proof rules for parallel pro-
grams, where communications or interference between programs are via messages (in [128])
or shared variables (in [105, 133]). Our focus is also on parallel programs, but in our work the
components (b-threads) do not communicate directly with each other, but rather use the simple
protocol offered by BP semantics. In addition to providing a concise interface for interweaving
independent modules that represent separate facets of behavior, the protocol also allows for a
reduction in the size of the state-space, as we are only interested in the state of a b-thread when
it is at a synchronization point.

While BP is oriented towards programming in standard languages, composition in BP is
event-based and may be formalized in terms of finite-state transition systems. System com-
position and modular verification in such finite-state settings were described in [120] with the
introduction of I/O automata, in [76] in the context of a subset of CTL, in [58] using inter-
face automata, and in the research on the behavior-interaction-priority formalism (BIP), see,
e.g., [35]. Our work can be viewed as contributing towards applying these methods in pro-
gramming contexts and towards making the application of formal methods more accessible to
programmers. In line with this goal, it would be interesting to explore compositional verifica-
tion of behavioral programs based on properties formalized as assertions within the code, using
behavioral interface languages such as JML, SPEC#, SPARK, separation logic, and Dafny.
See [94] for a survey.

The difficulty in formalizing environment behavior from the point of view of a single mod-
ule is tackled in [53]. The authors verify individual parallel modules, together with interface
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processes that represent a module’s dependencies on its environment, but which can be sim-
pler than the full composite behavior of the environment. The interface modules are derived
from the specification of the other modules. In [97], the authors describe assume-guarantee
reasoning using iterative abstraction and refinements of the assumptions. In [70], the environ-
ment assumptions of a thread are automatically inferred and are abstracted from behaviors of
the other threads. In [73], the authors present techniques for automatically decomposing the
verification problem and generating component assumptions based on design-level artifacts. In
another approach [17], a learning algorithm is used to infer the assumptions.

In our proposed setting, the strict interface through which modules communicate (that is,
the events they request, wait-for and block) facilitates integrating assumptions about the envi-
ronment into the verification process. Particularly, we have shown here that it is often straight-
forward to represent the environment by dedicated b-threads. This process is demonstrated in
Section 7.3.5, where all strategies available to the environment — the X player — are repre-
sented by a simple b-thread. From the verifier’s point of view, there is no difference between
that b-thread and the actual program’s b-threads.

Applying model checking to the goal of establishing low-level properties and then using
semi-automated high-level analysis also helps tackle the state-explosion problem. For example,
in [123] the authors verify hardware systems using reasoning that is performed by a proof
assistant, while the generated subgoals are verified by model checking. In [54], the authors
show that finding a decomposition that yields benefits in compositional verification is not easy
and may not always be possible. In this context, one of the key goals of our present work is
verifying modules and composing systems based on artifacts and properties that are aligned
with the specifications. Similar approaches appear in [64] for interference and cooperation of
aspects and in [65] for components as part of research in the field of component-based software

engineering.

7.5 Discussion and Conclusion

We have shown how BP and the Z3 SMT solver can be used together for composing a reac-
tive system from relatively independent modules, while accompanying the development with a
proof of system’s correctness.

As mentioned in Section 7.4, a major issue in compositional verification is automatically
generating component properties. We address this by using the requirements that individual
modules satisfy as these properties, thus leveraging the intuition the programmers used in build-
ing the modules. Using BP to code the modules ensures that module interfaces are always well
defined (per the BP semantics), and it tends to produce modules with properties that are rela-
tively self-standing. Consequently, apart from streamlining verification, the resulting module
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properties are of value for maintenance and debugging tasks. We believe that this approach has
potential, as it bypasses the intricate task of looking for compositional properties in composite
code — allowing the programmer to focus on module properties more than on inter-module
relationships.

When the effects of module-to-module interaction are dependent on a domain theory that is
known to the SMT solver, an opportunity emerges for improving the efficiency of the automated
verification. This is because system properties may be inferred directly from module properties,
without explicitly examining all states of the composite application.

A key issue that we have encountered is the difficulty of formulating module properties.
Per our methodology, component properties have to be formulated twice: once as SMT solver
axioms for the compositional part, and once as model checker properties to be proven on indi-
vidual threads. In our examples, the first part was often time-consuming: it took some effort
to formulate properties that appeared to us natural and aligned with system’s requirements in
ways that allowed Z3 to handle the proof in reasonable time. This is in line with [67], which
suggests that the practical impact of compositional methods is constrained by the amount of
non-trivial human input required for defining appropriate assumptions. Interestingly, we found
that the second part — translating the Z3 properties into model checker properties — was al-
most trivial, as the properties were typically simple postulations on the states of the threads. In
the future we plan to automate this transformation.

Despite its difficulties, we found that the process of refining formal properties was instru-
mental to our understanding and to the corresponding documentation of module behavior. Our
conclusion is that, given the right tools, programmers and designers may find the property
formalization and automated verification processes beneficial.

Future research directions include developing IDE support for automated proofs of behav-
ioral applications, guidelines for formulating module properties, and possible enhancements to
Z3 (or an alternative solver). Another important direction is proving that our methodology fits
industry practice, by applying it to a real large-scale system.
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Chapter 8

Theory-Aided Compositional Verification
of RWB Programs

8.1 Introduction

In concurrent programming, the size of the composite program is typically exponential in the
number of its constituent threads. This phenomenon, an instance of the state explosion problem,
is a major hindrance to the verification of concurrent software. As we discussed in Chapter 7, in
recent decades a prominent approach to tackling this difficulty has been that of compositional
verification [76]: properties of threads are derived/verified in isolation, and are used to deduce
global system correctness, without exploring the entire composite state space. When applica-
ble, compositional verification can often significantly outperform direct verification techniques.

A key challenge in compositional verification is how to automatically come up with “good”
thread properties — those whose verification is considerably cheaper than the verification of
the global property on the one hand, but which are sufficiently meaningful to imply the desired
system properties on the other. In Chapter 7 we presented a technique in which these properties
were generated manually, or semi-automatically; and in this chapter we build upon these results
and present an improved technique in which properties are generated fully automatically. Thus,
the approach presented in this chapter offers better scalability [67], in those cases in which it is
applicable.

Since the fully automatic compositional verification of arbitrary programs is difficult (and
often impossible [54]), one reasonable approach is to trade generality for effectiveness — i.e.,
to limit the scope of programs that a scheme handles, in exchange for better performance on
programs that remain within that scope. Here, we adopt this approach and propose an automatic
compositional verification scheme for certain kinds of concurrent software.

This chapter has two main contributions. The first is the rigorous formalization and imple-
mentation of a solver for a theory of transition systems (T S) within the context of CVC4 [26]
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— a lazy, DPLL(T) based SMT solver [130]. The T S solver takes as input formulas describing
a program’s concurrent threads (given as transition systems) and the assertion that a certain
safety property is violated; and it answers UNSAT if the program is safe, or SAT if it is not. As a
standalone module, the T S solver explores the space of reachable states in order to determine
a system’s safety — an exploration that is driven by the SMT solver’s underlying SAT engine.

Several existing approaches utilize SMT solvers in model checking (e.g., Lazy Annota-
tion [124] and PDR [48]), but typically the process is driven by a model checker that uses an
SMT solver as a black-box tool. In our approach the roles are reversed, and the SMT engine,
via the T S solver, can be regarded as invoking a model checker. This design allows other the-
ories within CVC4 to be seamlessly used in analyzing the input program at hand, determining
which parts of the state space should be explored and which may safely be ignored. These
theories may then influence the search conducted by the T S solver by asserting lemmas to
the underlying DPLL(T) core, sometimes pruning significant portions of the search space and
greatly improving performance. We term this process theory-aided model checking: the T S
solver explores the state space while also looking for opportunities in which other theories may
aid and direct the search.

The second contribution of this chapter is in the way other theories determine which parts
of the state space may be ignored during model checking. We perform this by having the
T S solver analyze the input threads and look for pre-supplied patterns: structural properties
of the threads that may be expressed as assertions in the languages of other theories, such as
arithmetic or arrays. It is through these assertions that other theories can “understand” the
program and efficiently discover, e.g., that a certain branch of the search space cannot lead to
a violation. A key fact here is that each thread/transition system is analyzed separately — and
hence the compositionality of our approach: the analysis complexity is proportional to the size
of the program and not to that of its state space. We thoroughly describe three of the currently
implemented patterns.

The technique presented here differs in two main technical aspects from the technique dis-
cussed in Chapter 7. Here, the SMT solver operates directly on the concurrent threads of the
input program, rendering it unnecessary to manually or semi-automatically translate them into
SMT assertions. This also results in a major boost in performance, and the improved technique
can thus handle inputs that were too large for its manual counterpart. The second difference is
the automatic search for patterns, which obviates the need for the engineer to manually provide
them. This makes the technique applicable to less programs, but makes it perform better and
fully automatically when it indeed applies. This is in line with our approach of trading gen-
erality for effectiveness, and, as we demonstrate in later sections, our approach is capable of
effectively handling broad classes of programs even with just a few stored patterns.

As in previous chapters, the type of software that we target here is the family of discrete
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event systems programmed using the RWB model. As previously mentioned, the RWB con-
currency idioms are widespread and appear, sometimes in related forms, in various formalisms
such as publish-subscribe architectures [69], supervisory control [136] and live sequence charts

(LSC) [57] and behavioral programming (BP). model [90]. Thus, by focusing on the RWB
model, we hope to make our technique applicable (with appropriate adjustments) to a variety
of programming formalisms. Further, we believe that the technique can be extended to cater to
additional concurrency idioms and models.

The rest of the chapter is organized as follows. In Section 8.2 we recap the definitions of
the DPLL(T) framework for SMT solvers and of the RWB model. Next, in Section 8.3 we
introduce the theory of transition systems (T S) and describe a theory solver aimed at model
checking RWB programs. In Section 8.4 we demonstrate how the T S solver can cooperate
with other theory solvers in order to expedite model checking. Subsequently, we apply our
technique to two broad classes of problems: periodic problems in Section 8.5, and programs
with shared arrays in Section 8.6. Experimental results appear in Section 8.7, and we conclude
with a discussion and related work in Section 8.8. In order to not burden the reader with
technical complexities, a few of the rigorous proofs for claims made in this chapter appear as
an appendix in Section 8.9.

8.2 Definitions

The DPLL(T) Framework. DPLL(T) [130] is an extensible framework used by modern SMT
solvers. It employs multiple specialized theory solvers that interact with a SAT solver. The
SAT solver maintains an input formula F and a partial assignment M for F . Periodically, a
theory solver is asked whether M is satisfiable in its theory; and, if it is not, the theory solver
generates a conflict clause, the negation of an unsatisfiable subset of M, that is added to F . The
theory solver may request case splitting by means of the splitting-on-demand paradigm [27],
which allows the solver to add theory lemmas to F consisting of clauses possibly with literals
not occurring in F .

Verifying RWB Programs. In [86, 7], the authors demonstrate how the transition systems
underlying RWB-threads can be automatically extracted from high level code and then, using
abstraction techniques, be symbolically traversed in order to verify safety properties. Safety
properties are themselves expressed by marker RWB-threads, marking that a violation has
occurred with a special API call [86]. For simplicity, we assume that marker threads signal that
a violation has occurred by blocking all events, causing a deadlock. Thus, safety checking is
reduced to checking for deadlock freedom.

The manual compositional verification ofRWB programs is, of course, discussed in Chap-
ter 7 There, it is shown how the simple RWB synchronization mechanism facilitates the gen-
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eration of individual thread properties, which are then used for proving the system property
at hand. The beneficial effect that simple concurrency idioms have on verification is also dis-
cussed in [83]. Indeed, the simplicity of the RWB idioms plays a key role in the pattern
matching algorithm that we discuss later.

8.3 The Theory of Transition Systems

We now cast the model checking of RWB into a DPLL(T) setting, by defining a dedicated
theory of transition systems (T S). We assume familiarity with the definitions of many-sorted
first order logic (see, e.g., [28]). The theory is parameterized by a set Q̄ = {Q1, . . . ,Qn} of state

sorts used to represent the state sets of the program’s constituent threads. Let Q̄+ denote the
composite state sorts obtained by taking the Cartesian product of one or more elements in Q.
Every element Q ∈ Q̄+ is a sort in T S . Further, every such Q is also associated with a matching
transition system sort, SQ. Finally, T S has an event sort, E.

For every Q ∈ Q̄+ the signature includes: the predicate IQ ∶ SQ×Q, indicating initial states;
the predicates RQ,BQ ∶ SQ ×Q×E to indicate whether an event is requested (RQ) or blocked
(BQ) at a given state; and the predicate TrQ ∶ SQ×Q×E ×Q to indicate the state transition rules.

In order to reason about composite transition systems, the signature includes the following
functions and predicates. For every Q1,Q2 ∈ Q̄+ we have the transition system composition
function ∥Q1Q2 ∶ SQ1 ×SQ2 → SQ1×Q2 (Recall that (Q1 ×Q2) is itself a sort in Q̄+); and also the
pairQ1Q2 ∶Q1×Q2→ (Q1×Q2) function for composing states, which, per the T S semantics, is
a bijection. Later we often omit the Q subscripts when clear from the context.

For each Q1,Q2 ∈ Q̄+, T S has the following axioms which enforce the RWB composition
rules. A composite state is initial iff its components are initial states:

∀s1 ∶ SQ1 ,s2 ∶ SQ2 ,s ∶ SQ1×Q2 . s = s1 ∥ s2 Ô⇒

∀q ∶Q1×Q2. (I(s,q) ⇐⇒ ∃q1 ∶Q1,q2 ∶Q2. (I(s1,q1)∧ I(s2,q2)∧q = pair(q1,q2))).

Composite transitions are performed component-wise:

∀s1 ∶ SQ1 ,s2 ∶ SQ2 ,s ∶ SQ1×Q2 . s = s1 ∥ s2 Ô⇒

∀q,q′ ∶Q1×Q2,e ∶ E. (Tr(s,q,e,q′) ⇐⇒

∃q1,q′1 ∶Q1,q2,q′2 ∶Q2. (q = pair(q1,q2)∧q′ = pair(q′1,q
′
2)∧Tr(s1,q1,e,q′1)∧Tr(s2,q2,e,q′2))).

Requested and blocked events in a composite state are the union of those in the component
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states:

∀s1 ∶ SQ1 ,s2 ∶ SQ2 ,s ∶ SQ1×Q2 . s = s1 ∥ s2 Ô⇒ ∀q ∶Q1×Q2,e ∶ E.

(R(s,q,e) ⇐⇒ ∃q1 ∶Q1,q2 ∶Q2.q = pair(q1,q2)∧(R(s1,q1,e)∨R(s2,q2,e))) ∧

(B(s,q,e) ⇐⇒ ∃q1 ∶Q1,q2 ∶Q2.q = pair(q1,q2)∧(B(s1,q1,e)∨B(s2,q2,e))).

As previously discussed, by encoding safety properties as threads of the program to be checked,
safety is reduced to deadlock freedom. For each Q ∈ Q̄+, the signature includes a deadlockQ ∶

SQ×Q predicate, such that:

∀s ∶ SQ,q ∶Q. (deadlock(s,q) ⇐⇒ ¬∃q′ ∶Q,e ∶ E. Tr(s,q,e,q′)∧R(s,q,e)∧¬B(s,q,e)),

and the safe stateQ ∶ SQ×Q predicate, with:

∀s ∶ SQ,q ∶Q. ¬safe state(s,q) Ô⇒

deadlock(s,q) ∨ ∃q′ ∶ SQ,e ∶ E. (Tr(s,q,e,q′)∧R(s,q,e) ∧¬B(s,q,e)∧¬safe state(s,q′)).

¬safe stateQ(s,q) indicates that state q is unsafe, because it is (or can lead to) a deadlock state.
Finally, for each Q ∈ Q̄+, safeQ ∶ SQ indicates that a transition system is safe:

∀s ∶ SQ. ¬safe(s) ⇐⇒ ∃q ∶Q. I(s,q)∧¬safe state(s,q).

The Theory Solver. Inputs for the T S solver start with a preamble P that contains asser-
tions that describe the program’s threads. Specifically, P includes variables s1 . . . ,sn, each of
sort SQ for some basic state sort Q ∈ Q̄; and for every si it includes assertions describing its
initial states, its transitions and its requested and blocked events. After P, the solver expects
an assertion Φ about the system’s safety: s = s1 ∥ s2 ∥ s3 ∥ . . . ∥ sn ∧¬safe(s). The solver then
returns SAT iff s is determined to be unsafe.

Figure 8.1 shows derivation rules used to implement a simple explicit-state model checker.1

Intuitively, T S traverses the state graph in a DFS-like manner, looking for bad states. The
underlying SAT solver manages the splits by deciding which successor state to check at every
point. The process ends when a deadlock state is found or when the state space has been
exhausted and no derivation rules apply; an example appears in Figure 8.2. As demonstrated in
the next section, this implementation allows us to seamlessly leverage other theory solvers in
curtailing the state space, which may reduce the overall runtime. Additional details and proofs
of correctness and termination appear in the appendix in Section 8.9.1.

1While we do not assume the system is finite-state, we do assume that the initial states and the successors for
each state are finite and decidable.
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START
Γ[¬safe(s)]

Γ,¬safe state(s,q1) . . . Γ,¬safe state(s,qn)
IF

Γ ⊧T S q1, . . . ,qn ARE THE INITIAL STATES OF s
AND ∀1≤i≤n. ¬safe state(s,qi) ∉ Γ

DECIDE
Γ[¬safe state(s,q)]

Γ,¬safe state(s,q1) . . . Γ,¬safe state(s,qn)
IF

Γ ⊧T S q1, . . . ,qn ARE THE SUCCESSORS OF q (n ≥ 1)
AND ¬deadlock(s,q) ∉ Γ

UNSAT
Γ[¬safe state(s,q)]

� IF ∀q′. ¬safe state(s,q′) ∈ Γ Ô⇒ ¬deadlock(s,q′) ∈ Γ

DEADLOCK-LEMMA ∶P∧Φ Ô⇒ ¬deadlock(s,q) IF q HAS A SUCCESSOR IN s

Figure 8.1: Γ represents an arbitrary set of assertions that the solver has gathered at a given
state, and Γ[φ] indicates that φ appears in Γ. The Start rule starts the traversal of the graph: the
solver initiates a forward reachability search for bad states by nondeterministically guessing an
initial state that is unsafe. When a state with unvisited successors is asserted to be unsafe, the
Decide rule is used to nondeterministically assert that one of its successors is unsafe. Splitting is
handled through the splitting-on-demand feature of the DPLL(T) framework. The UNSAT rule
closes branches that fail to reach a deadlock state. If all branches terminate with �, UNSAT is
returned; otherwise, if a branch terminates with a state other than � where no rule is applicable,
we return SAT. The last rule, Deadlock-Lemma, is a lemma generation rule: the resulting lemma
is theory-valid, i.e. does not depend on the context in which it was generated. These lemmas
mark that a non-deadlock state has been visited, and that it does not need to be revisited in the
future. As part of the proof strategy, the T S solver invokes the lemma generation rule for (s,q)
immediately after the Decide rule is invoked for ¬safe state(s,q), and only then (provided that
q is not a deadlock state). This strategy, together with the side-conditions on the derivation
rules, ensures that no state is visited more than once. See Section 8.9.1 of the appendix for
more details.

q0 q1 q2q3

Figure 8.2: The depicted program has a reachable deadlock state, q3. After reading the pream-
ble, the solver uses the Start rule to assert ¬safe state(s,q0). Then, it invokes the Decide rule
for state q0, nondeterministically asserting ¬safe state(s,q1). This invocation of Decide is fol-
lowed by the generation of the lemma ¬deadlock(s,q0). Next, Decide is invoked for state q1,
generating the assertion ¬safe state(s,q2) — followed by the lemma ¬deadlock(s,q1). De-
cide is then invoked for state q2, generating ¬safe state(s,q1) and the lemma ¬deadlock(s,q2).
At this point, the conditions for the UNSAT rule are met, and the solver closes this branch of
the tree. The solver backtracks to the last nondeterministic split and generates the assertion
¬safe state(s,q3). State q3 is deadlocked, and so the Deadlock-Lemma rule is not invoked. No
additional derivation rules apply, and so the process terminates with a SAT result, indicating
that the system is unsafe.
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8.4 Automatic Analysis of Transition Systems

The calculus in Section 8.3 captures the basic proof strategy of our theory solver: a forward
reachability search. We next enrich this basic strategy with additional derivation rules, aimed at
narrowing down the state space that needs to be explored. The idea is to include within the T S
solver a database of structural patterns that characterize common/useful threads and alongside
each pattern also to keep lemmas that describe these threads’ behavior in the language of some
other theory in CVC4. As the T S solver traverses the state space, it also repeatedly checks to
see if any of the patterns apply to the threads at hand. When a match is found, the solver asserts
the matching lemmas to the SMT framework. Sometimes, these lemmas may be contradictory
to the assertion that the safety property is violated along the current search path, and another
theory solver will raise a conflict: this will cause the T S solver to backtrack and check other
areas of the state space.

We demonstrate the method on a simple example, that we have already encountered in
previous chapters. Observe an RWB program over event set E = {0,1} that generates the
event sequence (05 ⋅ (0+ 1))ω . The program has three threads, depicted in Figure 8.3. The
safety property to be verified is that event 1 is never triggered (and so, the program is unsafe).
Observe that direct model checking of this system requires visiting 6 composite states.

0 1
0

0,1

R = {0}
B = {1}

R = {0,1}
B =∅

Thread 1

0 1 2
0 0

0,1

R = {0}
B = {1}

R = {0}
B = {1}

R = {0,1}
B =∅

Thread 2

0 1
1

0

R =∅
B =∅

R =∅
B = {0,1}

Thread 3

Figure 8.3: Thread 1 counts the number of events triggered so far, modulo 2. Every second
event it requests both events 0 and 1; otherwise, it requests 0 but blocks 1. Thread 2 does the
same, but counts modulo 3. Thread 3 is a bad marker: it waits for a violation to occur, i.e. for
1 to be triggered, and then goes into a “bad” state that blocks all the events, forcing a deadlock.
This RWB program can have 0 triggered at every index, and can have 1 triggered precisely
every 6 events. Consequently, it is unsafe.

For this program as input, the T S solver performs the following automatic compositional
proof. First, it compares the transition systems to its pattern bank, and recognizes that they
match the looped thread mold — a thread whose state is determined uniquely by the step index
in the run (assuming a violation has not occurred). This is a structural property of each thread,
that is checked locally and in isolation from its siblings. After determining that all threads are
looped, the solver finds all individual thread states in which 1 is not blocked. In our case, this
is state 1 for thread 1, state 2 for thread 2, and state 0 for thread 3. Denoting composite states

135



as triplets, this is state ⟨1,2,0⟩. Finally, the solver uses the gathered information to generate the
following lemma in order to curtail the state space:

P∧Φ Ô⇒ ((¬safe state(s,⟨0,0,0⟩) Ô⇒ ¬safe state(s,⟨1,2,0⟩)) ∧

∃t ∶N. (t ≡ 1 (mod 2))∧(t ≡ 2 (mod 3))∧(t ≡ 0 (mod 1))).

This lemma connects the safety of the initial state ⟨0,0,0⟩ with that of the only state in which 1
is not blocked, state ⟨1,2,0⟩ — provided that there exists an integer t for which t ≡ 1 (mod 2),
t ≡ 2 (mod 3) and t ≡ 0 (mod 1). Because, in looped threads, the step index determines the
state, this last part captures the fact that state ⟨1,2,0⟩ is reachable.

Upon generation of this lemma, CVC4 asserts the lemma’s arithmetical clauses to the arith-
metic solver. If the latter determines that there is no solution for t, CVC4 answers UNSAT on
the entire query. This signifies that the system is safe, which is indeed the case if state ⟨1,2,0⟩
cannot be reached. However, if the arithmetic solver manages to solve for t, as is the case here,
the T S solver continues exploring the successors of state ⟨1,2,0⟩ and discovers that it has a
bad successor. Then, SAT is returned for the query.

The key observation is that through the automatically generated lemma, the 4 intermediate
states between state ⟨0,0,0⟩ and ⟨1,2,0⟩ did not need to be explored. Because the threads
matched the looped pattern, CVC4 was able to deduce that these intermediate states would
be safe iff state ⟨1,2,0⟩ was safe. Further, because the arithmetic solver can solve for t more
quickly than the intermediate states can be traversed (especially when generalizing to (0n ⋅(0+
1))ω for a large n), the solver’s performance is improved.

Pattern Matching. The T S solver’s pattern database consists of pattern matchers. A pat-
tern matcher P is comprised of a family of recognizer predicates {Rn}n≥1, where Rn is defined
over n transition system variables s1, . . . ,sn, and a lemma generating function f (described
later). For input system s = s1 ∥ . . . ∥ sn, we say that pattern P applies to s if Rn(s1, . . . ,sn)

evaluates to true. The Rn predicates can encode various facts about the transition systems: e.g.,
that threads always or never block certain events, that they have a certain state that must always
be revisited, that certain events always send threads into a deadlock state, etc. For example, in
the previously discussed looped pattern, Rn evaluates to true iff each of the threads’ states has
precisely one successor state.

In our proof-of-concept C++ implementation, recognizer predicates are coded as Boolean
methods that take as input a list (of arbitrary length) of transition systems. Upon receiving a
query, the T S solver passes the input program’s threads to the recognizer predicates of each
of the patterns, to determine which patterns apply in this case. Recognizer implementations
may traverse the given transition systems, compute strongly connected components, etc. The
only restriction, needed for the method to be efficient, is that recognizers do not compute the
composite transition systems of the system; they are restricted to (polynomial) operations on
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the individual threads. Thus, the complexity of pattern matching is polynomial in the size of
the individual threads — and because these threads are typically exponentially smaller than the
composite program [4], we can quickly test multiple patterns.

The second component in a pattern matcher is the lemma generating function, f . When
pattern P applies to an input program, its lemma generating function is invoked repeatedly
during state space traversal, in order to allow P to generate lemmas that affect the search.
Specifically, f is invoked whenever T S visits a new state q (i.e., after the Decide rule generates
the assertion ¬safe state(s,q)), and returns a (possibly empty) list of lemmas concerning the
safety of state q. The T S solver then asserts these lemmas to the underlying SAT engine, and
other theories may use them in trimming the search space. In practice, the generated lemmas
may depend on parameters extracted from the input threads by the pattern recognizers. For
example, in the looped pattern, the size of the loop is extracted by the recognizer and is then
used in generated lemmas.

Limitations. The above example demonstrates our method’s potential advantages, but also
raises a question regarding its generality: can the pattern database be sufficiently extensive, i.e.
apply to a sufficient range of programs, so as to make our approach worthwhile? Indeed, if one
needed to “teach” the solver new patterns for every new input program, the method would boil
down to a manual compositional proof.

We believe that the answer to this question is affirmative: our findings show that even a
small set of patterns included within the T S solver may already apply to broad classes of
interesting programs. We demonstrate two such cases, periodic programs and programs with

arrays, in Sections 8.5 and 8.6. Still, adding new patterns is not a trivial task, and so we store
them in a central repository — amortizing the cost of adding additional patterns over future
applications.

The T S Solver vs. Model Checking. In the simple example given above, our theory-aided
approach could also be implemented by a more standard design: a model checker that issues
queries to a black-box SMT solver. Our motivation for conducting model checking within the
T S solver is in handling more elaborate examples, in which SMT theories partake in directing
the state space traversal (see, e.g., Section 8.5). While such cases can still be accommodated by
a model checker that is “running the show” and an SMT solver that exposes proper callbacks,
we feel that a DPLL(T)-based solution is cleaner, and also more extensible and robust. By
encoding the state traversal engine as a few axioms and lemma generation rules, and by having
the pattern matching mechanism likewise generate lemmas, the complexity of integrating and
synchronizing the two is automatically and seamlessly handled by CVC4’s DPLL(T) core —
simplifying the implementation of the T S solver. Further, this enables the T S solver to be
plugged into any other SMT solver that adheres to the DPLL(T) framework.
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8.5 Verifying Periodic Programs

In this section, we discuss the theory-aided verification of periodic programs [116] — a class
of single processor scheduling problems that have been widely studied over the last decades. A
periodic program consists of a finite set of tasks T1, . . . ,Tn, which are processes that repeatedly
need to be scheduled for execution on a single processor. Each task Ti is characterized by its
period time Pi and an execution time Ci (for simplicity, we ignore here other parameters such as
relative deadlines and initial offsets). From task Ti’s point of view, the execution of the program
is divided into time cycles of length Pi each, and in each such cycle the task must be alloted Ci

time slots on the processor. The least common multiple of the tasks’ period times is called the
program’s hyper-period. Tasks may have priorities: a task with a higher priority will preempt
another if both need to be scheduled at a specific point in time. A periodic program is said to
be schedulable if there exists a task scheduling in which no deadlines are violated.

For example, consider a periodic program with 3 tasks, T1,T2,T3, each with execution time
C1 =C2 =C3 = 1. The tasks’ periods are 2, 3 and 6, respectively. As depicted in Figure 8.4, every
2 consecutive time slots must include a scheduling of T1; every 3 consecutive slots include a
scheduling of T2; and every 6 consecutive slots include a scheduling of T3. As the figure shows,
this program is schedulable, and its schedule repeats after every 6 steps (the hyper-period).

T1 T2 T1 T2 T1 T3 T1 T2 ⋯

2 2 2 2

3 3

6

Figure 8.4: A scheduling for a periodic program with 3 tasks, T1,T2,T3, with execution time
C1 =C2 =C3 = 1 and periods P1 = 2, P2 = 3 and P3 = 6.

Here, we study the verification of safety properties in periodic programs: we assume that
the input program is schedulable, and check whether it can violate a given property. This is
typically done by transforming the periodic program into an equivalent sequential program and
then verifying it using standard model checking [45]. Our approach is similar, but we seek to
leverage the program’s special structure in order to explore only a portion of its state space.

As we saw in Chapter 7, periodic programs may be programmed in the RWB model by
expressing each task as a thread that requests an event whenever the task needs to be scheduled.
Priorities are expressed using blocking: a thread (task) may block events belonging to other
threads with lesser priorities. Figure 8.5 illustrates the structure of task threads and describes
their pattern matcher.

Whenever all input threads are identified as tasks, the pattern recognizer reports that the
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Figure 8.5: An RWB implementation of a task thread with period time P = 5 and execution
time C = 2. The thread’s underlying transition system can be regarded as a (C+1)×P matrix,
where the columns represent the time passed since the beginning of the period and the rows
represent the number of times the task has been scheduled so far. Green edges in the figure
represent the task being successfully scheduled (i.e., its requested event was triggered) and
red edges represent the task not being scheduled (an event requested by some other task was
triggered). Thus, with every time unit the state moves to the right, and if the task was scheduled
it also moves one row down. If the task’s deadline is violated, it enters a deadlock state (the
rightmost state in the figure). The task pattern matcher traverses the state graph of each input
thread and checks whether it has these structural properties. If so, it also extracts the task’s P
and C parameters and its sequence of requested events (not illustrated). If blocking is used to
prioritize tasks, the matcher also extracts the prioritization hierarchy.

program is periodic. This causes the pattern’s lemma generation function to be repeatedly
invoked during state space traversal, so that it may generate lemmas aimed at curtailing the
search space. For this purpose, we extend the signature of T S to include a sort Z+ for non-
negative integers, and the predicate deadlockQ ∶ SQ×Z+. Intuitively, deadlockQ(s,t) indicates
that a deadlock state in s is reachable in t steps from an initial state. Further, we extend T S to
support backward reachability analysis, in addition to the forward reachability analysis afforded
by the safe state predicate. To this end, we add the reachableQ ∶ SQ ×Q predicate, with the
following semantics:

∀s ∶ SQ,q ∶Q.reachable(s,q) Ô⇒

I(s,q)∨∃q′ ∶ SQ,e ∶ E.(Tr(s,q′,e,q)∧R(s,q′,e)∧¬B(s,q′,e)∧ reachable(s,q′))

Intuitively, a state is reachable if it is initial or has a reachable predecessor. For more details,
see Section 8.9.2 of the appendix.

The lemmas generated by the pattern matcher assert that there must be a time t within the
hyper-period in which a violation occurs. They also limit the possible values of t based on the
information gathered about the individual tasks. Specifically, the pattern matcher generates the
lemma:

P∧Φ Ô⇒ ∃t ∶Z+. deadlock(s,t)∧Ψt

where Ψt describes constraints on t that are deduced from the structure of the task threads. If
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the arithmetic solver finds a solution t0 for Ψt it assigns it to t, and the T S solver then translates
it, by analyzing the task threads’ possible locations in time t, into candidate reachable bad states
q1, . . . ,q`:

P ∧ Φ∧deadlock(s,t0) Ô⇒ ∨`i=1reachable(s,qi)

T S then performs backward reachability checks on candidates q1, . . . ,q`. If a path to an initial
state is found, the system is unsafe and we are done. Otherwise, the contradiction forces the
arithmetic solver to propose another solution t = t1, which corresponds to additional candidate
bad states. The process is repeated until the system is proven unsafe, or until all possible
solutions are exhausted. Other bad states, which do not correspond to any of the proposed
values of t, are guaranteed to be unreachable and are ignored.

In order to generate the constraints in Ψt , the pattern matcher identifies tasks participating

in the violation: these are the threads whose requested events are part of a violating sequence.
Then, it uses information about these threads, and about threads with higher priority, to put
constraints on t.

We demonstrate this on a schedulable periodic program with 4 tasks: task T1 with param-
eters P1 = 5,C1 = 1; T2 with P2 = 6,C2 = 1; T3 with P3 = 9,C3 = 3; and task T4 with parameters
P4 = 11,C4 = 2. Task 1 has the highest priority, task 2 has the second highest priority, and tasks
3 and 4 both share the lowest priority. The safety property in question is that it is impossible for
task T4 to be scheduled for three consecutive time slots. Here, direct model checking requires
visiting 55000 states in the composite program.

By intersecting the violating event sequence with the events requested by each thread, the
pattern matcher determines that T4 is the only participating task. By the information extracted
regarding task priorities, it deduces that tasks T1 and T2 supersede it. Then, it generates the Ψt

constraint as follows. One conjunct in Ψt is 0 ≤ t ≤ 990, as the hyper-period is lcm(5,6,9,11) =
990. Another conjunct is ((t ≥ 3 (mod 5))∧(t ≥ 3 (mod 6))): if it did not hold, T1 or T2 would
preempt T4, preventing it from being scheduled 3 consecutive times. Yet another conjunct is
(t ≤ 1 (mod 11)); it holds because in order for T4 to be scheduled 3 consecutive times (with
execution time C4 = 2), a fresh period must start at time t or t −1. A few additional conjuncts
are omitted. The complete lemma reduces the number of possible values for t from 990 to just
15, and the query as a whole entails exploring only 700 states out of 55000 reachable states in
order to prove the system’s safety.

8.6 Verifying Programs With Shared Arrays

Next we demonstrate the theory-aided verification of programs with shared arrays — a
widespread construct in concurrent programming. In the RWB model, a shared m-ary ar-
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ray with n cells may be implemented using n b-threads, each of size m. Each thread represents
a single array cell and has a clique-like structure, where each state si is associated with a write
event wi and a read event ri. Intuitively, each state si corresponds to a value vi that is stored in
the array cell. Whenever event wi is triggered, the thread moves to state si; and whenever not
in state si, the thread blocks ri. Thus, other threads can request ri in order to check if the thread
is in state si (i.e., to check if the array cell has value vi). See Figure 8.6 for an illustration.
Note that this implementation is only needed for shared arrays; internally, threads may use any
construct available in the underlying programming language.

0

1

write(1,1)write(1,0)

R =∅
B = read(1,1)

R =∅
B = read(1,0)

Cell #1

0

1

write(n,1)write(n,0)

R =∅
B = read(n,1)

R =∅
B = read(n,0)

Cell #n

. . .

Figure 8.6: An RWB implementation of a binary array with n cells. Each cell is represented
by a thread with two states, signifying the stored value in that cell, 0 or 1. Each thread/cell
is associated with two write events, for 0 and 1; when they occur, the thread changes states to
indicate the new stored value. Other threads in the program may read from a cell by requesting
the two read events associated with it, one for 0 and one for 1; the read event that does not
match the value in the cell will be blocked by the cell thread, and so only the “correct” read
event may be triggered.

The T S solver has a pattern matcher that looks for threads that match this array cell pattern.
If an array is found, the pattern matcher checks whether deadlocks are possible only in certain
array configurations (e.g., when certain array cells hold certain values; an example appears later
in this section). If such constraints are found, it generates a lemma that conditions the system’s
unsafety on the array threads reaching an unsafe configuration.

We demonstrate with an example. Observe a program with a shared array of size n and an
initial state q0. The array pattern matcher creates an array expression arrq0 whose value at each
index i is set to some fresh constant ci. This expression is used to represent the value of the
array in various states of the program. The matcher also creates a target array, arrtarget , and
asserts constraints on arrtarget signifying the state that the array has to be in for a violation to
occur. Then, it generates the lemma P∧Φ Ô⇒ (arrq0 = arrtarget).

The bulk of the work is then performed as T S traverses the state space. Whenever a new
state q is visited, the pattern matcher analyzes the threads (each of them separately), looking
for array entries that have become fixed. This can be determined, e.g., when additional write
events to a cell are never requested or are always blocked. Suppose that it is discovered that the
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first cell’s value has been fixed to e0; then the lemma P∧Φ∧¬safe state(s,q) Ô⇒ (c0 = e0)

is generated. If this is consistent with the earlier assertion arrq0 = arrtarget , the solver continues
traversing the successors of q; otherwise, the array theory solver will raise a conflict, resulting
in q’s successor states not being traversed.

We now demonstrate the shared array pattern on the behavioral application for playing Tic-
Tac-Toe from [86]. Recall that Tic-Tac-Toe is a game played between “X” and “O” players
on a 3x3 board. Each in their turn, the players mark an empty square on the board with their
respective sign. A player wins by completing a row, a column or a diagonal. If neither player
errs, the game is guaranteed to end in a draw.

In [86], the authors construct a behavioral application that plays “O”, where a human player
plays “X”. Suppose that we wish to prove that the game application upholds the property that
“X never wins by taking the upper row”; verifying this property can be useful, e.g., during
incremental development [86].

The theory-aided verification of this system is as follows. In the implantation of [86],
the game board is in fact a ternary array — with values empty, O and X . By analyz-
ing the individual threads, the T S solver recognizes this array and determines that a vio-
lation can occur only when the three upper row cells (say, cells 0, 1 and 2 in the array)
are set to X . The T S solver then creates a 9-cell ternary array variable arr, and asserts
that target = write(write(write(arr,0,X),1,X),2,X). Next, the solver writes fresh constants
c0, . . . ,c8 to arr’s cells, and equates the result to target:

P ∧ Φ Ô⇒ target =write(. . .write(write(arr,0,c0),1,c2) . . . ,8,c8)

The Tic-Tac-Toe application has, for every board square, a thread that waits for write events
and then blocks any additional writes. Thus, every triggered write event fixes an array entry,
causing the T S solver to generate a lemma that equates the corresponding ci constant to its final
value. For instance, suppose the game so far has included moves X(0,1),O(1,1),X(2,2), and
that it is now O’s turn to play. We denote this current state by q1. Now, suppose the T S solver
explores a new state, q2, reachable from q1 when O marks square O(0,2). Thread analysis
shows that starting in state q2 the blocker thread will forever block any additional write events to
square (0,2), and so the T S solver generates the lemma: P∧Φ∧¬safe state(s,q2) Ô⇒ (c2 =

O). This causes the array theory solver to raise a conflict, which in turn causes the underlying
SAT solver to deduce that sate q2 cannot be unsafe. Thus, backtracking is performed, and
another successor of state q1 is checked (effectively choosing another move, instead of O(0,2)).
Consequently, the successor states of q2 need not to be explored.
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8.7 Experimental Results

We evaluated our proof-of-concept tool, implemented as an extension to CVC4, by comparing
it to BPMC — a symbolic model checker specifically designed for RWB programs [86, 7]
(the tool and experiments are available online [108]). Our tool uses a portfolio approach: if
the input program does not match any of the known patterns, the tool simply invokes BPMC
(or any other model checker, for that matter). The decision of whether or not to invoke BPMC
is made within seconds, rendering the performance of both tools effectively the same in these
cases. Hence, for the remainder of this section we focus on inputs in which a pattern did apply
and theory-aided model checking was indeed attempted.

We first compared the tools using a benchmark suite of over 120 hand-crafted RWB pro-
grams — some periodic, and some containing shared arrays. The benchmarks’ sizes ranged
from a few hundred to over 10 million reachable states, and contained both SAT and UNSAT

instances. The results are depicted and discussed in Figures 8.7 and 8.8.

Next, we set out to test our tool’s applicability to a large, real-world system by using it
to verify safety properties on a web-server (implementing TCP and HTTP stacks) written in
BPC [3]. We were very curious to see whether our pattern recognition mechanism would pick
up any matching threads.

As it turns out, the shared array pattern proved useful in verifying this application. Per the
TCP protocol, the web-server only accepts TCP push segments on active connections. Slightly
simplified, a connection to a client is active if the client sent a syn segment but not a fin segment.
This functionality is implemented using blocking: for every connection, a dedicated thread,
named EnsureActiveConnection, blocks push events while the connection is inactive. This
blocking is removed when a syn segment is received, and is restored when a fin segment is
received. Thus, the EnsureActiveConnection threads were picked up as shared array cells by
our tool: they each had two states, labeled active and inactive, with respective read events push

and reject and write events syn and fin. Interestingly, the programmers of the web-server did
not seem to have had this design pattern in mind [3].

We tested 10 safety properties on the web-server (see Figure 8.9). These properties included
the proper rejection of messages on inactive connections, proper usage of allotted sequence
numbers for outgoing segments, and the detection and blocking of unstable clients, who quickly
and repeatedly opened and closed connections. The theory-aided approach did better on 7
of 10 instances (4 SATs and 3 UNSATs), demonstrating an average speedup of 16% over all
instances. BPMC did better on 2 SAT and 1 UNSAT instances, where the property in question
and the discovered patterns were disparate (e.g., properties involving proper usage of sequence
numbers, that had nothing to do with the EnsureActiveConnection threads).

These initial results are encouraging. We conclude that (i) the theory-aided approach is
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# Instances Avg. # States Explored Avg. Time (milliseconds)
CVC4 BPMC Change CVC4 BPMC Change

Periodic SAT 11 9994 9236 +8% 18791 15894 +18%
Programs UNSAT 50 35299 184388 -80% 10247 15041 -31%

UNSAT† 6 59816 8195666 N/A 170673 809946 N/A
Timeout 2

Shared SAT 35 24416 293525 -91% 24882 168755 -85%
Arrays UNSAT 15 121133 511292 -76% 124911 292779 -57%

UNSAT† 6 267000 1989666 N/A 359324 1510028 N/A

Total 111 190842 998441 -80% 178831 492469 -63%

Figure 8.7: Experiments on a benchmark suite, conducted using an X230 Lenovo laptop with
16GB memory. The suite contained SAT and UNSAT instances of periodicRWB programs and
programs with shared arrays. The table compares our tool (CVC4 columns) to the BPMC tool,
measuring the average number of explored states and average solving time for each category.
The Change columns measure the effectiveness of CVC4 in comparison to BPMC. The UNSAT†

row indicates UNSAT instances on which CVC4 answered correctly but on which BPMC ran
out of space (but listing the number of states it was able to explore). The Timeout row indicates
instances on which both tools ran out of space/time. We did not encounter examples on which
BPMC returned and CVC4 did not. The table reveals that for SAT queries on periodic programs,
BPMC was able to outperform CVC4. This is not surprising; indeed, the pattern for periodic
programs is designed to quickly show that bad states are unreachable, which is not the case for
SAT instances. In all other categories, i.e. UNSAT queries on periodic programs and both types
of queries on programs with shared arrays, CVC4 typically outperformed BPMC. Instances
where BPMC did better were either very small (the cost of thread analysis and pattern matching
exceeded the cost of the actual model checking), or instances where the property in question had
nothing to do with the recognized patterns, making it impossible for our tool to trim the search
space. The UNSAT† instances had too many states for BPMC to cover, but with the theory-aided
approach we were able to trim the search space down to a manageable size. Finally, the Timeout
instances were too large to handle, even with theory-aided pruning. The Total row sums up the
instances solved by both tools, demonstrating an encouraging average speedup of 63%; these
111 instances are also the ones described in the graph in Figure 8.8.

Figure 8.8: Performance of both tools, compared over the benchmark suite.
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Figure 8.9: Experiments on the web-server.

viable, in the sense that the stored patterns apply to real programs, sometimes significantly
reducing verification times; and (ii) that performance may be further improved by enhancing
the portfolio approach; i.e., if we were able to more accurately characterize cases in which,
despite matching a stored pattern, a thread does not affect the property in question, we could
delegate those cases to BPMC and achieve faster running times. This is left for future work.

8.8 Related Work and Discussion

In this work, we proposed a framework for the automated compositional verification of con-
current software. Our technique was based on casting the model checking problem into the
DPLL(T) framework used by the CVC4 SMT solver, and then utilizing other theory solvers to
prune the search space in order to improve performance. Other theories were able to affect the
search through lemmas in their respective languages that were generated by matching the input
program’s threads to presupplied patterns.

SMT solving has been used for various verification-related tasks such as lemma dispatch-
ing [124, 48], reachability analysis [30] and model checking concurrent programs [62, 39]. Our
technique shares some of these aspects, but differs in that the state exploration is driven by an
SMT solver and in that lemmas are derived using stored patterns. A related approach for circuit
verification appears in [34], where the input is analyzed to find unreachable states in advance.
Our framework follows a similar spirit, but extends the technique to concurrent software and
utilizies a modern SMT solver.

In [147], the authors extend the Z3 solver with an automaton sort for symbolic automata
over infinite alphabets. It would be interesting to combine this technique with ours, enabling it
to reason about RWB programs with infinite event sets.

We evaluated our technique on two broad classes of RWB programs: periodic programs
and programs with shared arrays. Specifically, we showed how the T S solver may leverage
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CVC4’s arithmetic and array theory solvers in order to expedite the model checking process.
Others have explored SMT-based techniques for similar models; e.g., the validation of guessed
invariants in Lustre programs [106]. We consider this as encouragement that applying SMT-
based techniques to synchronous, discrete event models may prove fruitful, and intend to extend
our technique to Lustre as well.

We find our initial results encouraging, and plan to continue extending our pattern database.
One direction that we are presently pursuing is the addition of a new pattern matcher that
leverages CVC4’s string theory solver [115], by translating constraints imposed by certain
types of input threads into regular expressions. Indeed, a prototype implementation we have
created shows interesting potential.

8.9 Appendix

8.9.1 Derivation Rules for the T S Solver

A derivation tree consists of nodes containing sets of assertions. The root node contains an
initial set of assertions and each non-leaf node is labeled by a derivation rule used to derive the
children of the node from the node itself. The derivation rules used by the T S solver give rise
to a sequence of derivation trees (called a derivation). The initial tree in the derivation contains
only a single node with the initial set of assertions. Each subsequent tree in the sequence is
obtained from its predecessor by the application of a derivation rule to one of the predecessor’s
leaves. A branch terminating with a leaf consisting of the value � is called a closed branch; if
all branches are closed, we say that the derivation tree is closed. A derivation culminating with
a closed derivation tree indicates that the initial set of assertions is unsatisfiable. A derivation
that leads to a derivation tree containing a leaf node that is not � and to which no derivation
rule can be applied indicates that the initial set of assertions is satisfiable. When such a tree is
produced, the derivation terminates.

We now describe the actual derivation rules used by the theory. The first rule, used to initiate
the traversal of the state space, is the Start rule:

START
Γ[¬safe(s)]

Γ,¬safe state(s,q1) . . . Γ,¬safe state(s,qn) ,

where Γ denotes the initial set of assertions (in particular it includes P and Φ). The derivation
rule contains a nondeterministic split such that each branch adds a single assertion to Γ.2 The

2Splits are implemented by utilizing the SAT solver through the DPLL(T) splitting-on-demand framework.
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Start rule is only applicable when the following guard conditions hold:

Γ ⊧T S ∀q ∈Q. (I(s,q) ⇐⇒ (q = q1)∨(q = q2)∨ . . .∨(q = qn)),

where s is of sort SQ,

¬safe state(s,qi) ∉ Γ for i ∈ {1 . . .n}.

Intuitively, the Start rule translates the fact that the system is unsafe into an assertion that one of
the initial states is unsafe. The first part of the guard condition ensures that all of the potential
initial states are considered as possibilities, and the second part ensures that the rule is applied
only once at the beginning of the derivation.

Next comes the Decide rule. This rule performs a similar function to that of Start, and
applies when the traversal of the state space is already underway:

DECIDE
Γ[¬safe state(s,q)]

Γ,¬safe state(s,q1) . . . Γ,¬safe state(s,qn) .

The Decide rule is applicable when the following conditions hold:

¬deadlock(s,q) ∉ Γ (8.1)

Γ ⊧T S ∀q′ ∈Q,e ∈ E. ((Tr(s,q,e,q′)∧R(s,q,e)∧¬B(s,q,e)) ⇐⇒

(q′ = q1)∨(q′ = q2)∨ . . .∨(q′ = qn)) where s is of sort SQ and n ≥ 1.
(8.2)

Intuitively, if a state q has not already been recorded as a non-deadlock state (condition 8.1),
the Decide rule lets the solver derive the unsafety of one of q’s successor states, as long as such
successors exist (condition 8.2). Note in particular that the Decide rule will not apply if q is a
deadlock state because condition 8.2 will fail.

For cases where Decide is not applicable and no deadlock state has been found, we have
the Unsat rule:

UNSAT
Γ[¬safe state(s,q)]

�

The Unsat rule is applicable when there are no more states to explore on this branch (and at
least one state has been explored) and no deadlock has been discovered. Specifically, the guard
condition is:

whenever ¬safe state(s,q′) ∈ Γ, we also have ¬deadlock(s,q′) ∈ Γ.
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In addition to the derivation rules, we use the theory lemma feature of the DPLL(T) frame-
work to periodically generate a deadlock lemma:

P∧Φ Ô⇒ ¬deadlock(s,q)

Of course, as a theory lemma must be valid in the theory, this lemma can only be generated if
q is not a deadlock state in s, or, formally,

P,Φ ⊧T S ∃q′ ∈Q,e ∈ E. Tr(s,q,e,q′)∧R(s,q,e)∧¬B(s,q,e),

where s has the sort SQ and q has the sort Q.

Because Γ includes P and Φ, the DPLL(T) framework will ensure that whenever a deadlock
lemma is added, the predicate ¬deadlock(s,q) will be included in Γ on all future branches. For
our purposes, we can view the generation of a deadlock lemma as a derivation rule which
modifies a given derivation tree by adding ¬deadlock(s,q) to every node of the tree (except
those labeled with �).

Clearly, not every strategy for applying derivation rules and deadlock lemmas will be com-
plete. Thus, we enforce the following strategy. A deadlock lemma for s and q is generated
immediately after an invocation of Decide triggered on ¬safe state(s,q); and moreover, this is
the only time a deadlock lemma is generated.

This strategy guarantees that deadlock lemmas are valid and are generated only for states
whose successors have been expanded, and that each state’s successors are only expanded at
most once in any derivation.

Lemma 10. For each q, the Decide rule is applied at most once with trigger ¬safe state(s,q)

in any derivation starting with Start triggered on ¬safe(s).

Proof. Observe a derivation tree T in which the Decide rule has just been applied with trigger
¬safe state(s,q). The strategy used by the T S solver guarantees that in this case, the invocation
of the Decide rule for q will be immediately followed by the generation of a deadlock lemma
for q (recall that if Decide was applied to q, it cannot be a deadlock state). This transforms T

into a new tree, T ′, in which the assertion ¬deadlock(s,q) has been added to every node.

The T S solver now continues working on tree T ′. In order for the Decide rule to be re-
applied to q in some node of T ′, the assertions in that node must not contain ¬deadlock(s,q).
However, this is clearly not possible, as new nodes in T ′ are derived from existing nodes by the
addition of terms (rules Start, Decide and the lemma generation rule). Thus the only nodes in
the tree where ¬deadlock(s,q) is not present are nodes derived using the Unsat rule, in which
case the branch is closed and no further rules may be applied.
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We also observe that in every derivation that starts with P,Φ,¬safe(s), the Start rule is applied
precisely once.

Lemma 11. In every derivation starting with P,Φ,¬safe(s), the Start rule is the first rule
applied and it is applied precisely once.

Proof. This holds because (i) Start is the only rule applicable at the very first step of the
derivation process; and (ii) as rules only add to the set of assertions along any branch, every leaf
contains all of the assertions in its parent nodes; and (iii) because of (ii), once Start has been
applied once, its guard rule prevents it from being applied again to any successor derivation
tree.

The described derivation rules and proof strategy also guarantee partial correctness (i.e., sound-
ness and completeness):

Proposition 14. Let s be an input system for which the T S solver terminates when started with
P,Φ,¬safe(s). Then s is safe iff the final derivation tree is closed.

Proof. Suppose that s is unsafe; then let q0→ q1→ . . .→ qn be a shortest path in s such that q0

is an initial state, qi+1 is a successor of qi for all 0 ≤ i < n, and qn is a deadlock state.
We now claim that for each derivation tree after the first, there is a value of i with

0 ≤ i ≤ n such that the tree has a leaf node containing ¬safe state(s,qi) and not containing
¬safe state(s,qk) for i < k ≤ n and also not containing ¬deadlock(s,qk) for i ≤ k ≤ n. We prove
this by induction on the derivation. It is easy to see this is true for the second derivation tree
as it is generated using the Start rule and so does not yet contain any assertions of the form
¬deadlock(s,q). Thus, the largest i such that ¬safe state(s,qi) appears in the tree satisfies the
claim.

Now, assume the claim holds for some tree T in the derivation (whose position is second or
later) with value i. Let T ′ be its successor in the derivation. We consider each of the possible
ways in which T ′ could have been obtained from T :

• T ′ cannot be derived using Start as (by Lemma 11) this rule can only be applied once in
the sequence.

• Suppose T ′ is derived from T using the Unsat rule. It cannot be the case that the
Unsat rule was applied to the leaf containing ¬safe state(s,qi) as that would require
¬deadlock(s,qi) to also be present in the leaf node and our inductive hypothesis states it
is not. Thus the leaf satisfying the claim in T is still present and satisfies the claim in T ′.

• Suppose T ′ is derived using Decide followed by an application of the deadlock lemma
(we lump these two rules together for simplicity and wlog). If the Decide rule uses
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¬safe state(s,qi) as its trigger, then T ′ contains a new leaf which differs from the previ-
ous leaf by the addition of ¬safe state(s,qi+1) and ¬deadlock(s,qi). By minimality of the
path, there are no new leaves with ¬safe state(s,qk) with k > i+1 and qi+1 ≠ qi. Thus, it is
clear that the value i+1 satisfies the claim in T ′. If the Decide rule uses ¬safe state(s,q)

as its trigger with q ≠ qi, there are two possibilities. The first possibility is that q contains
a successor qk with k > i. In this case it is easy to see that the value k satisfies the claim
in T ′. If q contains no such successor, then it is clear that the value i continues to satisfy
the claim in T ′.

This shows the claim is true for every tree in the derivation, in particular the final tree which
implies that the final tree is not closed.

For the other direction, suppose towards contradiction that s is safe but that the final deriva-
tion tree is not closed. Then, there is a leaf node in the tree which is not � and to which rules
Start, Decide, and Unsat may not be applied. We denote this node by α .

Node α has at least one assertion of the form ¬safe state(s,q) (generated by the Start rule
at the beginning of the derivation). Any other terms of this form were generated by the Decide

rule. From this, and by the guard condition for Decide, it follows that for every state q such
that ¬safe state(s,q) is a term in α , q is reachable in s.

We now distinguish between two cases. If there exists some q such that ¬safe state(s,q) is
in α but ¬deadlock(s,q) is not, then the Decide rule may be applied — because we know, by
our assumption that s is safe, that q is not a deadlock state. If there is no such q, then Unsat

may be applied. Either case contradicts our assumption that no rule may be applied in α , as
needed.

Proposition 14 tells us that when the T S solver terminates, it gives a correct result. How-
ever, it may not always terminate. The following lemma characterizes one case in which termi-
nation is guaranteed:

Proposition 15. For an input system s with a finite set of states, the T S solver terminates.

Proof. Lemma 11 ensures that in every derivation, the Start rule is applied only once. Further,
as Lemma 10 shows, the Decide rule may only be applied once per state in the entire derivation.
Similarly, according to the proof strategy used by the solver, the lemma generation rule may
only be applied once per state, as it is only invoked after an invocation of Decide. Finally, the
last derivation rule, Unsat, always reduces the number of open branches in the tree, and thus
may only be applied a finite number of times once no other rules are available. From all of the
above, we deduce that every derivation is of finite length.
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8.9.2 Backward Reachability

The derivation rules given so far — Start, Decide and Unsat — effectively perform a reachabil-
ity analysis over the state space, looking for bad states. In some cases, as in the case of periodic
programs (Section 8.5), it may be useful to also perform a backward reachability search, start-
ing at bad states and checking if they are reachable. This is performed by extending the T S
theory with the predicate reachableQ ∶ SQ ×Q, where reachable(s,q) signifies that state q is
reachable in s. The semantics are extended to include (for each Q ∈ Q̄+):

∀s ∶ SQ,q ∶Q. reachable(s,q) Ô⇒

I(s,q) ∨ ∃q′ ∶ SQ,e ∶ E. (Tr(s,q′,e,q)∧R(s,q′,e)∧¬B(s,q′,e)∧ reachable(s,q′)).

Intuitively, a state is reachable if it is either initial or if it has a predecessor state that is reachable.
This last condition is what makes the search “backward”: we will start at bad states, and attempt
to construct a legal path backwards, towards an initial state.

We will also use an alternative (but equivalent) semantics for the system safety predicate.
For each Q ∈ Q̄+:

∀s ∶ SQ. ¬safe(s) ⇐⇒ ∃q ∶Q. (deadlock(s,q)∧ reachable(s,q)) ,

and so a system is unsafe if it has an unsafe initial state or (equivalently) a reachable deadlock
state.

The derivation rules for this case are extended to include “backward” versions of the three
original rules. Here, the negation of the initial state predicate plays the role that was previously
played by the deadlock predicate, namely that of marking those states that have been visited by
generating a lemma. The first derivation rule is the BStart rule:

BSTART
Γ[¬safe(s)]

Γ,reachable(s,q1) . . . Γ,reachable(s,qn)

The BStart rule is only applicable when the following guard conditions hold:

Γ ⊧T S ∀q ∈Q. (deadlock(s,q) ⇐⇒

(q = q1)∨ . . .∨(q = qn)),where s is of sort SQ

reachable(s,qi) ∉ Γ for i ∈ {1 . . .n}.

Intuitively, states q1, . . . ,qn are the deadlock (bad) states of the system — the states on which
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we want to perform the backward reachability analysis. Next comes the BDecide rule:

BDECIDE
Γ[reachable(s,q)]

Γ,reachable(s,q1) . . . Γ,reachable(s,qn) .

The BDecide rule is applicable when the following conditions hold:

Γ ⊧T S ¬I(s,q)¬I(s,q) ∉ ΓΓ ⊧T S ∀q′ ∈Q,e ∈ E. (Tr(s,q′,e,q)∧R(s,q′,e)∧¬B(s,q′,e)) ⇐⇒

(q′ = q1)∨ . . .∨(q′ = qn)), where s is of sort SQ and n ≥ 1.

We also have a special BDecide2 rule which handles the special case when a non-initial
state has no predecessors:

BDECIDE2
Γ[reachable(s,q)]

Γ .

The BDecide2 rule is applicable when the following conditions hold:

Γ ⊧T S ¬I(s,q)

¬I(s,q) ∉ Γ

Γ ⊧T S ∀q′ ∈Q,e ∈ E. ¬(Tr(s,q′,e,q)∧R(s,q′,e)∧¬B(s,q′,e)) where s is of sort SQ.

Finally, we have the BUnsat rule:

BUNSAT
Γ[reachable(s,q)]

�

The BUnsat rule has the following guard condition:

whenever reachable(s,q′) ∈ Γ, we also have ¬I(s,q′) ∈ Γ.

In addition to the derivation rules, we again use the theory lemma feature of the DPLL(T)
framework to periodically generate an initial state lemma:

P∧Φ Ô⇒ ¬I(s,q)

As before, only valid theory lemmas are allowed, so this lemma can only be generated if we
know that q is not an initial state.

Similarly to the forward reachability case, the T S solver’s strategy dictates that the initial
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state lemma generation rule always be applied with trigger (s,q) immediately after an invoca-
tion of BDecide or BDecide2 with trigger reachable(s,q). As before, this guarantees that one
of these rules is applied at most once for each state q.

The backward reachability derivation rules are very similar to the forward reachability ones;
it is straightforward to show that they do not change the solver’s soundness and completeness,
and that the solver still terminates for transition systems with finite state sets and finite event
sets.
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Part III

The RWB Model: A Software Engineering
Point-of-View
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Chapter 9

Distributed RWB Programs

In BP, an execution of the program is comprised of a series of synchronization points between
the threads, each of which results in an event being triggered. The choice of the triggered event
is performed by a global event selection mechanism (ESM), which, at every synchronization
point, receives input from all the threads before making the choice. This high amount of co-
ordination grants behavioral programs many of their qualities: it eliminates race conditions
between the threads, allows for multi-modal, modular and incremental development, and, in
general, promotes the development of comprehensible and maintainable code [90].

However, extensive synchronization has implications on system performance (see [91]).
Since all threads must synchronize before the system can continue to the next synchronization
point, the step from one point to another is constrained by the slowest b-thread. In parallel
architectures (e.g., multi-core processors), execution resources may stand idle while the system
waits for a slow b-thread to finish performing nontrivial computations or time-consuming ac-
tions and reach the next synchronization point. Similar situations can also occur in programs
that run on a single processor — for instance, if a b-thread is performing lengthy input/output
actions that require no processing power, but delay its synchronization. Further, in distributed
architectures, repeated synchronization may be expensive or not at all possible, hindering the
applicability of BP to these settings.

In [79], a new execution mechanism for behavioral programs, termed eager execution, was
introduced. Eager execution allows relaxing the synchronization constraints between b-threads,
resulting in a higher level of concurrency when executing the program. At the same time, eager
execution maintains all information necessary for triggering events, and thus adheres to BP’s
semantics and supports its idioms.

Eager execution is made possible by automatically analyzing a thread prior to its execution,
resulting in an approximation of the thread’s behavior. With this information at hand, the eager
execution mechanism can sometimes choose events for triggering without waiting for all of the
threads to synchronize, thus improving the efficiency of the system’s run and avoiding excessive
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synchronization. In [79] the authors presented two analysis methods that lead to more eager
execution: one is static and considers the thread as a whole, whereas the other is dynamic and
takes into account the thread’s state during the run. Both methods have been implemented and
tested in BPC, a framework for behavioral programming in C++.

Despite its advantages, the eager execution technique still requires that each b-thread com-
municate with the global ESM at every synchronization point. While this constraint is signifi-
cantly weaker than stepwise synchronization with all other b-threads, it may limit the applica-
bility of the approach for designing multi-component applications in distributed architectures,
in which communication is costly and time-consuming. In this chapter we show how a vari-
ant of eager execution, combined with Dead Reckoning techniques [41, 71], can be utilized to
reduce these costs. We refer to this variant as distributed eager execution.

In order to have behavioral modules executed in a decentralized manner on different ma-
chines, we propose to distribute the ESM, so that each machine runs its own ESM agent. These
agents serve as the ESM for their local threads, i.e., threads running on the local machine, but
have no direct access to threads on other machines. Instead, they can communicate with other
agents.

Before running the system, each agent is given the state graphs of all the threads in the
system, including non-local threads. Each ESM agent then executes the program locally, using
these state graphs to simulate non-local threads and predict their synchronization requests. Each
agent is responsible for answering its local threads’ synchronization requests, just as a central
ESM would. Observe that this requires that the event selection mechanism be a deterministic
function — that is, a function from 2E −{∅} to E, whose input is the set of enabled events —
in order to ensure that the autonomous agents pick the same events.

In a program with deterministic threads, this form of distribution would suffice to make
inter-component communication obsolete, as each ESM agent could trigger precisely the same
events as the others. In the case of systems with nondeterministic threads, some communication
between the distributed components is mandatory. Intuitively, this communication is used to
announce the outcome of nondeterministic choices made by a thread to the other components.
Specifically, all ESM agents are aware of each thread’s nondeterministic forks, as they hold all
the state graphs. Whenever such a nondeterministic fork is reached, the ESM agent on which
that thread is actually running is responsible for disseminating the outcome of the nondeter-
ministic choice to the remaining agents. If other agents reach this point before the outcome has
been broadcasted, they must wait for it. This guarantees that the execution is consistent across
all program components.

The rest of the chapter is organized as follows. In Section 9.1 we briefly describe the eager
execution mechanism as proposed in [79]. Then, in Section 9.2 we illustrate with an example
how that mechanism can be extended to handle distributed settings as well. In Section 9.3
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we rigorously formalize the distributed execution mechanism, and in Section 9.4 we briefly
discuss how the mechanism can be enhanced even further. In Section 9.5 we compare the
distributed execution mechanism to an existing extension to BP, called b-nodes, which also
provides support for distributed frameworks. We conclude with Section 9.6.

9.1 Eager Synchronization

The following notion is at the core of the eager synchronization proposed in [79]. Let P =

{BT 1, . . . ,BT n} be a behavioral program consisting of b-threads BT 1, . . . ,BT n. Assume that at
some point in the execution of P, a subset Psync ⊆P of the threads has reached a synchronization
point, while the rest are still executing. Further, assume that the ESM has additional information
about the events that the threads in P−Psync will request and block at the next synchronization
point. If, combining the information from threads in Psync with the information about threads
in P−Psync, the ESM can find an event e that will be enabled at the next synchronization point,
then e can immediately be chosen for triggering.

The ESM may then pass e to the threads in Psync to let them continue their execution im-
mediately, without waiting for the remaining threads to synchronize. Once any of these other
threads reaches its synchronization point, the ESM immediately passes it event e, as this event
was selected for that particular synchronization point. This is accomplished by having a des-
ignated queue for each of the b-threads, of events that are waiting to be passed, and putting
e in the queues corresponding to the not-yet synchronized threads. The execution mechanism
described is eager, in the sense that it uses predetermined information to choose the next event
as early as possible.

When a thread BT reaches a synchronization point, if the corresponding queue is nonempty,
the ESM dequeues the next pending event e′. If BT requests or waits for e′, it is passed to the
thread, which then continues to execute. Otherwise, e′ is ignored, and the ESM continues
with the next event pending in the queue. In order to reflect the semantics of BP, from the
ESM’s global perspective BT is not considered synchronized as long as it has events pending
in the queue. Particularly, the events that are requested or blocked by BT at this point are
not considered for the selection of the next event; the ESM considers only threads that have
synchronized and for which there are no pending events (so that they are halted).

Observe that the eager execution mechanism strictly adheres to the semantics of BP, as
described in Section 2.2; at every synchronization point, the triggered event is indeed enabled.
Consequently, the following result holds [79]:

Proposition 16. Given a behavioral program P, the sequence of events triggered by the eager
execution mechanism is a valid run (under BP’s semantics).
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The key point, however, is that the eager mechanism makes its decisions more quickly, and
thus often produces more efficient runs. For a rigorous formalization of the eager execution
mechanism, see [79].

It remains to explain how the execution mechanism knows which events could be requested
and blocked by threads that are yet to synchronize. In [79] the authors propose two approaches,
termed static analysis and dynamic analysis.

9.1.1 Static Analysis

In this approach, the ESM is given in advance a static over-approximation of the events that
a thread might block when synchronizing. Explicitly, if a thread has states q1, . . . ,qn, this
over-approximation is ⋃1≤i≤n B(qi), where B(qi) is the set of events blocked in state qi. The
over-approximation is static in the sense that it does not change throughout the run.

When a thread synchronizes, the ESM checks if there are events that are enabled based on
the data gathered so far — namely, events that are requested and not blocked by threads in Psync,
and that are never blocked by the other threads, based on their over-approximations. If such
an event exists, it can be triggered immediately. Otherwise, the ESM waits for more threads
to synchronize. This generally results in more events becoming enabled, since the actual set
of events that are blocked by a thread is always a subset of the over-approximation, and since
additional requested events are revealed. As soon as enough information is gathered to deduce
that an event is enabled, it is immediately triggered and passed to all synchronized threads. For
threads that are yet to synchronize, the event is stored in a designated queue, to be passed to
them upon reaching their synchronization point.

Observe that we only discuss over-approximating blocked events but not the approximation
of requested events. The reason is that the analogous version would entail using an under-
approximation of requested events; and, since threads do not generally request an event in each
of their states, these under-approximations are typically empty.

9.1.2 Dynamic Analysis

In this approach, the ESM is given complete state graphs of the threads, which are automat-
ically calculated before the program is executed. The labeled vertices of a state graph corre-
spond to the thread’s synchronization points and requested/blocked events, while the labeled
edges correspond to the program’s events (that are not blocked at that state). The graph thus
provides a complete description of the thread from the ESM’s point of view — that is, a com-
plete description of the events requested and blocked by the thread, but without any calculations
or input/output actions performed by the thread when not synchronized.
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During runtime, the ESM keeps track of the threads’ positions in the graphs, allowing it to
approximate the events they will request and block at the next synchronization point — even
before they actually synchronize. This method is dynamic, in the sense that the approximations
for a given thread can change during the run, as different states are visited. The fundamental
difference between running a thread and simulating its run using its state graph is that in the lat-
ter, no additional computations are performed, and consequently transitions can be considered
immediate.

When the b-threads are deterministic, simulating a thread through its state graph yields pre-
cise predictions of its requested and blocked events at each synchronization point. In the non-
deterministic model, where threads may depend on coin tosses or inputs from the environment,
it may be impossible for the ESM to determine a thread’s exact state until it synchronizes; how-
ever, the ESM can approximate the thread’s requested and blocked events by considering all
the states to which the nondeterministic transitions might send the thread. If, due to a previous
transition, the thread is known to be in one of states q1, . . . ,qn, then the blocked events may be
over-approximated by ⋃1≤i≤n B(qi) — similarly to what is done in static analysis. Analogously,
the requested events may be under-approximated by ⋂1≤i≤n R(qi).

The other details are as they were in the static analysis scheme. Once an event is triggered,
it is immediately sent to all synchronized threads, and is placed in queues for threads that are
yet to synchronize.

9.1.3 Spanning State Graphs

The techniques discussed in Sections 9.1.1 and 9.1.2 entailed providing the ESM with infor-
mation regarding the underlying transition systems of the program’s threads. Providing this in-
formation manually, especially in large programs, can prove tiresome and error prone. Hence,
we have developed tools for automatically spanning the state graphs of b-threads written in
high-level languages — for instance, using the BPC [3] framework.

The spanning is performed for each thread of the input program individually. Each thread
is run in isolation, and its state graph is iteratively explored until all its states and transitions
have been found. Starting at the initial state, we check the thread’s behavior in response to the
triggering of each event that is not blocked by the thread in that state. After the triggering of
each event, the thread arrives at a new state (synchronization point) — and, with proper book
keeping, it is simple to check if the state was previously visited or not. New states are then
added to a queue to be explored themselves, in an iterative BFS-like manner.

Isolating threads is performed using the CxxTest [149] tool, which is able capture and redi-
rect function calls within programs. The thread’s calls to the synchronization method bSync

are captured, and used to determine the thread’s current state; similarly, calls to the lastEvent
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method are captured and used to fool the thread into believing that a certain event was just
triggered. The strength of this method is that the entire process takes place using the orig-
inal, unmodified program code. Once the state graph has been spanned, it is automatically
transformed into a C++ code module and integrated into the program, to be used by the ESM.

9.2 A Distributed Implementation using Eager Execution

In order to evaluate our technique we implemented the traveling vehicles example from [91,
Section 7]. The example includes several vehicles, each operating as an autonomous compo-
nent traveling on pre-given cyclic route along an (x,y) grid; in each given time unit during the
run, each vehicle can travel north, east, south or west. We assume that all vehicles travel at
identical speeds, i.e., cover one unit of distance per time unit.

In [79] the authors implement a non-distributed version of this program. The threads of
each vehicle, vi, involve a designated set of events. In particular, threads implementing vehicle
vi do not block events that belong to vehicle v j’s threads. Thus, the eager execution mechanism
allows each vehicle to operate independently of others. A code snippet for the main thread of
vehicle vi is depicted in Figure 9.1. If event selection is fair, all vehicles are constantly moving
— as the ESM does not wait for vehicle vi to finish moving and synchronize again before
triggering the movement requested by another vehicle.

1 while ( true ) {

2 set <Event > requested;

3

4 if ( destinationIsNorth () )

5 requested.insert( # iMoveNorth );

6

7 if ( destinationIsSouth () )

8 requested.insert( # iMoveSouth );

9

10 if ( destinationIsEast () )

11 requested.insert( # iMoveEast );

12

13 if ( destinationIsWest () )

14 requested.insert( # iMoveWest );

15

16 BSYNC( requested , {}, {} );

17 adjustPositionByLastEvent ();

18 }

Figure 9.1: The main method of each vehicle thread. The placeholder ‘#i’ is replaced by the
number of the vehicle; for instance, for vehicle v5, the events are 5MoveNorth, 5MoveWest, etc.
The thread requests moves in all directions that bring it closer to the destination. When the call
to bSync returns, one of these moves was selected by the behavioral execution mechanism. The
thread then updates its position (by invoking adjustPositionByLastEvent), and proceeds.

Eager execution allows a light-weight solution if communication between the vehicles is
required — e.g., for collision prevention. Each vehicle can be accompanied by an adviser
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thread that keeps track of other vehicles. Whenever its vehicle is dangerously close to another,
the adviser blocks movement in the dangerous direction (for simplicity, deadlocks are ignored).
As the modular design remains strict, adding the adviser threads does not impede the vehicles’
ability to move independently.

Suppose now that communication to and from the vehicles is costly, and is to be minimized.
In particular, it is desirable to avoid a central ESM. This could be addressed using a distributed
design, where each vehicle and agent pair runs on a dedicated machine. As the threads of this
example are deterministic, each vehicle can completely predict the whereabouts of the other
vehicles at any point in the execution, and collisions can be averted without any inter-vehicle
communication.

We now introduce a source of nondeterminism. Suppose that one of the vehicles is an
antique, and often requires maintenance. Along that vehicle’s route there is a garage; and
whenever the vehicle passes that point of the route, it may go in for repairs. The decision of
whether or not to stop for repairs is considered a nondeterministic input from the environment.
This new setting prevents other vehicles from predicting the location of the malfunctioning
vehicle — since each lapse it may or may not spend one time unit in repairs.

Whenever the malfunctioning vehicle passes by the garage, the ESM agents reach a non-
deterministic fork in that vehicle’s state graph, and suspend their execution. As soon as the
malfunctioning vehicle synchronizes and reveals whether or not the vehicle stopped for re-
pairs, its handling ESM agent disseminates the information to the other agents, allowing them
to resume their execution.

Even in the nondeterministic setting, using the distributed version of the system signifi-
cantly reduces the number of messages being sent between the machines. In the central ESM
scenario of [79], each vehicle would have to communicate with the ESM for every single move;
but in the distributed setting, only one message per round is sent from the malfunctioning ve-
hicle to the others.

9.3 Distributed Execution Formalized

In this section we provide a rigorous definition of the distributed execution model of BP, and
prove that the runs that it produces abide by the semantics of BP.

Let P = {BT 1, . . . ,BT n} be a (possibly nondeterministic) behavioral program, where n ∈N
and each BT i is a distinct b-thread, and let f ∶ 2E −{∅}→ E be a deterministic event selection
function. Suppose that the threads run on different machines M1, . . . ,Mk. Each machine is
defined as the set of thread that it runs, i.e. ⋃k

i=1 Mi = P.

Each machine Mi has an ESM agent, Ci; this agent acts as the ESM for the threads of Mi,
and answers their synchronization requests. Each ESM agent is supplied with the state graphs
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of all threads in the system, and uses these graphs to locate nondeterministic transitions of the
threads throughout the run.

The pseudocode for ESM agent Ci in charge of managing threads Mi is given below. The
agent uses variables q1, . . . ,qn to keep track of the states of all threads in the system.

Algorithm 12 Coordinator Agent Ci

1: ∀i,qi← qi
0

2: LastEvent← φ

3: while true do
4: Sync← φ

5: while ∣Sync∣ < ∣Mi∣ do
6: Receive synchronization request from thread BT j

7: Mark the new state of BT j as q′j
8: if LastEvent ≠ φ and ∣δ j(q j,LastEvent)∣ > 1 then
9: Broadcast q′j

10: q j ← q′j
11: Sync← Sync∪BT j

12: for BT ` ∉Mi do
13: if LastEvent ≠ φ then
14: if ∣δ `(q`,LastEvent)∣ > 1 then
15: Update q` according to broadcasts from other agents
16: else
17: q`← δ

`(q`,LastEvent)
18: Enabled←⋃n

j=1(R j(q j))−⋃n
j=1(B j(q j))

19: LastEvent← f (Enabled)
20: Inform threads in Mi that LastEvent was triggered

Note the slight abuse of notation of line 17 — where δ `(q`,LastEvent) is not the state of
the thread, but rather a set containing that state. Also, we implicitly assume that all broadcasts
between the ESM agents contain the index of the synchronization point that they refer to, to
prevent cases where information about synchronization point t1 could be mistakenly used in
synchronization point t2.

Intuitively, the ESM agent waits for the threads that it manages (loop on line 5), same as
in the centralized case. Whenever a thread synchronizes, the agent checks if the thread’s last
transition was nondeterministic (line 8). If so, the new state is broadcasted to the other agents
— as they have no other way of finding out which transition was taken.

Once all the agent’s threads have synchronized, it turns to consider threads that run on other
machines. The key fact is that if a non-local thread is at a nondeterministic transition (line 14),
the agent has to wait to receive a broadcast message (line 15) in order to determine the new state
of that thread. Otherwise, it can go ahead and determine the thread’s state locally (line 17).

After the synchronization requests of all threads have been determined, the next event to
be triggered is selected (line 19), and then broadcasted to the agent’s threads. This part is the
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reason for stipulating that f be a deterministic function — in order to maintain consistency, all
agents much trigger the same event on line 19.

Observe that each ESM agent uses information regarding the transition functions (lines 8
and 14) and synchronization requests (line 18) of all the threads in the system — both threads
that run locally on that agent, and threads that run on other agents. This information is given
prior to the run, in the form of the state graphs of all the threads in the system.

Having formally defined the operation of each agent, we can now prove the following
proposition:

Proposition 17. Let P = {BT 1, . . . ,BT n} be a behavioral program, divided into machines
M1, . . . ,Mk with ESM agents C1, . . . ,Ck. Let f ∶ 2E −{∅}→ E be a deterministic event selec-
tion function. Then agents C1, . . . ,Ck produce a consistent run; that is, there exists a unique
run e1e2 . . . such that at synchronization point i, every ESM agent C` triggers ei. Further, the
sequence e1e2 . . . is a valid run (under BP’s semantics).

For simplicity, we prove the lemma for the case of two machines, i.e. n = 2; the proof can
easily be extended to any n ∈N. The proof follows directly from the next proposition, which is
in turn proven by induction over the index of the synchronization points of the run.

Proposition 18. For i ∈ N and m ∈ {1,2}, let qi
m(BT `) denote the state of thread BT ` at syn-

chronization point i, from the point of view of ESM agent m. Let Qi
m denote the system-

wide state at synchronization point i from the point of view of ESM agent m; that is,
Qi

m = ⟨qi
m(BT 1), . . . ,qi

m(BT n)⟩. Then for all i ∈N, it holds that Qi
1 =Qi

2.

Proof. Let i = 1, which is the first synchronization point in the program. At this point, by
the initialization in line 1 in the ESM agent’s code, q1

1(BT `) = q`0 and q1
2(BT `) = q`0 for all `.

Consequently, Q1
1 =Q1

2.

Now, suppose that Qi
1 = Qi

2 for some i. At synchronization point i, both ESM agents trig-
gered the same event ei. This is so because the event selection function is deterministic, and thus
both agents triggered event ei = f (Enabled(Qi

1)) = f (Enabled(Qi
2)). This event was passed to

all threads of the system by their respective coordinator agents.

Observe synchronization point i+1 from the point of view of C1. As soon as all threads
in M1 have synchronized, C1 knows their states. In order to determine the states of the
remaining threads (those running on machine M2), C1 uses their pre-supplied state graphs.
For any BT ` ∈ M2, agent C1 checks whether ∣δ `(qi

1(BT `))∣ = 1, and if so it deduces that
qi+1

1 (BT `) = δ `(qi
1(BT `)). In this case, C2 will learn the state of BT ` when that thread syn-

chronizes, and it will hold that qi+1
1 (BT `) = qi+1

2 (BT `).

The other option is that thread BT ` is performing a nondeterministic transition, i.e.
∣δ `(qi

1(BT `))∣ > 1. In this case, C1 has to wait for thread BT ` to synchronize and reveal its
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state to C2, after which C2 will broadcast this state to C1. In this case, it will also hold that
qi+1

1 (BT `) = qi+1
2 (BT `).

Further, upon receiving the synchronization request from a local thread BT t , agent C1 uses
its stored state graphs to check whether ∣δ t(qi

1(BT t))∣ > 1. If so, C1 transmits the thread’s new
state as learned from the synchronization request, qi+1

1 (BT t), to C2 — to inform C2 of how that
nondeterministic transition was resolved.

As agent C2 behaves symmetrically, we conclude that for all t it holds that qi+1
1 (BT t) =

qi+1
2 (BT t), and consequently that Qi+1

1 =Qi+1
2 .

Proposition 17 immediately follows from Proposition 18, and from the fact that f is a
deterministic function. Indeed, Qi+1

1 =Qi+1
2 implies identical calculation of the set E (line 18 in

both agents, and thus the same output for f (Enabled). Finally, the fact that the resulting run is
a legal BP follows from the definition of the set Enabled to be the set of enabled events at the
synchronization point.

9.4 Further Relaxing the Distributed Execution Mechanism

The distributed execution mechanism described above utilizes eager execution in the sense that
each machine may be able to continue its execution without waiting for slower machines —
except in nondeterministic transitions. We point out that further relaxation can be achieved by
applying static or dynamic analysis to threads within the scope of each coordinator agent. As in
the non-distributed case, this would allow faster threads within the same machine to continue
their execution without waiting for their slower counterparts.

Another possible enhancement for the distributed model above is to use approximations for
nondeterministic threads on other machines that slow down execution. Suppose that controller
agent C1 of machine M1 is waiting for thread BT ∈ M2 to finish its nondeterministic transition
in order to trigger an event. As was the case in the centralized version, if C1 can deduce, using
the state graph of BT , that its next state will be either q1 or q2, it can approximate its requested
and blocked events with R = R(q1)∩R(q2) and B = B(q1)∪B(q2). This further reduces the
dependency between the different machines, hopefully achieving better optimization.

9.5 Eager Execution and B-Nodes

In this chapter we presented an approach for coping with BP’s synchronization requirements in
the face of a distributed architecture, by using the eager execution mechanism. In this section
we compare and contrast this approach with an extension to BP, called b-nodes [91], which
advocates a different strategy for solving the same difficulties.
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The b-node approach to program design is a two-layer approach, which, in essence, goes
beyond a single behavioral program. Each b-node constitutes a distinct behavioral program,
with its own vocabulary of internal events, within which b-threads are synchronized and BP’s
idioms can be used. Then, as an additional layer, external events are sent asynchronously
between the b-nodes to signal the occurrence of certain internal events. This solution therefore
requires an additional vocabulary of external events, to be used across b-nodes. Each external
event typically corresponds to certain events that are internal to the b-nodes. Moreover, each b-
node has auxiliary threads for handling asynchronous communication, as well as the translation
of internal events to external inter-b-node events and vice versa.

In contrast, the eager execution mechanism allows alleviating the synchronization require-
ments between the b-threads of a single behavioral program with no external means. For those
sets of threads within the program, called modules, that are sufficiently independent — i.e.,
each module handles a completely separate facet of the system — eager execution results in
an execution in which distinct modules are executed independently of one another (as far as
each module’s “internal” events are concerned; of course, a dependency arises when one mod-
ule waits for another module’s events). In this solution, there is a single vocabulary of events
that is used across the program, and communication between the modules is facilitated by BP’s
native idioms.

It turns out that the two approaches are closely related. In fact, it is straightforward to show
that a program designed according to the b-node approach induces an equivalent behavioral
program with a modular design [2]. Similarly, it is also possible to transform a modular de-
sign into a b-node based design: each module is transformed into a b-node, and modules that
would wait for events that belong to other modules are adjusted to wait for matching external
events instead. However, when performing these transformations, one must take into account
that, unlike the eager execution mechanism, the external message passing mechanism is not
guaranteed to preserve event order; for instance, if module M1 signals module M2 twice, by
requesting events e1 and e2 in that order, the eager execution approach guarantees that event e1

is received before e2. This guarantee does not necessarily hold in the b-node case.

Despite these similarities, each approach offers its distinct benefits. The eager execution
approach uses automated tools, and is thus simpler to use, whereas the more complicated im-
plementation details of simultaneously executing multiple modules are hidden within the ex-
ecution mechanism itself, and the user does not need to implement external mechanisms and
auxiliary events. Thus, the automated approach allows the specification and direct coding of
richer scenarios, without having to break the scenario at the b-node boundary.

Moreover, even when the design is not strictly modular, eager execution generally relaxes
some of the synchronization that arises between threads — especially when the dynamic ap-
proach of Section 9.1.2 is used. These relaxations may yield performance improvements.
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The major drawback of eager execution with respect to the b-node approach is that every
thread must generally communicate with a global execution mechanism (or an agent thereof)
for each triggered event. While this is still significantly better than synchronizing all b-threads
at each step of the execution, it may limit the applicability of the approach in such cases where
communication is costly or unreliable. In contrast, the b-node approach allows programmers
to fine-tune their programs in the face of such constraints: the execution mechanisms are local
to each b-node, and, at points where inter-node communication is needed, messages can be
routed directly to the desired recipient. This produces programs that are able to run in a highly
distributed fashion.

In order to enjoy the benefits of both worlds, one may combine the two approaches within
a single system. One way to do this is to apply the b-node approach but to implement an
eager execution mechanism within each b-node. This may yield performance improvements
over the basic b-node approach. Another way entails applying the eager execution approach,
and enhancing it to support distributed execution with selective message exchanges between
disparate modules, as in the b-node approach. Yet another approach to the combination, aimed
at automating the b-node approach, is to specify b-threads as if they are in a single b-node and
then use automated tools to determine b-node boundaries (along the lines of [7]). Automated
tools could then add the necessary processes for creating physically distributed b-nodes.

9.6 Conclusion and Future Work

The contribution of this chapter is in the proposed usage of the eager execution mechanism in
order to create distributed behavioral programs. This approach is made possible by the realiza-
tion that, by analyzing a b-thread prior to its execution, it is sometimes possible to accurately
predict a valid outcome of a synchronization point without actually waiting for the thread to
synchronize.

In this chapter we made no assumptions on how the coordinator chooses the next event
to be triggered from among the enabled events. In practice, however, such assumptions can
sometimes simplify system development. One example is the prioritized event selection used
in [89]. We believe that our methods can be naturally adapted to such mechanisms too.

Future work can progress in several directions: studying the impact of the distributed BP
mechanism in large realistic case studies, exploring ways to automatically partition large, fully
behavioral systems into distributed components, developing formal methods and tools to verify
(e.g., model check) distributed behavioral programs in a compositional manner, and exploring
the addition of behavioral synchronization and event blocking to more mainstream actor- and
agent-based platforms.
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Chapter 10

Scaling-Up RWB: From Basic Principles
to Application Architectures

10.1 Introduction

The focus of this thesis is behavioral programming and its underlying computational model.
At the core of BP is the notion of programming through the specification of scenarios, each
of which corresponds to a certain aspect of the system’s behavior, not necessarily restricted
to a particular component. When composed together according to a certain set of rules, the
scenarios yield cohesive system behavior.

One of the main difficulties in this type of design is to ensure that the large variety of sce-
narios, each with their own unique characteristics and viewpoints, inter-operate correctly [98].
In particular, race conditions and unpredicted interweaving of scenarios can result in incorrect
system behavior. Thus, it is desirable to define inter-scenario interfaces that are sufficiently
simple to minimize these effects, but which are still powerful and expressive enough to be of
practical use.

The specific structure of behavioral programs, and in particular the simple yet strict thread
interaction rules, has beneficial effects: programs can be written in a “natural” way, i.e., with
modules that are aligned with the specification [90, 74]; it greatly reduces the amount of (un-
expected) interleaving, hopefully making race conditions more scarce; it renders the program
more amenable to incremental development; and it facilitates the application of program analy-
sis methods to behavioral systems (as we have extensively discussed in Part II). Consequently,
it has been conjectured that behavioral programming is suitable for the development of large
systems. However, to the best of our knowledge, this hypothesis has not yet been put to the
test. Here we set out to do just that, by attempting to implement a real-world system in BP.
Apart from checking the feasibility of the task, we were interested in assessing whether the
aforementioned traits of BP, such as incremental development and the alignment of code with
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the specification, could indeed scale-up in a large system.

For our case-study we chose to implement protocol stacks of two common and elaborate
protocols, TCP and HTTP. TCP (Transmission Control Protocol) is a connection-oriented pro-
tocol, used mainly for the transfer of data across the internet. The principal feature of TCP
is its reliability: it guarantees that data arrives without errors and in the order in which it was
sent. HTTP (Hypertext Transfer Protocol) is a request-response protocol, aimed at allowing
clients to retrieve information from remote hosts. We have implemented and combined these
two protocol stacks, creating a working web-server.

Our motivation in choosing this particular project was its volume, and also our desire to
test BP’s effectiveness in handling the large variety of coding situations the project entails:
handling timeouts, string manipulation, file access, checksum calculations, handling multiple
inputs, mandatory and forbidden user behaviors, etc.

As we began constructing the system we noticed that the existing, “traditional” idioms of
BP were inadequate for dealing conveniently with certain programming tasks. Some of these
tasks could be performed by BP but required employing ad-hoc solutions that bypassed the
built-in infrastructure, whereas others (e.g., those related to time) were downright inexpressible
using traditional BP, and required incorporating external mechanisms into the program [91] —
in both cases, defeating the purpose of BP’s simple and intuitive interfaces.

As the development of our case-study progressed, we were able to classify the difficulties
we faced, placing them in four categories. For each of these, we were able to come up with
an extension idiom to BP that allowed convenient programming solutions. In defining these
new idioms, we attempted to retain as much of the simplicity and intuitiveness of the original
framework as possible.

The first and foremost difficulty we encountered was the issue of time: traditional BP as-
sumes all transitions in the systems take “zero time” (as per the synchrony hypothesis [31]), and
does not provide a mechanism for bounding the flow of time between events. The TCP protocol
makes abundant use of timers and timeouts, and it was unclear to us how to implement it in BP.
To overcome this difficulty we extended BP with the notion of timeouts which, as demonstrated
later in this chapter, allowed us to express the required time constraints for our program.

The second problem we faced was the need for program-specific strategies in BP. The BP
infrastructure dictates that at every synchronization point of the execution the program may
have to choose between several legal execution paths, but it does not specify which should be
chosen. Various schemes have been suggested in the past, which allow the user to partially pri-
oritize between these paths, each scheme with its unique advantages and disadvantages. In the
later stages of the development of our case-study, when the system contained numerous mod-
ules running in parallel, we observed that several requirements — especially those pertaining
to prioritization between the modules — could be naturally enforced through a more intelli-
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gent path selection method. Unfortunately, the existing mechanisms were too restrictive. We
consequently extended the framework to allow programmers to supply their own path selection
strategies, per program, in a way that provided sufficient flexibility for our needs.

The third type of difficulty we encountered was that of dynamic thread creation. We wanted
our web-server to be able to handle different volumes of activity: that is, to allocate more re-
sources when traffic was high and to release them when it was low. A natural approach was
to employ dynamic creation and destruction of threads, which is not allowed in the traditional
BP semantics. In [89, 86] a limited variant of this concept was proposed, in order to regulate
external input to a behavioral program. We opted to generalize and formalize this idea, allow-
ing it to be used anywhere within the program, and we then used it in our implementation to
dynamically allocate more threads according to traffic.

Finally, the last issue we encountered was that of parameterized inputs and events. Previous
work on scenrio-based programming and BP revolved around programs with a small bounded
pool of inputs, whereas the input domain of a web-server is practically infinite. In order to
implement our example, we thus generalized traditional BP to support parameterized inputs.

Having added these idioms to the BP framework, we were able to accomplish our imple-
mentation goals. We implemented our case-study in a new framework for behavioral program-
ming in C++, termed BPC, which we present here, and which supports the extensions described
above. The framework and code for the case-study are available online [10].

Returning to our original question of whether or not BP is suitable for the development
of large systems, we believe that our case-study answers this affirmatively — provided that
the above idioms, or similar ones, are made available. As for our secondary goal, namely to
check whether BP’s naturalness and incrementally would scale-up in a large system: while
these properties are inherently difficult to quantify, the conclusions from our case-study seem
to support an affirmative answer here, as well. We discuss this matter in later sections.

The remainder of the chapter is organized as follows. We begin by briefly describing the
traditional means of handling input in BP in Section 10.2. In the succeeding sections, we
discuss the difficulties we encountered in our case-study, one by one, and the new idioms used
to overcome them. Each of the sections includes a small illustrative example and a discussion
of where the difficulty occurred in the web-server application: time constraints are discussed in
Section 10.3, customizable strategies in Section 10.4, dynamic thread creation in Section 10.5
and parametrized events in Section 10.6. The rigorous semantics of our extended variant of BP
is available in Section 10.7.

Sections 10.8 and 10.9 are dedicated to the BPC framework and the details of the implemen-
tation of our case-study, respectively. Related work appears in Section 10.10, and we conclude
in Section 10.11.
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10.2 Handling Input in BP

In Section 2.2 we recapped the semantics for BP as given in, e.g., [90]; for the remainder of
this chapter we refer to this semantics as “traditional BP”. Recall that the synchronous nature of
traditional BP dictates that the system may only progress when all threads have synchronized.
Consequently, a thread that is performing some blocking read operation would render the rest
of the system unable to process any events. This makes it difficult to design sensor threads —
threads that wait for user input and then request events to notify other threads of this input. A
naive way to design such a thread appears in Figure 10.1.

1 while( true ) {

2 waitForButtonClick (); // Returns only on click

3 BSYNC( { But tonC l i c k ed }, {}, {} );

4 }

Figure 10.1: Pseudocode for a naive implementation of a sensor thread. The thread runs in an
infinite loop, in each iteration waiting for input via the blocking call waitForButtonClick
and then requesting a ButtonClicked event. The bSync call is the synchronization API method:
its first parameter (marked in blue) is the set of requested events, the second (green) is the set of
waited-for events, and the third (red) is the set of blocked events. bSync only returns when an
event that was requested or waited-for has been triggered. In particular, this enforces the con-
vention that a thread implicitly waits for every event that it requests — though it may also wait
for additional events, that it did not request. Here, the only requested event is ButtonClicked,
and the other two event sets are empty. When waiting for a button click, this thread prevents
the entire system from triggering any events.

In traditional BP, this difficulty can be mitigated by using the eager execution mechanism,
which we discussed in Chapter 9. The idea is that if a thread that has not yet synchronized
is known to never block an event, and that event is enabled with respect to the other threads,
then it may be immediately triggered without waiting for the delayed thread. Events triggered
this way are then stored in a dedicated queue, and when the delayed thread finally catches up it
processes them. As a particular case, sensor threads can always be declared to block no events,
allowing the rest of the system to operate normally (see Chapter 9 for more details).

We stress that the eager execution mechanism does not alter the semantics of traditional
BP; rather, it only allows to more efficiently execute behavioral programs. Thus, we consider
it a part as traditional BP for the remainder of this chapter, and use it in order to create sensor
threads.
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10.3 Support for Time Constraints

The traditional BP semantics suffices when the system in question is time oblivious — i.e.,
when its response to external inputs takes negligible time and there are no constraints on the
instance in time in which events may be triggered. But what happens when that is not the case?
Consider, for instance, a behavioral program for a railway crossing. Suppose that a sensor
thread signals the approach of a train by generating a LowerGate event. Also, say the gate is to
remain down for 30 seconds, after which another thread is to request a RaiseGate event. The
simplest approach is to encode this thread as depicted in Figure 10.2.

1 while( true ) {

2 BSYNC( {}, { LowerGate }, {} );

3 sleep( 30 );

4 BSYNC( { Ra i seGate }, {}, {} );

5 }

Figure 10.2: A thread that waits for LowerGate, sleeps for 30 seconds, and then requests a
RaiseGate event.

Unfortunately, this thread pauses the execution of the entire system during its sleeping
periods.

One way to tackle this difficulty is to delegate timing responsibilities to a non-behavioral
component, and have the system communicate with it using external events [91]. However, this
solution requires that the programmer goes beyond the scope of BP.

Another approach is to use the eager execution mechanism, as was the case with sensor
threads. However, eager execution has limited applicability: consider, for instance, the stronger
variant in which the programmer wishes to block the RaiseGate event for the 30 seconds follow-
ing a LowerGate event, to negate any accidental requests made by other threads. This stronger
requirement is difficult to accommodate using the eager synchronization mechanism, as there
is no way to readily inform the blocking thread that 30 seconds have passed.

Programming tasks in which time plays a role appeared frequently in our TCP stack im-
plementation. The TCP protocol guarantees that data arrives without errors and in the order in
which it was sent. To accomplish this, the end parties acknowledge the reception of each TCP
segment using a scheme of agreed-upon sequence numbers; segments that are lost or arrive
corrupt are not acknowledged, and are then retransmitted. Thus, a TCP stack needs to keep
track of the time passed since sending each outgoing TCP segment, and retransmit it unless an
acknowledgment is received within a certain time window.

To support these requirements, we extended BP with a timeout idiom. This idiom allows
each thread to declare, at every synchronization point, a timeout value — in addition to the
requested, waited-for and blocked events. The timeout value indicates the maximal number of

173



seconds the thread is willing to wait, in synchronized state, for a requested or waited-for event
to be triggered, after which it “withdraws” its synchronization and associated event declara-
tions. In practice, this means that the synchronization call returns and the thread resumes. The
programmer can check if the call returned due to a triggered event or because of a timeout.

Using the timeout parameter, the thread depicted in Figure 10.3 guarantees that the railway
crossing system does not generate an early RaiseGate event.

1 while( true ) {

2 BSYNC( {}, { LowerGate }, {}, ∞ );

3 BSYNC( {}, {}, { Ra i seGate }, 30 );

4 }

Figure 10.3: An implementation using the timeout parameter. Event RaiseGate is blocked for
30 seconds.

The thread waits for a LowerGate event, and then spends the successive 30 seconds blocking
RaiseGate events. Counting these 30 seconds begins the instant the thread synchronizes, and
does not depend on other threads. Since the thread neither requests nor waits for any events,
the blocking is guaranteed to continue for the full 30 seconds, after which the call returns,
and the thread waits for additional LowerGate events. The special ∞ symbol passed as the
timeout parameter implies that the thread is willing to wait indefinitely; in fact, using this value
produces the same result as the traditional synchronization interface.

The timeout idiom can also be used to implement a TCP retransmission scheme, as shown
in Figure 10.4. The thread transmits the packet, and then waits for an acknowledgment for 2
seconds. If the acknowledgment is not received, the second synchronization call returns due to
a timeout, and the process repeats. We describe our implemented retransmission mechanism in
greater detail in Section 10.9.

1 do {

2 BSYNC( { SendSegment }, {}, {}, ∞ );

3 BSYNC( {}, { Acknowledgment }, {}, 2 );

4 } while( timeoutInLastSync () )

Figure 10.4: A retransmission scheme. The thread waits for an Acknowledgment for 2 seconds,
and if it fails to arrive — retransmits the segment.

The proposed idiom appears to be natural and intuitive, and thus compatible with the rest
of BP’s idioms. Indeed, one of our goals was to stick to simple and intuitive idioms whenever
possible. The timing idiom is also quite expressive, allowing a variety of behaviors that were
previously beyond the direct scope of BP, such as “block for x seconds” (as in the railway ex-
ample), “request for x seconds and then default”, or just “sleep for x seconds” without delaying
the system.
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In our view, a call to bSync that returns due to a timeout is not considered an error —
rather, it is just another possible outcome of the synchronization attempt. Thus, timeouts are
not regarded as exceptions, but as a mechanism for coping with thread transitions that are not
immediate: if a thread is delayed in reaching its synchronization point, other threads may react
(when their timeouts expire) and change their event declarations.

In [86], the authors present a model checker for behavioral programs, capable of handling
safety and liveness properties. An interesting aspect of this model checker is that it receives the
property in question in the form of a b-thread: a thread that waits for unwanted event sequences
and marks states as bad (safety), or a thread that waits for good event sequences and marks
states as good (liveness). We observe that the addition of timeouts allows us to express, e.g.,
time-related safety properties. For instance, consider a system in which every e1 event is always
followed by an e2 event, and suppose that we wish to verify that at most 2 seconds pass between
every e1 and e2 pair. This property can be expressed by the b-thread depicted in Figure 10.5.

1 while( true ) {

2 BSYNC( {}, { e1 }, {}, ∞ );

3 BSYNC( {}, { e2 }, {}, 2 );

4 if( timeoutInLastSync () )

5 BSYNC( { E r r o r }, {}, {}, ∞ );

6 }

Figure 10.5: A thread that requests an Error event if event e2 is not triggered within 2 seconds
of event e1.

This sort of constraint can be useful for model checking (by extending the tool of [86] to
support timeouts); and it can also give rise to a lookahead mechanism that influences the choice
of triggered events so as to satisfy the constraint, similarly to the smart play-out mechanism
of [84, 85]. Both directions are left for future work.

Technically, thread timeouts are triggered by the event selection mechanism, similarly to
the way regular events are handled. Further details appear in Sections 10.8.2 and 10.7.

10.4 Customizable Event Selection

BP’s traditional semantics dictates that in every synchronization cycle one event that is re-
quested and not blocked is triggered. However, if there is more than one viable event for
triggering, it is unspecified which of those will be selected.

In practice, however, it is often useful to have events selected using a certain strategy. For
instance, consider the following system that manages a smart door lock. When a person ap-
proaches, he/she must place the appropriate identification card on a reader, and a behavioral
program decides whether or not to let the person through. A simple design for the program is
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to have a dedicated thread handle the lock; and whenever an id card is scanned, have it request
an Open event, which is translated by an actuator thread to opening the actual lock.

Next, suppose some people should be denied passage — e.g., if they do not appear in the
white list, if they appear in the black list, or if their access card has expired. We assume that
the Open event has an id parameter, that identifies the person, and that other parts of the system
may block Open events for certain ids. However, as the lock thread does not know in advance
which events are blocked, it cannot just request the Open event, or the system could get stuck if
that event is blocked. One possible solution appears in Figure 10.6: the thread requests, along
with an Open event, also an Idle event. If the open event is blocked, the idle event is processed,
and the thread can continue processing future requests.

1 while( true ) { // Door thread

2 BSYNC( {}, { Request }, {}, ∞ );

3 bSync( { Open( lastEvent ().id ), I d l e }, {}, {}, ∞ );

4 }

5

6 while( true ) { // Blocker Thread

7 bSync( {}, {}, { Open | Open.id is black listed }, ∞ );

8 }

Figure 10.6: A sketch of the lock program. The door thread waits for requests, and tries
to grant them. Other threads may block the Open( id ) event for certain values of the id
parameter. As the door thread has no way of knowing whether a specific event is blocked or
not, it also requests an Idle event, to allow itself to ignore the request and move on to process
future requests.

In order for this scheme to work properly and not deny entrance to authorized ids, we need
to be certain that any Open event will take precedence over the Idle event. Thus, we need a way
to enact a certain strategy for how enabled events are to be selected for triggering.

On several occasions we encountered similar, though more complex, situations in our case-
study. In one case, during tests with multiple simultaneous connections, we observed that some
clients would get starved. Hence, we wanted to enforce the requirement that higher priority be
given to requests from starving connections. In another case, we wanted to ensure that segment-
sending requests always received a higher priority than connection-termination requests, so that
segments were never sent on closed connections.

Previous work discussed several event selection strategies, such as thread-based priority,
round robin, random and arbitrary selection [89]. The BPJ framework, for instance, uses the
thread-based priority scheme. Through our case-study and the specific requirements that it
entailed regarding event selection, we came to recognize that no one strategy fitted all programs,
and that it was useful to allow programmers to supply their own program-specific strategy.

Consequently, we extend BP’s event selection in the following way. Let Γ denote the set
of possible system configurations. In its most general form, an event selection strategy is a
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function fes ∶ Γ∗ ×Γ→ E, which takes as input the history of previous system configurations
and the current configuration, and chooses an event for triggering from among the enabled
events. The selection function is supplied by the programmer and is considered part of the be-
havioral program rather than of the BP framework. Apart from subsuming the above mentioned
mechanisms, this approach also allows event selection strategies that change over time, such as
learning [68] or look-ahead algorithms.

Technically, the BPC framework allows the programmer to provide a callback object to
manage event selection. In particular, modifying the selection strategy does not entail recom-
piling the framework. For more details on the specific strategy used in our case-study and its
implementation, see Section 10.9.

10.5 Dynamic Thread Creation

A reactive application may, throughout the course of its run, have to deal with varying volumes
of activity. It is desirable to have applications that adjust — that is, dedicate more computational
resources — when activity is high, and free them when they are no longer needed. This goal
may be difficult to achieve with traditional BP.

Consider, for instance, a mail client application, which takes as input an email address and
the body of a message and then sends it. Further suppose that the application waits for an
acknowledgment message for every email sent. It must thus keep track of previous mails that
have yet to be acknowledged.

One possible design for such an application is to direct all requests and acknowledgments
to a single thread, which can then keep track of traffic, using an internal database. A cleaner
solution, however, is to have multiple threads, each in charge of sending a single message and
tracking its acknowledgment. The resulting threads are simpler and do not require a database,
and are thus less prone to error.

The question then arises of how many of these threads we should instantiate. Statically de-
termining this number would raise the risk of not having enough resources when many requests
are performed simultaneously, and the risk of wasting computational resources when traffic is
low.

To resolve this issue, we propose to allow threads to dynamically spawn other threads,
and similarly, to allow threads to terminate during execution. That way, new threads can be
instantiated when needed, and can be terminated when they are no longer needed, freeing
system resources. An implementation of the above program using dynamic thread spawning
appears in Figure 10.7.

We faced similar situations in our case-study. In particular, the TCP message acknowledg-
ment scheme is very similar to the above example, and indeed we implemented it by spawning
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1 while( true ) { // Dispatcher thread

2 BSYNC( {}, { Mai l }, {}, ∞ );

3 new Sender( lastEvent ().address , lastEvent ().text );

4 }

5

6 do { // Sender thread

7 BSYNC( { Send( address , text ) }, {}, {}, ∞ );

8 BSYNC( {}, { Ack( address ) }, {}, 10 );

9 } while( timeoutInLastSync () );

Figure 10.7: The Dispatcher thread waits for incoming mail requests. For every such request,
it dynamically creates a new Sender thread and passes to it as parameters the address and text
fields of the request. Each Sender instance deals with just one mail, which was passed to it
during construction. Immediately upon its instantiation, the thread sends the mail and awaits
an acknowledgment. If no such acknowledgment is received within 10 seconds, the mail is
resent. As soon as the acknowledgment has been received, the thread terminates.

dedicated threads that wait for message acknowledgment. Further, each active connection in
the protocol stack requires some bookkeeping (e.g., the state of the connection, last received
incoming sequence number, and last used outgoing sequence number), and we explored imple-
mentation variants, in which these bookkeeping threads were spawned per connection, in order
to improve efficiency. More details appear in Section 10.9.

The reader may notice that, assuming that the address and text parameters in Figure 10.7 are
unbounded, there are infinitely many versions of thread Sender that may be created throughout
the run. Indeed, the traditional definition of behavioral programs as a set of threads that exist
through the program’s run no longer applies in the face of dynamic thread creation. Instead,
we associate a behavioral program with a set of thread templates — copies of which may be
instantiated at different times throughout the run. See Section 10.7 for a rigorous definition.

We point out that the concept of dynamic thread creation was already introduced in [89],
where the authors used dynamically created sensor threads. These threads could only be
spawned by non-behavioral components, and were only used to signal user input. In contrast,
we allow the dynamic creation of general threads by other threads throughout the program (and
use the eager synchronization mechanism to manage system input).

Dynamic thread creation is a useful feature, but it also has its tolls: in our BPC implemen-
tation, each behavioral thread is presently implemented as a POSIX thread, and so the creation
of a large number of thread incurs a overhead. We plan to mitigate this problem by imple-
menting of a more efficient, lightweight threading mechanism, similar to the one used, e.g., in
Erlang [22].
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10.6 Parameterized Input

In this section we examine another issue that may arise in applying the BP principles to a
large system: the need to handle a pool of (practically) infinitely many possible inputs. This
requirement is quite common; in particular, it arose in our case-study, where the system had to
handle incoming TCP segments, i.e., byte sequences of unknown length.

For illustration, consider a simple program that takes as input a number x and checks
whether it is a multiple of 3 and also ends with the digit 5. One approach to writing such a
program would be to have a sensor thread wait for inputs, and then broadcast them to the rest
of the system. One checker thread would then check whether x is divisible by 3, and another
would check whether x ends with 5. Using event blocking, the two checker threads could then
reach a combined decision on the final answer.

The input parameter x is unbounded, and as the BP framework dictates that threads only
exchange information through the synchronization mechanism, this implies that the event set
E of the program must be infinite. A convenient way to facilitate handling infinite event sets
is to extend the definitions of traditional BP, and allow events with unbounded parameters.
This is a generalization of an approach that appeared in examples described in [86]; there, the
authors used events with bounded parameters to facilitate waiting-for or blocking finite sets of
events. Pseudocode for the program described above, using parameterized events, appears in
Figure 10.8.

Using this idiom in our case-study, we employed a sensor thread to read incoming seg-
ments, and for each segment to request a TcpSegmentReceived event — with the segment as
its parameter. The segment could then be processed by other threads. Other parts of the system
also made use of parameterized events; for instance, events associated with incoming HTTP re-
quests carried ip and port parameters, indicating the address to which a response to the request
needed to be sent. For additional details, see Section 10.9.

We observe that in many cases, dealing with unbounded parameterized events calls for
threads with infinitely many states — states that may depend on the parameters. For instance,
consider the sensor thread in Figure 10.8. A “state” of the thread is a synchronization point with
fixed requested, waited-for and blocked events. For any input x, the thread requests different
events; and hence, it must have as many states as there are x’s. Therefore, this extension calls
for allowing infinite state sets in the rigorous semantics of BP; see Section 10.7.

Finally, once we allow unbounded parameterized events we should consider that threads
may wish to wait-for or block infinitely many events (as in the example of Figure 10.8).
More complex cases include waiting-for or blocking events depending on their parameters. In
BPC, we follow the example of the BPJ framework [89] for BP in Java, and allow parameter-
dependent blocking or waiting-for events via event predicates — functions that take events and
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1 while( true ) { // Sensor thread

2 int x = readInput ();

3 BSYNC( { Check( x ) }, {}, {}, ∞ );

4 }

5

6 while( true ) { // First checker thread

7 BSYNC( {}, { Check }, {}, ∞ );

8 if( ( lastEvent ().x % 3 ) == 0 )

9 BSYNC( { Good }, { Bad }, { Check }, ∞ );

10 else

11 BSYNC( { Bad }, {}, { Check , Good }, ∞ );

12 }

13

14 while( true ) { // Second checker thread

15 BSYNC( {}, { Check }, {}, ∞ );

16 if( ( lastEvent ().x % 10 ) == 5 )

17 BSYNC( { Good }, { Bad }, { Check }, ∞ );

18 else

19 BSYNC( { Bad }, {}, { Check , Good }, ∞ );

20 }

Figure 10.8: A program that takes as input a number x, and decides whether it is a multiple
of 3 that ends with 5. The Sensor thread waits for exterior inputs, and translates them into a
parameterized event Check. This event is waited for by the two checker threads, each of which
checks one of the two conditions. Both threads then proceed symmetrically: if the condition
holds, they request event Good; otherwise, they request event Bad and block event Good. Thus,
event Good is triggered if and only if both conditions hold for x. If either thread discovers that
its respective condition does not hold, event Good becomes blocked and cannot be triggered,
resulting in the triggering of Bad. Observe that when handling a previous request both threads
block new Check events, to delay new inputs until they can be processed.

answer true or false. When a thread uses a predicate to indicate its waited-for events, it is
notified of a triggered event if that event causes the predicate to evaluate to true, and similarly,
if it uses a predicate to indicate its blocked events, an event can be triggered only if the pred-
icate returns false for that event. As in BPJ, we require that the requested events be explicitly
declared, so that set must be finite. This is required for the event selection process in the ESM.

10.7 Formal Semantics

Having informally described the extensions we propose for the traditional BP framework, this
section is dedicated to their rigorous formulation. The definitions are based on, and are similar
to, those described in Section 2.2, with alterations to accommodate parameterized events, cus-
tomizable event selection and dynamic thread creation. The more extensive changes are meant
to support the notion of time; in particular, we no longer assume that threads transitions occur
instantly, and introduce special “synchronization transitions” and “timeout transitions”.
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10.7.1 Event Sets

As discussed in Section 10.6, we want our new semantics to support unbounded parameterized
events. For simplicity, we assume that the domains of these parameters are enumerable (say,
integers or strings), and so the set of all possible parameterized events E is also enumerable.
We assume that this set does not contain the two special symbols: �, denoting a timeout, and
⊺, denoting thread synchronization.

10.7.2 Behavior Threads

Let E be an event set and let BT = {BT 1,BT 2, . . .} denote a (possibly infinite) set of threads.
These threads can be thought of as templates, instances of which are spawned as the program
runs. In particular, multiple instances of the same thread may exist simultaneously. Each thread
is formalized by the tuple BT i = ⟨Qi,qi

0,δ
i,ξ i,Ri,Bi,T i⟩, where Qi is the (possibly infinite) set

of states, qi
0 is an initial state, and R,B ∶ Qi → 2E are functions that map states to requested

and blocked states (respectively), as before. As discussed in Section 10.6, the range of Bi may
contain infinite sets, but the range of Ri may only contain finite sets.

T i ∶ Qi → (0,∞) is a timeout function, assigning each state a positive timeout value. This
value is not an absolute time, but rather the amount of (say, seconds) the thread is willing to
spend in that state before a timeout should occur.

The transition relation δ i ⊆Qi×(E∪{�})×Qi is used to map states and events to new states.
We stipulate that for every state q for which T i(q) <∞ there is an edge ⟨q,�, q̃⟩ ∈ δ i. In other
words, if a thread declares a timeout, a timeout would cause it to transition.

Finally, ξ i ∶ δ i → BT ×N is a function that maps transitions to thread instances that should
be spawned when they are traversed. Each such thread is paired with the number of instances
that should be spawned. We sometimes abuse notation, and consider ξ i as mapping states to
multisets.

Observe that the above definition does not support thread termination; indeed, for simplic-
ity, we assume that when a thread terminates it goes into a special “shutdown” state, in which
it does not request, wait-for or block any events, and sets its timeout value to ∞. This is the
semantic equivalent of thread termination, as the thread can no longer affect the execution; in
practice, the thread can safely be discarded.

10.7.3 Configurations

A thread configuration c is given by the tuple

c = ⟨index,sync,state,time⟩,
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where:

• index is an integer, denoting that the thread in question is an instance of thread template
BT index.

• sync is a boolean variable, indicating whether the thread is currently synchronized or not.

• state ∈ Qindex indicates the state the thread is in if sync = true, or the state the thread is
expected to reach in its next synchronization if sync = false.

• time is a positive real, indicating the instant in time when the thread last synchronized.
This field is only meaningful if sync = true.

Two thread configurations are equal if and only if all of their meaningful fields are equal.
A system configuration γ is a finite tuple γ = ⟨c1, . . . ,ck,t⟩, where k ≥ 1 and each ci =

⟨indexi,synci,statei,timei⟩ is a thread configuration, and t is a positive real, indicating the cur-
rent time. The system configuration indicates which thread instances are currently active, and
thus indicates the global configuration of the system.

A system configuration γ is called initial if and only if:

∀1≤i≤k,(synci = false ∧ statei = qindexi

0 ) ⋀ t = 0

That is, all currently running thread instances are unsynchronized, are expected to arrive at
their initial states in their next synchronization, and the system time is 0. This is the state of the
system at the beginning of the execution.

Given two configurations γ = ⟨c1,c2, . . . ,ck,t⟩ and γ̃ = ⟨c̃1, c̃2, . . . , c̃k′ , t̃⟩ and an event e ∈ E ∪

{�,⊺}, we say that γ̃ is a successor of γ with respect to e, denoted γ
e
Ð→ γ̃ , if the following

conditions apply:

1. Existing threads are preserved: k′ ≥ k and

∀1≤i≤k, indexi = ĩndexi.

2. Time moves forward: t̃ ≥ t. We assume event selection can be resolved in zero time, and
allow t̃ = t.

3. If e = ⊺, then γ
e
Ð→ γ̃ is a valid synchronization transition; if e = �, then it is a timeout

transition; and otherwise, it is an event selection transition. These terms are defined
next.
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Synchronization Transitions

These are transitions for which e = ⊺; they correspond to a single thread synchronizing. A
transition is a valid synchronization transition if the following conditions hold:

• Synchronization transitions cannot spawn new threads, i.e. k = k′.

• At least one thread is unsynchronized, i.e. ∃1≤i≤k such that synci = false.

• No synchronized threads have timed-out:

∀1≤ j≤k, (sync j = true Ô⇒ T j(state j)+ time j < t̃)

• All threads except the thread that timed-out remain in the same configuration:
∀1≤ j≤k, ( j ≠ i Ô⇒ c j = c̃ j) .

• The thread that synchronized is updated to indicate that it has arrived at its expected state
in that instant: s̃ynci = true ∧ s̃tatei

= statei ∧ t̃ imei = t̃.

Event Selection Transitions

These are transitions with “real” events, i.e. e ∈ E. They are allowed only when the following
conditions hold:

• All threads are synchronized, i.e. ∀1≤i≤k, synci = true.

• The transition must occur immediately upon the last synchronization event: t̃ =

max1≤i≤k{timei}.

• Event e must be enabled: e ∈⋃n
i=1 Rindexi

(statei)−⋃n
i=1 Bindexi

(statei).

• As a result of the event being triggered, all threads that have transitions for the event
become unsynchronized, and their new expected states (when next they synchronize) are
determined according to their transition rules:

∀1≤i≤k, (δ
i(statei,e) ≠∅ Ô⇒ s̃ynci = false ∧ s̃tatei ∈ δ

i(statei,e))

• Threads that did not have a transition to traverse retain their configurations:

∀1≤i≤k, (δ
i(statei,e) =∅ Ô⇒ ci = c̃i)
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• New threads may be spawned as a result of the transition. These threads correspond to
thread configurations c̃k+1, . . . , c̃k′ . These threads must be precisely those threads that the
existing threads spawn, i.e.

{ ̃indexk+1, . . . , ̃indexk′} = ⋃
1≤i≤k ∣ δ i(statei,e)≠∅

ξ
indexi(⟨statei,e, s̃tatei⟩)

where both hands of the equation are interpreted as multisets.

• New threads are spawned unsynchronized, and are expected to reach their initial states:

∀k<i≤k′ , (s̃ynci = false ∧ s̃tatei = qĩndexi

0 ) .

Timeout Transitions

These are transitions with e = �. They occur when a previously synchronized thread times out.
Formally, they are allowed if and only if the following holds:

• Timeout transitions are only allowed when no event selection transitions are enabled; that
is, if there exists at least one unsynchronized thread or if all threads are synchronized but
there are no enabled events. Formally, denoting by Enabled the set of enabled events

Enabled =
k
⋃
i=1

Rindexi
(statei)−

k
⋃
i=1

Bindexi
(statei),

we stipulate that (∃1≤i≤k, synci = false)∨(Enabled =∅).

• One thread has to have timed out, i.e

∃1≤i≤k,(synci = true ∧ T i(statei)+ timei = t̃)

• This thread becomes unsynchronized and traverses a timeout transition:

s̃ynci = false ∧ s̃tatei ∈ δ
i(statei,�)

• All other threads remain in the same configurations:

∀1≤ j≤k ( j ≠ i Ô⇒ c j = c̃ j)

• The transition may spawn new threads:

{ ̃indexk+1, . . . , ̃indexk′} = ξ
indexi

(⟨statei,�, s̃tatei⟩)
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• New threads are spawned unsynchronized, and are expected to reach their initial states:

∀k< j≤k′, (s̃ync j = false ∧ s̃tate j = qĩndex j

0 ) .

Thread Termination

For simplicity, the concept of thread termination is not included in the semantics. Instead, we
assume that terminated threads enter a dormant state, in which they request, wait-for and block
nothing, and do not specify a timeout. This is the equivalent of removing the thread from the
pool of active threads. Naturally, in practice it is better to let threads terminate and free the
resources they were allocated. Indeed, this is the case in BPC.

System Vs. Environment

From the ESM’s point of view, synchronization transitions can be seen as managed by the
environment; the ESM has no control on when threads will synchronize. The other two kinds
— event selection transitions and timeout transitions — are triggered by the ESM, and it has no
flexibility in selecting and scheduling them. As previously mentioned, it would be interesting
to extend this work to allow the ESM flexibility in, say, purposely delaying event selection
transitions, in order to achieve some goal, along the outline of the smart play-out mechanism
of [84, 85].

10.7.4 Behavioral Programs

A behavioral program P consists of a (possibly infinite) event set E, a (possible infinite) thread
template set BT = {BT 1,BT 2, . . .} an initial system configuration γ0, and a event selection strat-
egy fes (as defined in Section 10.4).

An execution ε of P is a sequence ε = γ0 e0
Ð→ γ1 e1

Ð→ . . . of successive configurations, where
ei ∈ E ∪{�,⊺} for all i. For every ei ∉ {⊺,�}, we require that fes(γ0,γ1, . . . ,γi) = ei, that is that
the triggering of “real” events is performed according to the strategy. The execution may either
be infinite, or finite if it ends in a terminal configuration — a configuration with no successors.
Specifically, a terminal configuration is one in which all threads have synchronized, there are
no enabled events, and all threads have set their timeout values to ∞.

The run that corresponds to execution ε is a (possibly infinite) sequence of event-and-time
pairs ⟨⟨ei0,ti0⟩,⟨ei1,ti1⟩, . . .⟩ that correspond to just the event selection transitions of ε . The run
indicates the “real” events that were triggered, and the time of their triggering. Timeout and
synchronization transitions are considered internal, and do not appear in the run. The language
of a behavioral program P, denoted L(P), is the set of runs of all valid executions of the system.
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Note. The above semantics can be extended to support sensor threads that do not delay the
system as they wait for input. Intuitively, this is performed by relaxing the prerequisites of event

selection transitions, to no longer require that the sensor threads be synchronized. Extending
the formalism to fully support the eager execution mechanism discussed in Chapter 9 in the
presence of timeouts is left for future work.

10.8 The BPC Framework

In this section we present the BPC framework for behavioral programming in C++, which
implements the extensions discussed in previous sections. It is available online at [9]. The
framework is designed to allow the user to conveniently define and write behavior threads while
using the full power of the C++ programming language. The synchronization and coordination
mechanism is implemented as part of the framework, and is concealed from the user.

10.8.1 User Interface

Behavior threads are implemented as classes that inherit from the BThread class. They are
customized to carry out particular behavior by overriding the entryPoint method, which the
framework invokes when the thread starts. The interface provided by the parent class includes
the bSync method to perform thread synchronization and the lastEvent method to retrieve
the result of the last synchronization point — be it an event or a timeout. The bSync method
pauses the thread until a requested or waited-for event is triggered, or until a timeout occurs.

Events in the system are instances of class Event. All events have a type (an integer), and
additional parameters can be added by supplying classes that inherit from Event.

In order to run the application, the user instantiates the initial threads inside the main

method of the program and calls a special start method provided by the framework.

Parts of the application that corresponds to the example in Figure 2.2 appear in Figure 10.9.
Additional features of BPC, such as dynamic thread creation and customized event selection
strategies, appear as parts of the case-study, described in Section 10.9. In later code snippets
we sometimes omit parts of the C++ syntax and focus on the body of the threads.

In order to facilitate the migration of existing behavioral code, BPC supports programs
where the extension idioms that we propose in this work are not used. For instance, synchro-
nization calls may contain just the first 3 parameters, ignoring the timeout parameter; the effect
is the same as passing the NO TIMEOUT value, which has the same semantics as a synchro-
nization call in traditional BP. If no customized event selection strategy is defined, BPC uses
a default, arbitrary selection scheme. Naturally, events without parameters and programs with
just statically created threads are also allowed.
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1 enum { WaterLow, AddHot, AddCold };

2

3 class WhenLowAddHot : public BThread {

4 void entryPoint () {

5 while( true ) {

6 set <Event > requested;

7 set <Event > waitedFor = { WaterLow };

8 set <Event > blocked;

9

10 BSYNC( requested , waitedFor , blocked , NO_TIMEOUT );

11

12 waitedFor.clear();

13 requested = { AddHot };

14 for( unsigned i = 0; i < 3; ++i )

15 BSYNC( requested , waitedFor , blocked , NO_TIMEOUT );

16 }

17 }

18 };

Figure 10.9: The events in the program have a type field with possible values WaterLow, Ad-
dHot and AddCold, and no parameters. The WhenLowAddHot class inherits from BThread,
with the entryPoint method customized to carry out the specific thread behavior. The thread
runs in an infinite loop, and in each iteration it waits-for event WaterLow and then requests
event AddHot three times. The bSync method takes three event vectors and a timeout parame-
ter (here, set to the special value NO TIMEOUT).

10.8.2 The Underlying Mechanism

Communication between threads and the event selection mechanism is performed using stan-
dard client-server sockets. Throughout the run, the ESM maintains a server socket which awaits
new threads that might connect. For each currently active thread, the ESM maintains an ac-
tive socket connection on which synchronization data and triggered event information are ex-
changed. Whenever a thread synchronizes with the ESM, the latter checks if the thread declared
a timeout at this synchronization point; if so, it sets a timer to expire accordingly. If an event
that the thread requested or waited-for is triggered before the timeout expires, the timer is reset.
The pseudocode for the ESM appears in Algorithm 13.

Line 13 of the algorithm does not specify which event e to choose in case there are multiple
enabled events. The default option in BPC is arbitrary event selection. If the programmer has
customized the event selection mechanism, he/she has provided an object that can take the list
of enabled events and return the next choice, in which case that object is then invoked. The
object may also store information from previous iterations and use it in the present selection
iteration. An example appears in Section 10.9.

Another variant of BP that may be useful in a distributed setting includes a distributed
version ESM (see Chapter 9). In this variant, which is also supported in BPC, the threads
are partitioned into sets — each of which is managed by a different ESM agent. The agents
exchange information among themselves when needed. Distributing the ESM can be useful,
e.g., when threads run on multiple machines, and communication between these machines is
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Algorithm 13 Event Selection Mechanism

1: ActiveT hreads←∅
2: Synchronized←∅
3: while true do
4: wait for new threads, synchronizations and timeouts
5: if new thread bt connected then
6: ActiveT hreads← ActiveT hreads∪{bt}
7: else if timeout for thread bt expired then
8: Synchronized← Synchronized−{bt}
9: inform bt of a timeout

10: else if thread bt synchronized then
11: set the timeout timer for bt
12: if ActiveT hreads = Synchronized then
13: if exists event e enabled for triggering then
14: for every thread bt′ that requested/waited-for e do
15: send e to bt′

16: Synchronized← Synchronized−{bt′}
17: reset timeout timer for bt′

slow or costly.

10.9 Case-Study: a Web-Server

In this section we survey the architecture of our web-server case-study, dwelling in particular
on the implementation of the examples discussed in Sections 10.3-10.5. Most of the threads
and inter-thread interactions described in this section are displayed in Figure 10.10. Apart from
giving the technical details, throughout this section we also try to convey to the reader a sense
of the interaction between the behavioral code and native C++ code in our implementation, and
also of the incremental development process of a behavioral application.

10.9.1 The Implementation’s Layout

Our application consists of two distinct sets of threads, one for the TCP layer and one for the
HTTP layer. The two layers interact with each other via behavioral events, and each also has
an additional source of input: the TCP layer reads TCP segments off a “raw socket”, and the
HTTP layer reads files from a given directory. These additional inputs are obtained by threads
containing non-trivial native C++ code, and are then translated into behavioral events in order
to be passed to other threads.

Internally, each layer is designed using a dispatcher architecture: a dispatcher thread han-
dles each incoming segment, classifies it according to its attributes, and then passes it to specific
handler threads via behavioral events. These handler threads can then request additional events
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Raw Socket
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Sender
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Figure 10.10: An overview of the web-server’s architecture. For clarity, many details have
been omitted; the full code is available online [10]. Rounded rectangles represent threads, and
edges represent the logical interactions described throughout Section 10.9. The threads are
partitioned into a TCP layer and a HTTP layer; the layers interact with each other and with
additional sources of input (“Raw Socket” and “Directory”). Threads marked in orange were
incrementally added on top of an already working basis: (1) the Retransmitter mechanism that
waits for outgoing segments and re-feeds them to Outgoing Segment Handler if they are not
acknowledged, and (2) the Ensure Active Connection mechanism that waits for connection ac-
tivation/termination events, and blocks HTTP segments on inactive connections from reaching
Segment Sorter.

in order to issue a reply and/or update other threads of the contents of the segment. Handlers
typically perform local computation using native C++ code — e.g., calculating TCP check-
sums or reading files from the directory. Incoming TCP segments containing HTTP requests
are passed between the layers, and the same happens to HTTP replies on their way to the client.

To exemplify the server’s operation we describe in more detail the handling of TCP con-
nection establishment requests (SYN segments). Initially, the RawSocketReceiver sensor thread
reads the incoming segment from the socket. When it is received, the thread requests a TcpSeg-

mentReceived event — with the segment as its parameter — in order to pass the segment to the
TcpDispatcher thread.

The TcpDispatcher uses native C++ code to classify incoming TCP segments according
to their attributes, and requests additional events accordingly. SYN requests, for example, are
identified by reading the SYN flag from the TCP header of the segment. The thread then
requests a TcpSynRequest event in order to notify TcpSynHandler — the specific handler for
SYN requests.
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The TcpSynHandler thread responds to each request by generating a TcpOutgoingSegment

event, with a SYN-ACK segment as its parameter. Finally, this event then gets translated into
a TcpSendSegment event — handled by the RawSocketSender sender thread, which actually
sends the segment to the client.

We note that in order to construct the SYN-ACK segment, the TcpSynHandler thread must
first acquire a fresh sequence number. This is performed by sending a request to, and receiving
a response from, the SequenceNumberAllocator thread — the thread in charge of managing the
sequence numbers of every TCP connection. SequenceNumberAllocator may handle simulta-
neous requests for sequence numbers (for the same connection) from multiple threads, and here
the BP event selection mechanism guarantees that each outgoing segment has a fresh sequence
number: SequenceNumberAllocator handles requests (represented by events) sequentially, and
thus race conditions are avoided.

Apart from dispatcher and handler threads, additional “standalone” threads exist in the
system: for instance, the requirement that TCP segments be sent only on active connections
is enforced by the TcpEnsureActiveConnection thread. This thread uses blocking to ensure that
a TcpSynRequest is triggered before other TCP events — such as those signalling PUSH or
ACK segments — are triggered. Likewise, once a FIN segment is triggered, the thread blocks
any additional TCP events for that connection.

Segment Reordering

TCP segments that contain data for the HTTP layer are not guaranteed to arrive in the order in
which they were sent. Hence, the TCP layer needs to reorder them before passing them on.

During data transfer, TCP segments with data for the HTTP layer cause the triggering of
DataToHttp events. Each of these events carries the received segment’s sequence number as
a parameter. The TCP stack knows the expected sequence number of the next data segment:
the initial sequence number is stated by the client at the time of connection establishment,
and is subsequently incremented for each segment. Whenever an incoming sequence number
is greater than the one expected, the stack realizes that a segment is missing; and when this
segment later arrives, reordering takes place. Pseudocode for the SegmentSorter thread, which
is in charge of this reordering, appears in Figure 10.11.

Segment Retransmission

As mentioned in Section 10.3, when sending out a segment, the TCP stack must wait for an
acknowledgment message — and if one does not arrive, the segment needs to be resent. There
exist several sophisticated retransmission policies, aimed at reducing traffic congestion, which
have adjustable retransmission periods. For our case-study we opted for the simplest scheme —
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1 while( true ) { // SegmentSorter thread

2 set <Event > requested;

3 set <Event > waitedFor = { TcpSynRequest , DataToHttp };

4 set <Event > blocked;

5

6 BSYNC( requested , waitedFor , blocked , NO_TIMEOUT );

7

8 if( lastEvent ().type() == TcpSynRequest )

9 storeSeqNumber( lastEvent ().seqNumber () );

10 else if( lastEvent ().seqNumber () != expectedNumber () )

11 storeData( lastEvent ().data() );

12 else

13 sendReorderedSegments( lastEvent ().data() );

14 };

Figure 10.11: The SegmentSorter thread waits for TcpSynRequest and DataToHttp events.
When a TcpSynRequest event occurs, the thread extracts the sequence number for later use.
When a data segment is received, its sequence number is compared to the expected number.
If it does not match, the segment is stored. If it does match, the segment is passed on to the
HTTP layer, along with any consecutive segments previously stored, and the expected sequence
number is updated.

retransmission after a fixed waiting period. Implementing additional schemes is left for future
work.

In our implementation, segments leaving the TCP stack on their way to be sent to the client
via the raw socket always pass as TcpOutgoingSegment events. Our retransmission mechanism
waits for these events and stores the outgoing segments. Then, if they are not acknowledged
withing a fixed period of time, it retransmits them — until an acknowledgment is received.
Pseudocode appears in Figure 10.121

Customized Event Selection

As mentioned in Section 10.4, we occasionally found customizing the event selection strategy
a straightforward method in order to enforce certain requirements. For example, in one case
we wanted to ensure that all outgoing segments finish sending prior to sending the segment
indicating the connection being closed (a FIN segment) — a property that was not trivially
upheld by the TCP stack. Another example was giving priority to starving connections, namely
connections whose events have not been triggered in a while, in order to avoid retransmission
of segments and the congestion incurred by it.

Pseudocode for a customized event selection function that addresses these two issues ap-
pears in Figure 10.13.

1The depicted solution spawns a thread for each outgoing segment, which incurs overhead (as discussed in
Section 10.5). In practice, we found that it was more efficient to spawn one Retransmitter thread per connection,
and have it handle all of that connection’s segments. Nevertheless, we feel Figure 10.12 better illustrates the
principles described in Section 10.5.
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10.9.2 Features and Evaluation

Our implemented TCP stack supports connection establishment and termination, data sending
and acknowledgments, keep-alive messages, segment reordering and segment retransmission.
Simultaneous connections are also supported, whereas dealing with flow and congestion con-
trol is still work in progress. The HTTP stack supports GET requests, error and redirection
messages, and the execution of CGI scripts. The project contains over 20k lines of code, and is
available online [10].

We constructed our case-study as a proof of concept, and, in our experiments, it provided
“smooth” surfing of websites. Nonetheless, it cannot presently compete with industrial web-
servers performance-wise, e.g. in throughput rate. We thus focused our evaluation on proper
adherence to the TCP/HTTP protocols.

We tested the system with two widespread browsers, Firefox and Google Chrome. In both
of these, the server properly displayed non-trivial sites, with both static and dynamic (e.g.,
PHP, CGI) pages. In particular, we ran a copy of the BP website [144] on the behaviorally-
programmed server.

To test the more advanced features of the server, such as segment retransmission and seg-
ment reordering, we conducted tests in which the client connected to the server through a proxy

— a third piece of software, which we controlled. We then simulated unreliable networks by
having the proxy delay or drop segments, or deliver them out of order. All webpages were
nevertheless properly displayed.

Finally, for stress testing we ran ten clients that were simultaneously trying to upload a 10
megabyte file each to the server. The proxy was set to maximal interference — that is, not
a single segment was delivered to the server in the correct order. All files were successfully
received and reassembled by the server.

10.9.3 Discussion: Incremental Development

An important feature previously attributed to scenario-based programming (and hence BP too)
is that it facilitates incremental development [90, 89]. One of our goals was to check whether
this would still hold for large programs. While this property is difficult to quantify and may
depend on coding habits, the experience we gained when developing our case-study indicates
an affirmative answer.

We built our web-server iteratively, repeatedly translating parts of the specification into
threads, and with only a vague “big picture” in mind. For instance, we first programmed the
connection establishment and data exchange parts of the TCP stack, but without considering
segment retransmission or ignoring segments on closed connections. Later, we found that
adding these features incurred no changes to existing code (see also Figure 10.10). Naturally,
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in some cases — e.g., adding the reordering of TCP segments — some code was changed, but
the changes were usually local and contained.

One could argue that the incremental development of our case-study was made possible
because of the dispatcher-handler design pattern that we used. This was indeed partially the
case, but we feel that two remarks are in order: (i) BP promoted the use of a dispatcher-handler
pattern in the first place; and (ii) in some cases, as in the case of segment retransmission, in-
cremental development was made possible because communication between threads was per-
formed strictly through the triggering of events. Hence, we could easily “hook” onto these
events when needed.

10.10 Related Work

Our proposed extensions to BP are common programming idioms, and exist, in various forms,
in numerous high-level languages. Thus, comparisons in this section focus mainly on popular
programming formalisms that, similarly to BP, are geared towards discrete event systems.

The principal extension to BP that we proposed is the timeout idiom. This is a step in mov-
ing away from the synchrony hypothesis, according to which local computation takes negligible
time. The synchrony hypothesis is used in popular languages for programming event-driven re-
active systems, such as Esterel [31], Lustre [77] and Signal [112], and also in the non-object
oriented version of Statecharts [92]. Formally allowing non-negligible computation time broad-
ens the scope of problems to which BP can be applied.

Other parallel programming languages support various idioms for manipulating time. UML

Sequence Diagrams [11] support constructs that impose a required delay between the send
and receive events of a message [37]. Message Sequence Charts (MSCs) support timers [102,
16] that can be set, reset and checked for timeouts, and delay intervals [16, 126] to specify
maximal or minimal delay between actions. We have demonstrated that similar constraints
can be applied using our timeout mechanism. Of particular interest is the live sequence charts

(LSCs) language [57, 87], the precursor to and main motivation for behavioral programming.
In this context, the ongoing evolution of BP is, perhaps unsurprisingly, similar to the one LSCs
underwent with the addition of time-aware charts [88], allowing one to bound the flow of time
between consecutive events. Similar concepts appear also in component based programming
languages, such as BIP [29]. In BIP, components may contain timed variables, and may use
them transition guards. These variables are globally incremented when no higher priority action
is enabled.

The second extension that we proposed was customizable event selection strategies.
Scenario-based programs typically have to choose between several enabled events, and sev-
eral selection strategies have been previously proposed. Among these are arbitrary selection,

193



look-ahead algorithms (smart play-out) [84, 85] and planning-based approaches [93]. Selection
can also be interactive, which is useful, for instance, in the context of debugging unrealizable
behavioral specifications [122]. By allowing general user-specified event selection strategies,
these approaches could be more readily integrated into BP.

Another extension that proposed was to consider threads as templates of which multiple
copies may be instantiated. This technique bears resemblance to the situation in LSCs, where
multiple instances of the same chart may run simultaneously. There, additional copies are
spawned based on preconditions defined in each chart, instead of actively by other threads as
in our case, although the two approaches seem equivalent. The direct spawning of modules by
other modules is also supported in Esterel and Signal.

Finally, we proposed to extend BP with parameterized events. Parameterized message pass-
ing between modules is quite fundamental in concurrent programming. It exists, e.g., in Esterel,
UML sequence diagrams, LSCs and, for bounded parameters, also in earlier work on BP [86].

10.11 Conclusion and Future Work

In this work we set out to study the applicability of the BP paradigm to real-world systems.
Through our work on a large case-study, we were able to identify several common program-
ming tasks for which BP’s traditional idioms provide only partial solutions, and proposed ad-
ditional idioms to overcome these difficulties while — trying to maintain BP’s simple and
intuitive interfaces. The new idioms include time-aware threads, a customizable event selec-
tion mechanism, the dynamic creation of threads, and parameterized events. By integrating
these idioms into our development environment we were able to complete our implementation,
thus providing what we feel is significant evidence that BP does indeed scale-up to real-world
problems.

In choosing our proposed extension to BP, we took care to only add idioms that allowed
us to accomplish programming tasks that were previously beyond the scope, or at least very
difficult to accomplish, in BP. Thus, we hope we were able to avoid clutter, and retain most of
the simplicity that characterizes the traditional BP framework.

Our proposed extensions were driven by the needs that arose during the development of
our specific case-study; and hence it is possible that, through the development of additional
behavioral projects, BP may need to be extended with additional idioms. However, due to the
large variety of programming tasks entailed by the web-server project (e.g., handling timeouts,
string manipulation, file access, checksum calculations, etc), we believe that our proposed ex-
tensions are robust, and could prove sufficient for a variety of programming tasks. We regard
our extensions, and also future extensions to BP, a part of the typical evolution of programming
languages.
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In the future, we plan to enhance our case-study by adding features like flow control, con-
gestion control, selective acknowledgments and smart retransmission schemes to our protocol
stacks. These extra features may reveal additional idioms worth adding to BP. Further, we plan
to work on improving the efficiency of our case-study, in order to gain a better understanding
of the overhead the BP infrastructure might incur in large systems.
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1 class Retransmitter : public BThread {

2 void entryPoint () {

3 set <Event > requested;

4 set <Event > waitedFor = { TcpOutgoingSegment };

5 set <Event > blocked;

6

7 while( true ) {

8 BSYNC( requested , waitedFor , blocked , NO_TIMEOUT );

9 new PeriodicSender( lastEvent () );

10 }

11 }

12 };

13

14 class PeriodicSender : public BThread {

15 PeriodicSender( Event TcpOutgoingSegment ) {

16 storedSegment = TcpOutgoingSegment;
17 }

18

19 void entryPoint () {

20 bool done = false;

21

22 while( !done ) {

23 set <Event > requested;

24 set <Event > waitedFor = { ackForStoredSegment () };

25 set <Event > blocked;

26

27 BSYNC( requested , waitedFor , blocked , 2 );

28 if( timeoutOnlastSync () ) {

29 waitedFor.clear();

30 requested = { storedSegment };

31 BSYNC( requested , waitedFor , blocked , NO_TIMEOUT );

32 }

33 else {

34 done = true;

35 }

36 }

37 }

38 };

Figure 10.12: Pseudocode for the segment retransmission mechanism. The Retransmitter
thread waits-for TcpOutgoingSegment events — events that indicate a TCP segment about
to be sent — and for each such event it spawns an instance of the PeriodicSender thread. The
PeriodicSender instance receives through its constructor the segment that it is supposed to mon-
itor. It then waits for an acknowledgment of that segment for 2 seconds. If an acknowledgment
message fails to arrive, the thread retransmits the segment, and the process repeats. When
an acknowledgment is received, the thread terminates. Note that the ackForStoredSegment

method (code omitted) is a predicate — it evaluates to true only for TcpAckReceived events
with the proper acknowledgment information. Also, a bookkeeping mechanisms (also omitted)
is required to prevent the creation of additional PeriodicSender threads for a segment that is
being retransmitted.
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1 Event choose( set <Event > enabledEvents ) {

2 set <Event > candidates = eventsOfStarvedConnection( enabledEvents );

3

4 if( candidates.has( SendTcpFin ) && candidates.hasOtherThan( SendTcpFin ) )

5 return candidates.otherThan( SendTcpFin );

6

7 else return *candidates.begin();

8 };

Figure 10.13: Pseudocode for the customized event selection strategy. At every synchroniza-
tion point, this function is invoked with the set of enabled events, of which it must select one
for triggering. Information from previous iterations may be stored. Our specific implementa-
tion gives precedence to previously “starved” connections: that is, it favors the connection that
has waited the longest for an event to be triggered. This part is abstracted away in the method
eventsOfStarvedConnection. Once a connection is selected, its associated events are the
candidates for triggering; among these, we prefer events that are not SendTcpFin, so that pend-
ing data transmission requests are addressed before the connection is closed. Otherwise, an
arbitrary event is selected.
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Chapter 11

An Initial Wise Development Framework
for RWB

11.1 Introduction

In this chapter we seek to bring together several of our aforementioned results, by providing an
interactive and proactive framework for developing RWB programs — which utilizes our the
various analysis tools that we have discussed in Part II.

The development of large reactive software systems is an expensive and error-prone un-
dertaking. Deliverables will often fail, resulting in unintended software behavior, exceeded
budgets and breached time schedules. One of the key reasons for this difficulty is the growing
complexity of many kinds of reactive systems, which increasingly prevents the human mind
from managing a comprehensive picture of all their relevant elements and behaviors. More-
over, of course, the state-explosion problem typically prevents us from exhaustively analyzing
all possible behaviors. While major advances in modeling tools and methodologies have greatly
improved our ability to develop reactive systems by allowing us to reason on abstract models
thereof, specific solutions are quickly reaching their limits, and resolving the great difficulties
in developing reliable reactive systems remains a major, and critical, moving target.

Over the years it has been proposed, in various contexts, e.g., [138, 137, 43, 82], that a
possible strategy for mitigating these difficulties could lay in changing the role of the computer
in the development process. Instead of having the computer serve as a tool, used only to analyze
or check specific aspects of the code as instructed by the developer, one could seek to actually
transform it into a member of the development team — a proactive participant, analyzing the
entire system and making informed observations and suggestions. This way, the idea goes,
the computer’s superior capabilities of handling large amounts of code could be manifested.
Combined with human insight and understanding of the system’s goals, this synergy could
produce more reliable and error-free systems.
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In this chapter we follow this spirit, and present a methodology and an interactive frame-
work for the modeling and development of complex reactive systems, in which the computer
plays a proactive role. Following the terminology of [82], and constituting a very modest initial
effort along the lines of the Wise Computing vision outlined there, we term this framework
a wise framework. Intuitively, a truly wise framework should provide the developer with an
interactive companion for all phases of system development, “understand” the system, draw
attention to potential errors and suggest improvements and generalizations; and this should be
done via two-way communication with the developer, which will be very high-level, using nat-
ural (perhaps natural-language-based) interfaces. The framework presented here is but a first
step in that direction, and focuses solely on providing an interactive development assistant ca-
pable of discovering interesting properties and drawing attention to potential bugs; still, it can
already handle non-trivial programs, as we later demonstrate through a case-study.

Various parts of this approach have been implemented by a variety of researchers in other
forms, as described in Section 11.5. A main novel aspect of our approach, however, is in the
coupling of the notion of a proactive and interactive framework with the BP scenario-based
programming language. The BP formalism makes it possible for our interactive development
framework to repeatedly and quickly construct abstract executable models of the program, and
then analyze them in order to reach meaningful conclusions. It is now widely accepted that
a key aspect in the viability of analysis tools and environments is that they are sufficiently
lightweight to be integrated into the developer’s workflow without significantly slowing it
down [139, 56]. We attempt to achieve this by leveraging scenario-based modeling. As demon-
strated in later sections, the proactiveness of our approach and its tight integration into the
development cycle can lead to early detection of bugs during development, when they are still
relatively easy and cheap to fix.

The rest of this chapter is organized as follows. In Section 11.2 we introduce our devel-
opment framework by means of a simple example. In Section 11.3 we discuss the various
components of the framework in more detail, and in Section 11.4 we describe a case-study that
we conducted. Related work appears in Section 11.5, and we conclude in Section 11.6.

11.2 A Simple Example

In this section we attempt to convey to the reader, intuitively, the sense of working in a wise
development framework from a developer’s point of view. Thus, we focus almost exclusively
on the user experience, and defer more details about the inner workings of the framework itself
to Section 11.3.

We demonstrate the framework’s operation through the incremental modeling of a small,
illustrative system. Suppose we are developing behavioral code for a safe that has three levers
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and an “open door” button. The specification given to us indicates that in order to open the
door, a user needs to correctly configure the three levers and then click the button. Clicking the
button when the levers are not correctly configured should not open the door. We refer to the
three levers as levers A,B and C; and each lever has three possible positions, denoted as one,
two and three. We denote the configuration of the levers as a tuple: for instance, configuration
⟨1,3,2⟩ indicates that lever A is in position one, lever B is in position three, and lever C is in
position two. The initial configuration is ⟨1,1,1⟩, and the correct configuration for opening the
door is ⟨2,3,2⟩. The user can request the triggering of events of the form SetXToY, indicating
that lever X is set to position Y , and also of ClickButton events. The system may request an
OpenDoor event, as well as any internal event needed for the implementation.

We now describe the incremental modeling of this system in BPC, accompanied by the wise
framework. We start by modeling the three levers. This is done by creating, for each lever, a
scenario object that waits for events signaling that the position of that lever has changed, and
storing the current position. The code appears and is explained in Figure 11.1.

1 Event position = SetXToOne;
2

3 while( true ) {

4 set <Event > requested = {};

5 set <Event > waitedFor = { SetXToOne, SetXToTwo, SetXToThree };

6 set <Event > blocked;

7

8 switch( position ) {

9 case SetToOne:

10 blocked = { LeverXInTwo , LeverXInThree };

11 case SetToTwo:

12 blocked = { LeverXInOne , LeverXInThree };

13 case SetToThree:

14 blocked = { LeverXInOne , LeverXInTwo };

15 }

16

17 BSYNC( requested , waitedFor , blocked );

18 position = lastEvent ();

19 }

Figure 11.1: BPC code for a scenario object called LeverX, representing the behavior of a
single lever X (X represents A, B or C). Line 17 contains the BSYNC synchronization call,
where the object synchronizes with all other objects and declares its requested, waited-for and
blocked events. The lever object never requests any events, and continuously waits for events
signifying that the lever has changed its physical position — events SetXToOne, SetXToTwo,
and SetXToThree. When one of these is triggered, line 17 returns, and the object updates
its internal state in line 18. Note also events LeverXInOne, LeverXInTwo and LeverXInThree,
which represent other scenarios querying the physical position of lever X . The lever object
constantly blocks those events that correspond to all “wrong” physical positions. Thus, if
another object requests all three events, then only one event — the one corresponding to the
actual lever’s position — will be triggered. An example appears in Figure 11.2.

After modeling the three lever objects, we get the first input from the wise development
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framework:

Warning: Objects LeverA, LeverB and LeverC constitute a ternary shared array.

However, they are not used. Consider removing them.

We should emphasize that the wise development framework is oblivious to the specifics of our
program, i.e., it has no concept of levers. It did, however, recognize a pattern in our system
model: that the three lever objects actually operate like a “shared array”. Here, the term shared
array means that other objects can “write” to it (i.e., by requesting SetXToY events), or “read”
from it (by requesting LeverXInY events). This is an interesting insight about the implementa-
tion, which we did not even have in mind, but which the development framework will utilize
later on. As for the comment that the levers are currently unused, this makes sense — as we
have not written additional code yet.

Next, we add a scenario that allows the user, through a simple interface, to request the trig-
gering of SetXToY events, and also the ClickButton event (code omitted). When we recompile
the code, the development framework prompts us that now the shared array is written to but
is never read from, and can still be removed. Then, we add the ButtonPressed scenario (Fig-
ure 11.2) that handles the pressing of the button — it queries the lever configuration, and if it
is ⟨2,3,2⟩ it requests an OpenDoor event.

However, as the caption explains, the code in Figure 11.2 is actually erroneous: we copied
and pasted the code checking lever B but did not correctly modify it to check lever C. The wise
development framework now produces the following message:

Warning: Scenario ButtonPressed has an unreachable synchronization point in

line 20. Suggesting an optimization. Also, the state of LeverC is never read.

This message immediately points us to the error in the model, giving us enough information to
quickly realize what has happened. The optimization proposed by the framework (not shown),
in which the unreachable state is removed, is actually a graphical representation using the Goal
visualization tool [145].

We stress that the realization that line 20 is unreachable is not trivial, as it is not a property
that is local to the ButtonPressed object. In particular, it cannot be deduced by inspecting
the ButtonPressed object in isolation, and thus it is very different from deducing, say, that in
i f ( f alse)( f oo()) the function f oo() can never be called. Rather, this property stems from the
joint behavior of ButtonPressed and LeverB, where ButtonPressed expects LeverB to be in two
different states simultaneously, which cannot occur.

And so, we correct the error in line 16 of ButtonPressed. Now the warnings from the
development framework disappear, and instead we receive the following information:

Information: Event OpenDoor appears to only be triggered after event Lev-

erCInTwo.
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1 while( true ) {

2 BSYNC( {}, { C l i c kBu t ton }, {} );

3

4 Set <Event > queryA = { LeverAInOne , LeverAInTwo , LeverAInThree };

5 Set <Event > queryB = { LeverBInOne , LeverBInTwo , LeverBInThree };

6 Set <Event > queryC = { LeverCInOne , LeverCInTwo , Leve rC InThree };

7

8 BSYNC( queryA , {}, {} );

9 if( lastEvent () != LeverAInTwo )

10 continue;

11

12 BSYNC( queryB , {}, {} );

13 if( lastEvent () != LeverBInThree )

14 continue;

15

16 BSYNC( queryB , {}, {} );

17 if( lastEvent () != LeverBInTwo )

18 continue;

19

20 BSYNC( { OpenDoor }, {}, {} );

21 }

Figure 11.2: The ButtonPressed scenario, which waits for a ClickButton event, queries the
configuration of the three levers (lines 8, 12 and 16), and if they are correctly set requests an
OpenDoor event (line 20). Querying the position of lever X is performed by simultaneously
requesting events LeverXInOne, LeverXInTwo and LeverXInThree. Only the “correct” event,
i.e. the event that corresponds to lever X’s current position, will be triggered, because the other
two events will be blocked by LeverX’s scenario object. Observe that this scenario has a bug:
in line 16, instead of checking whether lever C is in position two, we mistakenly check if lever
B is in position two. When this line in the code (line 16) is reached we already know that lever
B is in position three (line 12), and so line 20 can never be reached until this bug is fixed.

And then, a few seconds later:

Information: Event OpenDoor appears to only be triggered when the shared

array is in configuration LeverAInTwo, LeverBInThree, LeverCInTwo.

Here, the development framework was able to deduce — without any information regarding
the specific system being modeled — that configuration ⟨2,3,2⟩ is of special importance in the
triggering of OpenDoor events! This does not indicate a potential error that the development
framework found, as in the previous cases shown, but rather an emergent property that the
framework was able to deduce — completely on its own — and which may be of interest to the
developer. Such emergent properties can serve to either draw attention to bugs or reassure the
developer that the model functions as intended, which was the case here. Details about how this
conclusion was reached are presented in the next section. A video demonstrating the examples
described in this section is available online [81].
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11.3 Explaining the Framework: The Three “Sisters”

We now describe in some detail the inner workings of our wise development framework and
the various components from which it is comprised. Although this framework is but a first step
towards the ultimate goal described in [138, 137, 43, 82], it utilizes some powerful techniques,
and building it was far from trivial. An up-to-date version of the tool, as well as video clips
demonstrating its main principles, can be found online [81].

As mentioned earlier, our wise development framework is designed to accompany the de-
velopment of behavioral models, as defined in Section 2.2, and in particular behavioral pro-
grams written in C++ using the BPC package [3]. The framework involves three new logical
components, over and above the BPC package itself, and apart from the additional external
tools we invoke, such as a model checker and an SMT solver (see Figure 11.3). We call these
components the three sisters: Athena, Regina and Livia.

Athena ReginaLivia

Behavioral
Program

Behavioral
Model

Abstraction-
Refinement

Model
Checking

SMT
Solving

Specification
Mining

Simulation
Traces

Interactive
Debugging

Figure 11.3: A high-level overview of the three sisters. The developer provides a behavioral
program, from which Athena extracts a behavioral model. She then analyzes this model using
abstraction-refinement, model checking and SMT solving. Athena also shares the behavioral
model with her sisters: with Regina for the purpose of specification mining, and with Livia
for interactive debugging. The three sisters also exchange information with each other — for
instance, Regina may ask Athena to attempt to formally prove an emergent property that she
mined.

Intuitively, each sister handles a different set of services provided by the wise development
environment. Athena, the wise one, works proactively during development, in an off-line fash-
ion. Her purview is the usage of formal tools to analyze scenario objects and produce logically
accurate conclusions about them, which are valid for all runs. For instance, in the example
discussed in Section 11.2, the conclusion that a certain scenario state could never be reached
was derived by Athena, using model checking.

Regina, more regal than her sisters, also works off-line, but her purview includes semi-
formal methods: using abstract models of the system, she runs multiple simulations, collecting
statistical information as she goes. In what is a form of specification mining she then attempts
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to reach interesting conclusions, to be presented to the modeler. Her conclusions may not be
valid for all runs, but they have the advantage of reflecting numerous executions, and can thus
provide valuable insights about what will happen in typical runs. Again recalling the example
in Section 11.2, the discovery that OpenDoor events were related to lever configuration ⟨2,3,2⟩
was made by Regina, as a result of running multiple simulations of the system.

The last sister, Livia, who was not demonstrated in Section 11.2, complements the other
components by providing on-line support for the developer, for debugging purposes. She can
monitor the system as it runs, and help the developer recognize and comprehend unexpected
behavior — also by sometimes running local simulations and tests, and by using an abstract
model of the system.

The three sisters also cooperate: for instance, emergent properties recognized by Regina
can be passed to Athena for formal verification, and Livia may use Athena’s formal analysis
tools for local analysis at runtime. Together, the three sisters are meant to accompany the pro-
grammer during development time and provide the various features which together constitute
the initial wise development framework.

We now delve deeper into the technical aspects of the framework. The offline components
Athena and Regina continuously run as background processes at development time. After each
successful compilation of the code, these two sisters receive a fresh snapshot of the program
and begin to analyze it. Next, we discuss the main steps in their analysis process, repeated after
each compilation.

The first step is a key one, and is performed by Athena: she constructs an abstract, ex-
ecutable behavioral model of the program, to be used by all three sisters, in all their further
analysis operations. Intuitively, Athena extracts from the program — given as C++ code —
the underlying scenario objects, as described in Section 2.2. This technique, discussed in
Chapter 9, leverages the fact that concurrent scenarios communicate only through the strict
BP synchronization mechanism. Athena thus runs each scenario individually in a “sandbox”,
while mimicking the program’s event selection mechanism, exploring the scenario’s states and
constructing its underlying scenario object. The resulting abstract model of the program thus
completely and correctly describes all inter-scenario communication, while the rest of the in-
formation (internal scenario actions) is abstracted away, allowing the development framework
to handle larger programs. Athena then shares this abstract behavioral model with Regina for
the purpose of running simulations, and with Livia for the purpose of online analysis.

The next phase is also performed by Athena, and it involves partitioning the program’s
scenarios into logical modules according to their functionality. This clustering phase is needed
to increase the tool’s scalability: when trying later to check a property φ that does not involve
program module A, the sisters will attempt to abstract away module A — reducing the total
number of states to explore. We have set things up so that information regarding the scenario
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grouping into modules is not provided by the programmer; rather, Athena uses a clustering
algorithm (Chapter 5) to determine scenarios’ correlations to events, and then groups them
accordingly.

For the purpose of identifying logical modules, Athena also compares the extracted be-
havioral model to a predefined meta-model with known/common parallelism constructs (e.g.,
semaphores, shared arrays, sensors and actuators; see Chapter 8) which we have built into our
tool. If it is discovered that certain scenario objects are instantiations of meta-objects that are
logically connected (e.g., one scenario implements a semaphore and another scenario waits on
that semaphore), they may also be grouped together into the same logical module. Recalling
the example of Section 11.2, it was Athena who realized, by comparing the input model to her
stored meta-model, that the lever scenarios constituted a shared ternary array.

The next step employs specification mining techniques, and is performed by Regina. She
attempts to determine, by running multiple simulations on the behavioral model of the program
(which was provided by Athena), a list of possible properties of the system. These are dis-
covered by analyzing simulation traces and looking for patterns: events that always (or never)
appear together, events that cause other events to occur, producer-consumer patterns, etc. Such
abilities can be seen as a form of mining traces for scenario-based specifications (see, e.g.,
[118]). The generated properties are not guaranteed to be valid, and need to be checked — ei-
ther formally, by Athena (e.g., by model checking), or statistically, by Regina (e.g., by running
even more simulations of the system). If and when proven correct, and assuming that they are
relevant, these emergent properties can serve as part of the official certification that the system
performs as intended (one example appeared at the end of Section 11.2). However, even when
the sisters guess “incorrectly”, i.e., come up with properties that are later shown not to hold,
this can still be quite useful, often drawing the developer’s attention to bugs.

Once Regina has obtained a list of candidate properties, the next step is to attempt to prove
or disprove each of them. In our experience with the tool, for a large system this list tends to
contain dozens of properties, and so it is typically infeasible to model check each and every one
of them and present the conclusions quickly. We mitigate this difficulty in several ways: (i) We
attempt to reduce redundancy. Thus, if we have identified a class of similar emergent properties,
we may start by checking just one of them and assign the remaining properties a lower priority.
(ii) We employ a prioritization heuristic, aimed at checking first those properties that are likely
to be more interesting to the user. For instance, if a semaphore-like construct was identified, we
will prioritize the checking of a property that states that in some cases mutual exclusion may
be incorrectly implemented, as this is considered a safety critical property, which may be more
interesting to the user. (iii) We present any conclusion to the user as soon as it is reached, while
the sisters continue to check additional properties. (iv) We leave room for manual configuration
of the framework; i.e. the developers can manually prioritize the testing of certain properties if
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they so desire.

This prioritization scheme yields an ordered list of properties, which are then checked in
sequence. However, this list is still typically quite long, and it is desirable to dispatch properties
as soon as possible, so that the results will appear in time to be relevant. To this end, we build
upon a large body of existing work regarding the formal analysis of scenario-based models,
including, e.g., abstraction-refinement techniques (Chapter 5), program instrumentation tech-
niques (Chapter 4) and SMT-based (theory-aided) techniques (Chapters 7 and 8). Indeed, this
is the main reason why we chose to implement a wise framework in the context of the scenario-
based paradigm: it is sufficiently expressive for real-world systems (Chapter 10), but on the
other hand is amenable to, and even facilitates, program analysis [83]. Since the ability to
quickly and repeatedly analyze behavioral models is critical to our approach, this seemed like
a natural fit.

From this point on, Athena and Regina will attempt to discharge as many properties as pos-
sible, and present the results to the user. By default, Athena will attempt to model check the
properties in sequence, using the abstraction-refinement based model checking for scenario-
based programs that we discussed in Chapter 5. Alternatively, the user may configure the
framework to use other tools: explicit model checking or an SMT-based approach (also per-
formed by Athena), or have Regina perform statistical checking. Here, statistical checking
entails Regina running many simulations under various environment assumptions (fair/unfair
environment, starvation, round-robin triggering of events, etc.), and repeatedly checking the
property at hand. This technique is not guaranteed to be sound, of course, but it can yield in-
teresting conclusions nonetheless, and it affords a level of assurance of the property holding,
which may suffice for ones that are not safety-critical. We are currently in the process of imple-
menting an adaptive mechanism that would attempt to run the various techniques in Athena’s
arsenal with a timeout value, abandoning a technique if it does not prove useful for a specific
input.

The final phase of the sisters’ analysis cycle is showing the user the properties that were
proved or disproved. In some cases, the mined properties are irrelevant, and the user may
discard them. In other cases, desirable properties are shown to hold, and the user is then
reassured that the program is working as intended. The remaining cases can either be undesired
properties that do hold, or “classical” bugs, where a property that the user assumed to hold is
proven by Athena to be violated. In the latter case, the user can interact with the development
framework, and ask for, (i) a trace log showing how the property was violated; (ii) a suggestion
for a fix, in the form of a scenario that is to be added the model (along the lines of Chapter 4);
or (iii) the addition of a monitor scenario, to alert the user when the property is violated at
run-time (usually used for debugging purposes).

Apart from the analysis flow just described, Athena also supports some forms of automatic
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optimization — e.g., identifying parts of the code that may never be reached and suggesting
how to remove them, as we saw in Section 11.2.

So far we have dealt with the framework’s offline capabilities, performed by Athena and
Regina — that is, analysis performed during development, usually after compilation, but with-
out running the actual system. In contrast, the online sister Livia participates in debugging the
system as it runs. She connects to the system and monitors it by “pretending” to be a scenario
object in the behavioral program, which constantly waits for every one of the program’s events.
Livia also has at her disposal the abstract model of the program produced by Athena in the first
step of the analysis, and she uses it — along with the sequence of events triggered so far — to
keep track of the internal states of every object in the system.

Livia’s main capability is to launch bounded model checking from a given state, checking
for properties at run time. For instance, the user debugging the program might believe that a
corner case has been arrived at, from which the initial state can never be reached, and can have
Livia investigate this. Livia will attempt to verify the property using bounded model checking.
This sort of operation will typically be initiated manually by the user, but Livia also attempts
to recognize problematic cases on her own — for instance, when certain objects in the system
have become deadlocked or simply have not changed states in a while — and asks the user
whether she should investigate. As previously mentioned, whenever a more thorough analysis
is requested Livia can also pass queries over to Athena and Regina.

11.4 A Case-Study: A Cache Coherence Protocol

In order to evaluate the applicability of our wise development framework to larger systems, we
used it to develop a cache coherence protocol. Such protocols are designed to ensure consistent
shared memory access in a set of distributed processors. In order to minimize the number of
read operations on the actual memory, processors cache the results of previous reads. Con-
sistency then means that cached values stored throughout the system need to be invalidated
when a processor writes a new value to the actual memory. The motivation for choosing this
particular example was that cache coherence protocols are notoriously susceptible to subtle,
concurrency-related bugs, making them a prime candidate to benefit from a wise development
environment. The specific protocol that we implemented is a variant of the well-studied Fu-
turebus protocol [50].

An important question that we attempted to address through the case-study was whether
the notion at the core of our approach — namely, developing a non-trivial system together with
the aid of a proactive framework — is convenient and/or useful. While this issue is highly
subjective, we can report that in the systems we modeled the sisters’ aid proved valuable.
In particular, they typically displayed their insights about the program in a timely manner,
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Figure 11.4: Screenshots of our wise development framework, taken during the cache coher-
ence case-study. The left window depicts a standard editor, in which the code of the program
is being written. The analysis tools are running in the background, and with every successful
compilation of the code they automatically receive a fresh snapshot and analyze it. The middle
window shows output from the analysis — in this case, emergent properties that were exam-
ined. One property was proved correct and another was shown not to hold (a counter-example
is provided). Most of the time we had these two windows open on separate screens. The right-
hand side window shows a simple GUI that we used to instruct the tools to focus on certain
properties and the means they should use: explicit or abstraction based model checking, statis-
tical testing, creating a monitor thread, etc. We used this option when additional clarification
regarding certain emergent properties was required.

with results starting to flow in seconds after each compilation; and although sometimes the
insights proved irrelevant, in several cases they pointed out concurrency-related bugs that we
had overlooked, and which we then repaired. In other cases, the framework’s conclusions
served to confirm that the model was “working as intended”, which was particularly reassuring,
for example, after adding a new feature.

Another goal that we had was to identify a basic methodology for how modeling or pro-
gramming should be conducted in such an environment. A setup that we found convenient is
depicted in Figure 11.4. As for the flow of the process, we found it useful to have a quick
glance at the framework’s logs after each compilation to check for any critical mistakes, and to
look more thoroughly at the logs after making significant changes to the code base.

We now show two examples of the usage of the wise development framework during our
case-study. A more complete set of examples, as well as the entire code base, is available on-
line [81]. In order to properly illustrate the tool’s usage during development, we took snapshots
of our code at significant milestones, along with the conclusions that the wise framework was
able to draw from it — these are also available online. Finally, we also provide there a video
clip that features the development framework in action.

Figure 11.5 depicts a list of emergent properties that the development framework produced
at one point during development. Recall that unless given specific instructions by the developer,
the tool begins to check these properties, one by one; the figure shows a list of properties that
have been checked at that point, indicating which of them hold and which do not. The tool
mines for various types of properties, two of which are depicted in the figure: implications,
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Checking emergent properties:

Re leaseBus (1) <--> Cache [2] : RequestBus (1)
[fails]

Cache [2] : RequestBus (1) --> Re leaseBus (1)
[holds]

Re leaseBus (1) <--> Cache [1] : RequestBus (1)
[fails]

Cache [1] : RequestBus (1) --> Re leaseBus (1)
[holds]

Cache [2] := (Mem[1] == 1) --> Re leaseBus (1)
[holds]

Re leaseBus (1) <--> Pc[1] : Succe s s
[fails]

Cache [2] : RequestBus (1) <--> Pc[2] : Succe s s
[fails]

...

Figure 11.5: A list of emergent properties produced and checked by the wise development
framework. The tool typically does not finish checking everything on the list, and so informa-
tion is displayed as soon as it is available. A counter-example is available for properties that
fail to hold.

denoted a→b, i.e., whenever event a occurs b also occurs a short time earlier or later, and
equivalences, denoted a↔b, i.e., the implication holds in both directions.

Figure 11.6 depicts an example for which Athena’s abstraction-based model checking
proved especially handy, allowing her to quickly cover more properties. There, the emergent
property being verified was that “cache 3 cannot acquire bus 2 repeatedly without first releas-
ing it” — a property that describes mutual exclusion in the bus ownership. This property is an
instantiation of the general pattern “consecutive a events must have b events between them”.
At the time this property was mined and tested, directly model checking it entailed exploring
972233 reachable states and took over 27 minutes. By using abstraction-refinement techniques,
Athena was able to abstract away irrelevant parts of the code (namely code modules that only
pertained to other buses). In this way, verifying the property entailed exploring just 21000
reachable states, and took less than 31 seconds. The key observation here is that this is by no
means merely a standard direct usage of abstraction-refinement. The entire process — finding
the emergent property, figuring out which modules are not likely to affect it so that they can
be abstracted away, and then model checking the property on the abstract model — were all
handled proactively and automatically by the framework. And clearly, such speedups allow the
framework to cover more properties, and present them to the programmer in a timely manner.

11.5 Related Work

Work related to subject of this chapter can be viewed in two perspectives. One is over the
individual capabilities of the three sisters, that is, mainly, discovering and proposing candidate
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Checking emergent property:

Consecutive Cache [3] : RequestBus (2) events

must have Re leaseBus (2) events between them

Attempting abstraction -based model checking

Abstracting module 1:

CacheOneUpdate , CacheTwoUpdate ,

CacheTwo , CacheOne ,

CacheTwoReadFetchBit , CacheOneReadFetchBit ,

CacheTwoReadHasBit , CacheTwoWriteFetchBit ,

CacheTwoWriteHasBit , PcTwoRead , PcTwoWrite ,

CacheOneReadHasBit , CacheOneWriteHasBit ,

PcOneRead , PcOneWrite , CacheOneWriteFetchBit

Abstracting module 2:

CacheTwoInvalidate

Abstracting module 3:

CacheOneInvalidate

Conclusion: property [holds]

Figure 11.6: Extracts from the logs of the wise development framework, illustrating the au-
tonomous verification of an emergent property that has been identified. The three code mod-
ules depicted (each a set of scenario objects) are irrelevant to the property at hand, and are
automatically abstracted. Other modules in the program, those that are relevant to the property
at hand, are not abstracted. The property is then verified for the resulting over-approximation
— leading to improved performance.

emergent properties, and then verifying or refuting these properties. The other perspective is
that of the overall view of a wise development environment that accompanies the developer and
automatically and proactively carries out these tasks and others, such as requirements analysis,
test generation, synthesis, and more.

From the first perspective, there is a vast amount of pertinent research, and we focus here on
only a few of the relevant papers. The actions performed by Regina, i.e. the dynamic discovery
of candidate properties and invariants from program execution logs, is a form of specification

mining [20]. This topic has been studied in the context of scenario-based specification in, e.g.,
[42, 117], and Regina uses similar techniques. For instance, she looks for emergent properties
that have the trigger and effect structure of [117]. However, a key aspect in Regina’s operation
is the need to conclude the mining phase as quickly as possible, so that she can be seamlessly
integrated into the development cycle. This is achieved by employing prioritization heuristics,
and putting limits on the number of traces (and lengths thereof) that Regina considers. In the
future we intend to enhance Regina with a mechanism similar to the one discussed in [55],
where statistical criteria are used to determine when “enough” traces have been considered,
hopefully boosting her performance even further.

Checking whether properties mined from traces indeed hold for the model in general brings
us to the broad field of program and model verification. Many powerful and well known tools
exist, such as Spin, Slam, Blast, Uppaal, Java Pathfinder, Astrée, ESC/Java and others, and
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they utilize many forms of explicit and symbolic model checking, static analysis, deductive
reasoning, and SAT and SMT solving (see [15] for a brief survey of the application of such
methods in practice). In our framework these tasks are handled by Athena, and she uses tools
specifically optimized for behavioral models [86, 7, 8].

As to the second perspective, successful attempts at automatic property discovery and sub-
sequent verification appear, e.g., in [131, 151]. There, the Daikon tool is used to dynamically
detect candidate program invariants which are then used to either annotate or instrument the
program. In [131] these guide ESC/Java in verifying the properties, and in [151] they help
guide symbolic execution in the discovery of additional or refined invariants. The motivation
and approach of Daikon are very close to ours, but we aim at constructing a fully integrated,
proactive and interactive environment, built upon the highly incremental paradigm of behav-
ioral modeling.

Providing an interactive analysis framework that is tightly integrated into the development
cycle/environment has become quite widespread in the industry over recent years. Some no-
ticeable examples are Google’s Tricorder [139], Facebook’s Infer [56] and VMWare’s Review

Bot [24] tools. These tools use static analysis to automate the checking for violations of coding
standards and for common defect patterns. Lessons learned from these projects indicate that,
in order to be successfully accepted by programmers, an integrated analysis framework should
have the following properties: (i) it needs to seamlessly integrate into the workflow of devel-
opers; (ii) it must produce results quickly; and (iii) it has to perform its analysis in a modular
manner, so that it can scale reasonably well to large projects. The design of our framework is
indeed aimed at achieving these properties. In particular, for the modular analysis part, Athena
attempts to leverage the special properties of scenario-based models and reason about individ-
ual objects. In [4], it is shown that objects in behavioral models often have very small state
spaces; and this allows Athena to effectively compare these objects to her stored meta-model
and identify object patterns that can later be used for analysis.

11.6 Conclusion

In this chapter we contribute to the effort of simplifying and accelerating development of robust
reactive systems, by proposing a development framework along the lines raised in e.g., [43, 82].
In a nutshell, the idea is to start with a modeling/programming formalism that is expressive,
modular and relatively simple, and integrate quick, continuous, and easy-to-use analysis into
the development process. This entails extending and adjusting existing analysis techniques in
order to render them more interactive and proactive.

Our development framework is currently comprised of three main elements: specification
mining and initial semi-formal analysis for generating candidate system properties, abstraction-
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assisted formal analysis for verification of detected properties, and run-time debugging. When
integrated into the development cycle, these elements can often draw developers’ attention to
subtle bugs that could otherwise be missed. We carried out initial evaluation of the frame-
work by iteratively developing a cache coherence protocol, and saw that it was successful in
discovering and reporting bugs.

In the future we plan to carry out a more extensive, empirical comparison between our
development framework and related tools, such as Tricorder [139] and Infer [56]. We also plan
to enhance Regina’s specification-mining capabilities with learning techniques [20], allowing
her to learn over time which emergent properties are most valuable to programmers and should
be checked first.

While our work so far is but an early step towards the vision of the computer acting as a
wise, fully-fledged proactive member of the development team, we hope that it contributes to
demonstrating both the viability and the potential value of this direction.
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Chapter 12

Discussion and Next Steps

12.1 Discussion

Due to the pervasiveness of software in today’s world, the reliable design and implementation
of reactive systems is a highly important task. Unfortunately, the inherent intricacy of complex
concurrent software makes this task very difficult to accomplish manually. A great deal of effort
has been put into devising automated tools to mitigate this difficulty by assisting in software
development and verification — but so far, these have proven insufficient.

In this thesis we attempted to point out a connection, which, we feel, could help improve
the scalability of formal analysis techniques, making them more suited to real-world systems.
Specifically, we began to characterize the deep connection between the programming model,
or language, that the developers choose to use, and the difficulty of analyzing the constructed
software. Our goal was to emphasize that, when choosing a programming model for the devel-
opment of a project, it is not enough to pick just the model or language that is most expressive,
powerful or popular; rather, we must take into account that this choice can have an important
effect on the developed software’s reliability. Thus, one must take into account the analysis
tasks that would have to be performed later on, and attempt to pick a programming model that
will facilitate them.

Our studies indicated a certain trade-off between a model’s likely appeal to programmers
and its ease of analysis. Specifically, programmers are likely to prefer stronger models, as they
afford a greater degree of freedom — but this freedom can be a hindrance to analysis. A balance
does appear to exist, but the choice must be made intelligently, and a great deal of research
is still required in order to fully characterize the costs and benefits of various programming
idioms. Still, we hope that the results presented here will serve as a good basis for this endeavor.

In this thesis we focused on the behavioral programming approach, and its underlying
RWB model. While the ideas behind our research are compatible with a verity of additional
programming languages, this model seemed like a good place to start and address the afore-
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mentioned trade-off — due to BP’s relative simplicity on the one hand, and its appeal and
intuitively to programmers on the other. Also, the RWB idioms appear, sometimes in related
form, in a variety of programming models. Thus, we hope, some of our conclusions could be
adapted and carried over to those models as well.

Part II of our thesis was dedicated to studying the benefits of the RWB model and its
constituent individual idioms from an analysis perspective. We were able to demonstrate the
following connections:

• Program Repair. In Chapter 4 we introduced a program repair technique that is auto-
matic and non-intrusive, i.e. is performed strictly by adding code to existing software.
Non-intrusiveness is a desirable property when attempting to fix legacy code, whose au-
thors may be unavailable. The blocking idiom of the RWB model proved to be a key
factor in the repair process: in the case of safety violations it allowed us to block harmful
event sequences, and in the case of liveness violations it allowed us to delicately inject
fairness when the system’s execution was going in the wrong direction. We feel that
this use-case demonstrates our approach nicely: if software being developed is likely to
require repeated repairs over a long period of time, including the blocking idiom in the
computational model may be advisable.

• Abstraction. In Chapter 5 we went a step further, and showed how the properties of
the RWB model could be leveraged in order to greatly increase the scalability of the
repair algorithm from Chapter 4. Specifically, we showed how RWB threads can be
easily analyzed and grouped together into modules — the irrelevant of which can then
be abstracted away, allowing for a more effective repair procedure. This result served to
show that simple programming models, such as RWB and variants thereof, can create a
powerful synergy with existing advanced analysis techniques. Thus, our research direc-
tion can be regarded as orthogonal to traditional efforts on improving the scalability of
analysis tools.

• Succinctness. In Chapter 6 we took a more rigorous view, and attempted to quantify
mathematically the advantages that the RWB idioms seemed to afford. Specifically, we
were able to characterize cases in which including each of these idioms in the program-
ming model could exponentially reduce the size of the resulting program. This exponen-
tial decrease in size can lead to a dramatic increase in the performance of analysis tools,
such as compositional model checkers.

• Compositional Verification. Having shown the potential that models such as RWB
possess with regard to compositional verification, we then proceeded to demonstrate this
potential empirically. We developed two techniques, one semi-automatic (Chapter 7)
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and one fully automatic (Chapter 8), in which SMT solvers were used in proving system
correctness in a compositional fashion. Specifically, we utilized the fact that the RWB
threads in our input programs were very succinct in order to check and formulate their
individual properties.

In our opinion, Part II adequately demonstrates the benevolent effect that concurrency id-
ioms can have on formal analysis. This addresses the first part of the trade-off that we were
studying. We then continued, in Part III, to demonstrate that such simple models are also
sufficiently powerful and appealing from a software engineering point of view:

• Distributed RWB Programs. The tight synchronization of threads in the RWB model
was a key aspect in facilitating the analysis tasks that we studied in the previous chap-
ters. Thus, it was important to show that this high degree of synchronization does not
come at the expense of the model’s applicability to distributed frameworks. In Chap-
ter 9 we presented a mechanism for running RWB programs in a distributed manner,
while preserving their semantics. Thus, an RWB program can be analyzed as if it were
synchronous, and the results would still apply if it is later run in a distributed manner.

• Scaling-Up RWB. In Chapter 10 we set out to check whether the RWB model was in-
deed sufficient for programming large software systems. To address this we implemented
a web-server using the RWB idioms. To the best of our knowledge, this is the largest
piece of software developed with the RWB framework heretofore; and our experience
indicated that, with a few small extensions,RWB was indeed up to the task. This empir-
ical result was important in establishing the fact that models that satisfy both sides of the
trade-off that we were studying do exist.

• Wise Computing and RWB Programs. In Chapter 11 we attempted to bring both parts
of our thesis together, and implement a framework in which a programmer could ef-
fectively tap the analysis advantages that RWB provides. Specifically, we followed the
spirit of the Wise Computing vision [82], and created a basic wise framework — i.e., a
framework that works with the developer interactively and proactively in attempting to
create reliable software. To this end we harnessed most of the analysis tools developed
in Part II and integrated them into a single development environment.

12.2 Next Steps

We feel that our results serve as strong indication of the validity and usefulness of the research
direction we have taken. However, a great deal of work remains to be done in order to truly
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understand the subtle connections between programming models and program analysis. In
general, we propose (and hope to eventually pursue ourselves. . . ) the following directions:

1. Going beyond RWB. We feel that our choice of RWB as an initial model to study was
justified. However, having gained some initial insight into the nature of the problem, it
now seems advisable to expand the work beyond these initial idioms. Other idioms that
come to mind as worthwhile to focus on are various synchronization and voting idioms,
pairwise or n-wise message passing and hierarchical components.

2. Applying the technique to larger case-studies. In Chapter 10 we created a large web-
server application using RWB, which was used to evaluate some of our analysis tech-
niques (Chapters 5 and 8). This process proved highly useful and, given more time, we
would carry out similar evaluations with even larger pieces of software.

3. The Wise Computing effort. The Wise Computing vision [82] has, of course, many
merits in its own right; however, we consider it also as a means for making advanced
analysis tools, such as those discussed in Part II, easily accessible to programmers. In
general, we believe that the selected programming model will have a similar effect on
the wise computing environment as it does on other analysis algorithms, and so the two
approaches — our approach and that of wise computing — could prove mutually benefi-
cial.
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List of Abbreviations

• RWB: the request-wait-block model

• BP: behavioral programming

• B-thread: behavior thread

• ESM: event selection mechanism

• BPJ: a behavioral programming framework in Java

• BPC: a behavioral programming framework in C++

• SMT: satisfiability modulo theories

• TCP: transition control protocol

• HTTP: hypertext transfer protocol

• CEGAR: counter-example guided abstraction refinement

• POSIX: portable operating system interface

• B-node: behavioral node
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