
Formal Methods in Computer-Aided Design 2024

Formally Verifying Deep Reinforcement Learning
Controllers with Lyapunov Barrier Certificates

Udayan Mandal1, Guy Amir2, Haoze Wu1, Ieva Daukantas3, Fletcher Lee Newell1, Umberto J. Ravaioli4,
Baoluo Meng5, Michael Durling5, Milan Ganai1, Tobey Shim1, Guy Katz2, and Clark Barrett1

1Stanford University, Stanford, United States, {udayanm, haozewu, flnewell, mganai, tshim24,
barrett}@stanford.edu

2The Hebrew University of Jerusalem, Jerusalem, Israel, {guyam, guykatz}@cs.huji.ac.il
3IT University of Copenhagen, Copenhagen, Denmark, daukantas@itu.dk

4Google, Mountain View, United States, uravaioli@google.com
5GE Aerospace Research, Niskayuna, United States, {baoluo.meng, durling}@ge.com

Abstract—Deep reinforcement learning (DRL) is a powerful
machine learning paradigm for generating agents that control
autonomous systems. However, the “black box” nature of DRL
agents limits their deployment in real-world safety-critical appli-
cations. A promising approach for providing strong guarantees
on an agent’s behavior is to use Neural Lyapunov Barrier (NLB)
certificates, which are learned functions over the system whose
properties indirectly imply that an agent behaves as desired.
However, NLB-based certificates are typically difficult to learn
and even more difficult to verify, especially for complex systems.
In this work, we present a novel method for training and verifying
NLB-based certificates for discrete-time systems. Specifically, we
introduce a technique for certificate composition, which simpli-
fies the verification of highly-complex systems by strategically
designing a sequence of certificates. When jointly verified with
neural network verification engines, these certificates provide a
formal guarantee that a DRL agent both achieves its goals and
avoids unsafe behavior. Furthermore, we introduce a technique
for certificate filtering, which significantly simplifies the process
of producing formally verified certificates. We demonstrate the
merits of our approach with a case study on providing safety
and liveness guarantees for a DRL-controlled spacecraft.

I. INTRODUCTION

In recent years, deep reinforcement learning (DRL) has
achieved unprecedented results in multiple domains, including
game playing, robotic control, protein folding, and many
more [22], [49], [65], [72]. However, such models have an
opaque decision-making process, making it highly challenging
to determine whether a DRL-based system will always be-
have correctly. This is especially concerning for safety-critical
domains (e.g., autonomous vehicles), in which even a single
mistake can have dire consequences and risk human lives. This
drawback limits the incorporation of DRL in real-world safety-
critical systems.

The formal methods community has responded to this
challenge by developing automated reasoning approaches for
proving that a DRL-based controller behaves correctly [62].
These efforts rely in part on specialized DNN verification
engines (a.k.a. DNN verifiers), which adapt techniques from
other domains such as satisfiability modulo theories, abstract
interpretation, mixed integer linear programming, and convex
optimization [55], [56], [67], [87]. DNN verifiers take as

input a DNN and a specification of the desired property and
produce either a proof that the property always holds, or a
counterexample demonstrating a case where the property does
not hold. While the scalability of DNN verifiers has improved
dramatically in the past decade [20], they struggle when
applied to reactive (e.g., DRL-based) systems with temporal
properties which require reasoning about interactions with the
environment over time. This is because a naive approach for
reasoning about time requires the involved DNN to be unrolled
(i.e., a copy made for each time step), greatly increasing the
complexity of the verification task.

On the other hand, for dynamical systems, a traditional
approach for guaranteeing temporal properties has been to use
control certificates such as Lyapunov Barrier functions [63].
Unfortunately, standard approaches for constructing these
functions are not easily applicable to DRL-based dynamical
systems. Recently, however, techniques have been developed
for learning control certificates. We call these Neural Lya-
punov Barrier (NLB) certificates [33]. Although NLB-based
approaches have been shown to work for simple, toy examples,
these certificates have been, thus far, difficult to learn and
verify for real-world systems, which often involve large state
spaces with complex dynamics.

In this work, we present a novel framework for training
and formally verifying NLB-based certificates. Our framework
can verify both liveness and safety properties of interest,
providing reach-while-avoid (RWA) guarantees. We use off-
the-shelf DNN verifiers and introduce a set of novel techniques
to improve scalability, including certificate filtering and com-
position.

We demonstrate our approach with a case study targeting
a specific challenge problem, in which the goal is to ver-
ify a DRL-based spacecraft controller [78]. We show that
our framework is able to generate verified NLB-based RWA
certificates for a range of complex properties. These include
liveness properties (e.g., will the spacecraft eventually reach
its destination?) and complex non-linear safety properties
(e.g., the spacecraft will never violate a non-linear velocity
constraint), both of which are challenging to verify using
existing techniques.

https://doi.org/0.34727/2024/isbn.978-3-85448-065-5 15 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/0.34727/2024/isbn.978-3-85448-065-5_15
https://doi.org/0.34727/2024/isbn.978-3-85448-065-5_15
https://creativecommons.org/licenses/by/4.0/

The rest of this paper is organized as follows: Sec. II
gives an overview of relevant background material on property
types, DNN verifiers, and NLB certificates. Related work is
covered in Sec. III. In Sec. IV and V, we present our approach,
and Sec. VI reports the results of our spacecraft case study.1

Finally, Sec. VII concludes.

Note. Proofs and additional details can be found in an extended
technical report [69].

II. PRELIMINARIES

A. Property Types

This work focuses on DRL controllers that are invoked
over discrete time steps. We consider both safety and liveness
properties [5].
Safety. A safety property indicates that a bad state is never
reached. More formally, let X be the set of system states,
and let τ ⊆ X ∗ be the set of possible system trajectories. The
system satisfies a safety property P if and only if every state
in every trajectory satisfies P :

∀α ∶ α ∈ τ ∶ (∀x ∈ α ∶ x ⊧ P) (1)

A violation of a safety property is a finite trajectory ending in
a “bad” state (i.e., a state in which P does not hold).
Liveness. A liveness property concerns the eventual behavior
of a system (e.g., a good state is eventually reached). More
formally, we say a liveness property P holds if and only if
there exists a state x in every infinite trajectory where P holds.
Letting τ∞ be the set of infinite trajectories, we can formalize
this as follows.

∀α ∶ α ∈ τ∞ ∶ (∃x ∈ α ∶ x ⊧ P), (2)

A violation of a liveness property is an infinite trajectory in
which each state violates the property P .

B. DNNs, DNN Verification, and Dynamical Systems.

Deep Learning. Deep neural networks (DNNs) [43] consist
of layers of neurons, each layer performing a (typically non-
linear) transformation of its input. This work focuses on deep
reinforcement learning (DRL), a popular paradigm in which a
DNN is trained to realize a policy, i.e., a mapping from states
(the DNN’s inputs) to actions (the DNN’s outputs), which is
used to control a reactive system. For more details on DRL,
we refer to [64].
DNN Verification. Given (i) a trained DNN (e.g., a DRL
agent) N ; (ii) a precondition P on the DNN’s inputs, limiting
the input assignments; and (iii) a postcondition Q on the
DNN’s output, the goal of DNN verification is to determine
whether the property P (x) → Q(N(x)) holds for any neural
network input x. In many DNN verifiers (a.k.a., verification
engines), this task is equivalently reduced to determining the
satisfiability of the formula P (x)∧¬Q(N(x)). If the formula
is satisfiable (SAT), then there is an input that satisfies the

1Code for reproducing the experiments is available at:
github.com/NeuralNetworkVerification/artifact-fmcad24-docking.

pre-condition and violates the post-condition, which means
the property is violated. On the other hand, if the formula
is unsatisfiable (UNSAT), then the property holds. It has been
shown [55] that verification of piecewise-linear DNNs is NP-
complete.

Discrete Time-Step Dynamical Systems. We focus on
dynamical systems that operate in a discrete time-step setting.
More formally, these are systems whose trajectories satisfy the
equation:

xt+1 = f(xt, ut), (3)

where f is a transition function that takes as inputs the current
state xt ∈ X and a control input ut ∈ U and produces the
next state xt+1. These systems are controlled using a feedback
control policy π ∶ X → U which, given a state x ∈ X produces
control input u = π(x). In our setting, the controller π is
realized by a DNN trained using DRL. DRL-based controllers
are potentially useful in many real-world settings, due to
their expressivity and their ability to generalize to complex
environments [85].

C. Control Lyapunov Barrier Functions

The problem of verifying a liveness or safety property
over a dynamical system with a given control policy can
be reduced to the task of identifying a certificate function
V ∶ X ↦ R, whose input-output relation satisfies a particular
set of constraints that imply the property. There are two
fundamental types of certificate functions.

Lyapunov Functions. A Lyapunov function (a.k.a. Control
Lyapunov function) represents the energy level at the current
state: as time progresses, energy is dissipated until the system
reaches the zero-energy equilibrium point [48]. Hence, such
functions are typically used to provide asymptotic stability,
i.e., adherence to a desired liveness property, or the eventual
convergence of the system to some goal state. Such guarantees
can be afforded by learning a function that (i) reaches a 0
value at equilibrium, (ii) is strictly positive everywhere else;
and (iii) either monotonically decreases [25], [26] or decreases
by a particular constant [40] with each time step.

Barrier Functions. Barrier functions [8], a.k.a. Control
Barrier Functions, are also energy-based certificates. However,
these functions are typically used for verifying safety proper-
ties. Barrier functions enforce that a system will never enter
an unsafe region in the state space. This is done by assigning
unsafe states a function value above some threshold and then
verifying that barrier function never crosses this threshold [7],
[16], [90].

Control Lyapunov Barrier Functions. In many real-world
settings, it can be useful to verify both liveness properties and
safety properties. In such cases, a Control Lyapunov Barrier
Function (CLBF) can be used, which combines the properties
of both Control Barrier functions and Lyapunov functions.
CLBFs can provide rigorous guarantees w.r.t. a wide variety
of temporal properties, including the general setting of reach-
while-avoid tasks [37], which we describe next.

96

https://github.com/NeuralNetworkVerification/artifact-fmcad24-docking

Reach-while-Avoid Tasks. In a reach-while-avoid (RWA)
task, we must find a controller π for a dynamical system such
that all trajectories {x1, x2...} produced by this controller (i)
do not include unsafe (“bad”) states; and (ii) eventually reach
a goal state. More formally the problem can be defined as
follows:

Definition 1 (Reach-while-Avoid Task).
Input: A dynamical system with a set of initial states
XI ⊆ X , a set of goal states XG ⊆ X , and a set of unsafe
states XU ⊆ X , where XI ∩XU = ∅ and XG ∩XU = ∅
Output: A controller π such that for every trajectory
τ = {x1, x2...} satisfying x1 ∈ XI :

1) Reach: ∃ t ∈ N. xt ∈ XG

2) Avoid: ∀ t ∈ N. xt /∈ XU

III. RELATED WORK

A. Control Certificates

Control certificate-based approaches form a popular and
effective class of methods for providing guarantees about com-
plex dynamical systems in diverse application areas includ-
ing robotics [33], energy management [52], and biomedical
systems [35]. Control Lyapunov functions are certificates for
system stability, and the closely-related control Barrier func-
tions are certificates for safety. While such Lyapunov-based
certificates have been proposed over a century ago [66], their
main drawback lies in their computational intractability [42].
As a result, practitioners have mainly relied on unscalable
methods for constructing certificates, such as manual design
for domain-dependent certificate functions [24], [27], sum-of-
squares approaches restricted to polynomial systems [53], [68],
and quadratic programming [63].

1) Formal Verification of Neural Certificates: Recent meth-
ods have leveraged neural networks as verifiable models of
these control certificates, forming a class of neural certificate
approaches [33]. For a fixed controller, [80] distills the prob-
lem into solving binary classification with neural networks, but
the method is limited to polynomial systems and only obtains
a region of attraction, making it incompatible with most RWA
problems, which have a predefined goal region.

In [2], [4], SMT solvers are employed to check whether
a certificate for a specific controller satisfies the Lyapunov
conditions and, if not, to return counterexamples which can be
used to retrain the neural certificate. A similar approach can be
used for Barrier conditions [73]. In [1], [36], the Fossil tool
is introduced, which combines these methods. In [3], Fossil
is used to generate training examples for barrier certificates
which are used to construct overapproximations of safe reach
sets. However, these methods require verifying all constraints
in the certificate for the entirety of the relevant state space —
a task which can be computationally prohibitive (as we show
in Section VI).

In [26], a Neural Lyapunov Control (NLC) framework is
proposed, which jointly learns the Lyapunov certificate and
the controller. The algorithm iteratively calls the dReal SMT

solver [41] to generate counterexamples and retrain both the
neural certificate and the control policy. Various extensions and
applications followed: [45] addresses algorithmic problems in
NLC; [46] automates the design of passive fault-tolerant con-
trol laws using NLC; [97] extends NLC to unknown nonlinear
systems; [88] extends NLC to discrete-time systems; [82]
verifies single hidden-layer ReLU neural certificates with
enumeration [77] and linear programming; and [96] develops
a framework for Barrier functions when there is an existing
nominal controller. However, these methods do not consider
the more general reach-avoid problem.

2) Data-driven Neural Certificates: To improve scalability,
a recent line of research proposes learning certificates and
controllers from online and/or offline data without additional
formal verification [33], following the intuition that, with
increasing data, the number of violations in the trained certifi-
cate will tend toward zero [19]. [25], [40] learn Lyapunov
certificates for stabilization control, and [75], [76], [86],
[95] synthesize neural Barrier functions in various settings
like multi-agent control, neural radiance field [71] imagery,
and pedestrian avoidance. These methods (by design) cannot
provide rigorous guarantees on the validity of their learned
certificates.

B. Reach-Avoid methods

Solutions for tasks requiring the simultaneous verification
of both liveness and safety properties, of which the RWA
task is a common example, have also relied on control
theoretic principles. [34] learns a combined Lyapunov and
Barrier certificate to construct controllers with stabilization
and safety guarantees. The Hamilton-Jacobi (HJ) reachability-
based method (a verification method for ensuring optimal
control performance and safety in dynamical systems [15])
has also been used to solve reach-avoid problems [38], [51],
[84]. Safe reinforcement learning is closely related to reach-
avoid: the goal is to maximize cumulative rewards while
minimizing costs along a trajectory [21], and it has been
solved with both Lyapunov/Barrier methods [28], [91] and HJ
reachability methods [39], [94]. As mentioned, scalability is
a crucial challenge in this context. The next section describes
our approach for addressing this challenge.

IV. REACH-WHILE-AVOID CERTIFICATES

In this section, we present our approach for scalably creating
verified NLB certificates. We first describe reach-while-avoid
(RWA) certificates, a popular class of existing NLB-based
certificates. We next present an extension called Filtered RWA
certificates, which significantly simplifies the learning task and
enables efficient training of certificates for complex properties.
We then present a compositional certification approach, which
independently trains a series of certificates that can be jointly
verified to handle even larger state spaces.

97

A. RWA certificates

A function V ∶ X ↦ R is an RWA certificate for the Reach-
Avoid task in Definition 1 if, for some α > β and ϵ > 0, it
satisfies the following constraints.2

∀x ∈ XI . V (x) ≤ β (4)
∀x ∈ X ∖XG. V (x) ≤ β → V (x) − V (f(x,π(x))) ≥ ϵ (5)
∀x ∈ XU . V (x) ≥ α (6)

Any tuple of values (α,β, ϵ) for which these conditions hold
is called a witness for the certificate. RWA certificates provide
the following guarantees.3

Lemma 1. If V is an RWA certificate for a dynamical system
with witness (α,β, ϵ), and V has a lower bound,4 then for
every infinite trajectory τ starting from a state x ∈ X ∖ XG

such that V (x) ≤ β, τ will eventually contain a state in XG

without ever passing through a state in XU .

Intuitively, V partitions the state space into three regions:
● a safe region where the value of the certificate is at most
β. This region includes the initial states XI and any states
reachable from XI . Furthermore, starting from any non-
goal state in the safe region, the certificate function value
should decrease by at least ϵ at each time step.

● an unsafe region where the value of the certificate is at
least α. This region must include the unsafe states XU .

● an intermediate region, where the value of the certificate
is strictly between β and α. States in this region are not
unsafe but are also not reachable from XI . This can also
be thought of as a “buffer” region that separates the safe
region from the unsafe region. These states play a role in
the compositional approach described below.

B. FRWA certificates

A neural RWA certificate is an RWA certificate realized
by a DNN. Such a DNN can be trained by following the
NLC approach [26], using the constraints (4)–(6) as training
objectives. Because we are also interested in formally verifying
these certificates, we would like to keep the DNNs (both the
controller and the certificate) small so that verification remains
tractable. We have observed that this can be challenging when
the system and properties are non-trivial. To help address this,
we introduce an improvement called Filtered Reach-while-
Avoid (FRWA) certificates.

The idea behind FRWA is straightforward. Often, we can
describe the goal and unsafe regions using simple predicates
(or filters) on the state space. We pick constants c1, c2 such
that c1 ≤ β < α ≤ c2 and then hard-code the implementation of
V so that x ∈ XG → V (x) = c1 and x ∈ XU → V (x) = c2. Note
that the latter ensures that condition (6) holds by construction.

2These constraints are similar to the ones defined in prior work [37] but
are specific to discrete time-step systems and instead place constraints on the
set of unsafe states instead of a compact safe set.

3See [69] for a proof.
4This is always the case if the output of V is implemented using a finite

representation such as floating-point arithmetic.

Importantly, this not only makes the training task easier, but
also reduces the number of queries required to formally verify
the certificate. On the other hand, hard-coding the certificate
value for inputs in XG makes it easier to learn constraint (5).
The reason for this is more nuanced. If we randomly initialize
the certificate neural network, the certificate value for some
states in XG could start out larger than β, making it more
difficult to satisfy constraint (5) for a point x where V (x) ≤ β
and f(x,π(x)) ∈ XG. Fixing the certificate values for states
in XG to at most β (ideally, significantly below β) ensures
that, at least for such points, condition (5) is easier to satisfy.
In practice, FRWA certificates can be implemented by using a
wrapper around a DNN which checks the two filters and only
calls the DNN if they both fail. The practical effectiveness of
FRWA certificates is demonstrated in Sec. VI.

FRWA Training. FRWA simplifies the certificate learning
process, as now, only constraints 4 and 5 are relevant for
training. We custom design the reinforcement learning training
objective function as follows. Let x1, . . . , xN be the set of
training points, and let x′i = f(xi, π(xi)). We define:

Os = cs ∑
i ∣xi∈XI

ReLU(δ1 + V (xi) − β)
∑i ∣xi∈XI

1
(7)

Od = cd ∑
i ∣xi∈X∖(XU∪XG),V (xi)≤β

ReLU(δ2 + ϵ + V (x′i) − V (xi))
∑i ∣xi∈X∖(XU∪XG),V (xi)≤β 1

(8)
O = Os +Od (9)

Eq. (7) penalizes deviations from constraint (4), and Eq. (8)
penalizes deviations from constraint (5). We incorporate pa-
rameters δ1 > 0 and δ2 > 0, which can be used to tune how
strongly the certificate over-approximates adherence to each
constraint. Similarly, constants cs and cd can be used to tune
the relative weight of the two objectives. The final training
objective O in (9) is what the optimizer seeks to minimize, by
using stochastic gradient descent (SGD) or other optimization
techniques. We note that the FRWA certificates are trained in
a self-supervised, non-RL setting.

FRWA Data Sampling. From the formulation above, we
see that only data points in (X ∖ (XU ∪XG)) ∪XI affect the
objectives, and thus, only these data points need to be sampled.

FRWA Verification. We use DNN verification tools to
formally verify that conditions (4)-(6) hold for our certificates.
Filtering introduces a slight complication. Recall that a FRWA
certificate is implemented as a wrapper around a DNN, mean-
ing that the DNN itself can behave arbitrarily when either
x ∈ XG or x ∈ XU . Fortunately, we can adjust the verification
conditions for the DNN part of the certificate as follows.

Constraint (4) can be checked as is. The filtering does not
affect this property. And it is easy to see that checking the
property for the DNN does indeed ensure the property holds
for the full certificate.

Constraint (6) need not be checked at all, as the filtered
certificate ensures this condition by construction.

98

Initialize Train
𝜋 & 𝜋

Verify
 & 𝜋 𝑉 𝑉

Fig. 1: The CEGIS Loop used to iteratively train and verify
controller π and certificate V . Verification counterexamples
are used to augment the training dataset.

Verification of constraint 5 is done by instead checking that:

∀x ∈ X ∖ (XU ∪XG), x′ ∈ X .
(x′ = f(x,π(x)) ∧ V (x) ≤ β)→
(V (x) − V (x′) ≥ ϵ ∨ (x′ ∈ XG)) ∧ (x′ /∈ XU) (10)

There are three main differences between (5) and (10). Since
the filter ensures that V (x) > β when x ∈ XU , we can safely
exclude states in XU from the check. Similarly, if the system
ever transitions from a state x with V (x) ≤ β to an unsafe
state, the filter ensures that condition (5) is violated, so it
suffices to check that x′ /∈ XU to cover this case.

The last difference is a bit more subtle. Observe that (10)
is trivially true if x′ ∈ XG, meaning that if we transition to a
goal state, we do not enforce (5). However, it is easy to see
that Lemma 1 still holds with this relaxed condition: if every
transition either reduces V by at least ϵ or reaches a goal state,
then clearly, we must eventually reach a goal state.

C. CEGIS loop

We use a counterexample-guided inductive synthesis
(CEGIS) loop, shown in Fig. 1, to obtain a fully verified
controller and certificate. We first train an initial controller π.
Then, at each CEGIS iteration, we jointly train V and π until a
loss of 0 is obtained and then use a sound and complete DNN
verifier (we use Marabou [58] in our experiments) to identify
counterexamples. If the verifier identifies a counterexample
violating constraints (4) or (5) (recall that constraint (6) is
satisfied by construction), we sample points in the proximity of
the counterexample and use these to augment the training data.
By sampling multiple nearby points, we hope to influence the
training to learn smooth behavior for a localized neighborhood
instead of overfitting to a specific point. This process is
repeated iteratively until no counterexamples are found, at
which point we are guaranteed to have produced a fully
verified controller and certificate.

V. COMPOSITIONAL CERTIFICATES

While filtering does improve the efficiency of both training
and verification, the approach outlined above still suffers from
scalability challenges, especially as the system complexity or
state space covered by the controller increases. In this section,
we introduce compositional certificates, which aim to aid
scalability by training multiple controller-certificate pairs, each
covering different parts of the state space. The certificates are
compositional in the sense that a simple meta-controller can
be designed to determine which controller-certificate pair to

use when in a given state, and we can formally guarantee that
the meta-controller satisfies the requirements of definition 1.
CRWA. Formally, a compositional RWA certificate (CRWA)
for an RWA task is composed of n RWA certificates,5 which
we denote V0, . . . , Vn−1, with corresponding controllers, which
we denote π0, . . . , πn−1, with n ≥ 2. Furthermore, each
pair (Vi, πi) must be an RWA certificate with some witness
(αi, βi, ϵi) for an RWA task whose dynamics are that of the
main RWA task, but whose parameters are (X i

I ,X i
G,X i

U).
These parameters must satisfy the following conditions:
(i) X 0

I ⊆ XI , X 0
G = XG, and XU ⊆ X 0

U ⊆ (X 0
I ∪X 0

G), where
S denotes the complement of the set S;

(ii) for 0 < i < n, X i−1
I ⊆ X i

I ⊆ XI , X i
G = {x ∈ X i−1

U ∣
Vi−1(x) ≤ βi−1} ∪X 0

G, and XU ⊆ X i
U ⊆ X i−1

U ;
(iii) either X i

I ≠ X i−1
I or X i

U ≠ X i−1
U ; and

(iv) Xn−1
I = XI and Xn−1

U = XU .
Intuitively, the idea is as follows. We start with an initial
controller capable of guiding the system from some subset
of the initial states XI to the original goal states XG while
avoiding some superset of the unsafe states XU . Then, for each
subsequent controller, we ensure that it can guide the system
either from a larger subset of the initial states XI or while
avoiding a smaller superset of the unsafe states XU , or both,
to a new goal region consisting of the states considered safe by
the previous controller, i.e., the states x for which V (x) ≤ β.
For the final controller (controller n − 1), the set of initial
and unsafe states should coincide with those of the original
RWA problem. Note that the algorithm does not say how to
choose of X i

I and X i
U for i < n − 1 other than to specify that

these sets should be monotonically increasing and decreasing,
respectively. Finding good heuristics for choosing these sets
in the general case is a promising direction for future work.

The meta-controller behaves as follows. Given any starting
state x ∈ XI , we first check if x ∈ XG. If so, we are done.
Otherwise, we determine the smallest i for which x ∈ X i

I

and guide the system using πi until a state in X i
G is reached,

which will occur in some finite number of steps because of
the guarantees provided by Vi. At this point, we transition to
πi−1, and the process repeats until a state in XG is reached.

The training and verification of a CRWA certificate is
described in Alg. 1 and visualized in Fig. 2.

The following lemma captures the correctness of our ap-
proach.6

Lemma 2. Given a CRWA certificate for an RWA task with
parameters XI , XG, and XU , all trajectories guided by the
meta-controller starting at any point in XI will reach XG in
a finite number of steps while avoiding XU . In other words,
a CRWA certificate provides a correct solution for the RWA
task.

CRWA Data Sampling. When training certificate Vi, it is
important that the training dataset contains sufficient states

5Each controller in a CRWA can make use of the FRWA technique described
above.

6See [69] for a proof.

99

Algorithm 1: CRWA Training and Verification
Input : XI , XG, XU

Output: π0, . . . , πn−1, V0, . . . , Vn−1 for some n
1 X 0

G ← XG

2 Choose X 0
I ⊆ XI and X 0

U ⊇ XU , with X 0
U ⊆ (X 0

I ∪X 0
G)

3 Choose α0 > β0 and ϵ0 > 0
4 Train and verify controller π0 and certificate V0 with

witness (α0, β0, ϵ0) for the RWA task corresponding
to X 0

I ,X 0
G, and X 0

U using, e.g., the approach shown
in Fig. 1

5 i← 0
6 while X i

I ⊂ XI OR X i
U ⊃ XU do

7 i← i + 1
8 Choose X i

I , X i
U such that X i

I ⊃ X i−1
I or X i

U ⊂ X i−1
U

9 X i
G ← {x ∈ X i−1

U ∣ Vi−1(x) ≤ βi−1} ∪X 0
G

10 Choose αi > βi and ϵi > 0
11 Train and verify controller πi and certificate Vi

with witness (αi, βi, ϵi) for the RWA task
corresponding to X i

I ,X i
G, and X i

U using, e.g., the
approach shown in Fig. 1

Fig. 2: Visualization of how consecutive certificates relate
when building a CRWA certificate. Note that XG need not
be a subset of XI . The dotted lines indicate that the unsafe
state region extends infinitely outside the solid line box. Wavy
lines indicate outer boundaries for initial or goal regions.

sampled from X i
I ∖ X i

G. Otherwise, Vi might learn to assign
values greater than βi as much as possible in order to meet
constraint (5), as opposed to appropriately assigning all states
in X i

I ∖X i
G to have values less than βi, due to an insufficient

loss penalty for constraint (6). To ensure that states in the
region X i

I ∖ X i
G are included in the training data, we can

identify states over constrained subspaces in X i
I ∖ X i

G, and
then include in the data set those points as well as a random
subset of their neighbors which likely lie in the same region.
Tradeoffs in choosing Intermediate Goals for CRWA
certificates. It is possible to further reduce the state space
for individual certificates in a CRWA certificate by using a
more precise description of the goal states. In particular, we
could set the goal states as follows:

X i
G = {x ∈ X i−1

U ∣ Vi−1(x) ≤ βi−1} ∪ X i−1
G . (11)

However, using 11 leads to a linear increase in the number
of DNNs that must be included during training and verification
at each iteration of Alg. 1. This quickly becomes prohibitively
expensive, especially for the verification step. We thus use the
simpler formulation described above.

VI. EVALUATION

A. Case Study

We evaluate our approach on the 2D docking task
from [78],7 in which a spacecraft is trained using DRL to
navigate to a goal. More specifically, a DRL agent maneuvers a
deputy spacecraft, controlled with thrusters that provide forces
in the x and y directions. The deputy spacecraft attempts to
safely navigate until it reaches a state that is in close proximity
to a designated chief spacecraft, while obeying a distance-
dependent safety constraint. We focus on this benchmark
for several reasons: (i) it has been proposed and studied as
a challenge problem in the literature [78], (ii) there exist
natural safety and liveness properties for it; and (iii) existing
approaches have been been unable to formally verify these
properties.

System Dynamics. The system is modeled using the
Clohessy-Wiltshire relative orbital motion linear approxima-
tion in the non-inertial Hill’s reference frame, with the chief
spacecraft lying at the origin [29], [50]. The state of the
system, x = [x, y, ẋ, ẏ]T , includes the position in (x, y) and
the velocities in each direction, (ẋ, ẏ). The control input is
u = [Fx, Fy], where Fx and Fy are the thrust forces applied
along the x and y directions, respetively. Each thrust force
component is allowed to range between −1 and +1 Newtons
(enforced with standard piecewise linear clipping). As in the
original scenario [78], the spacecraft’s mass, m, is 12kg. The
continuous time state dynamics of the system are determined
by the following ordinary differential equations (ODE), with
n = 0.001027 rad/s:

ẋ = [ẋ, ẏ, ẍ, ÿ]T (12)

ẍ = 2nẏ + 3n2x + Fx

m
(13)

ÿ = −2nẋ + Fy

m
(14)

This, in turn, is converted to a discrete system (with a time-
step of T) by numerically integrating the continuous time
dynamics ODE:

x(ti + T) = x(ti) + ∫
ti+T

ti
ẋ(τ)dτ (15)

The discrete-time version has a closed-form solution that we
use to generate successive states for the spacecraft.

Constraints and Terminal Conditions. To maintain safety,
a distance-dependent constraint is imposed on the deputy

7Additional details on this case study are described in our recent related
paper [70] and in the extended version of the current paper [69].

100

Fig. 3: A spiral trajectory: The DRL-controlled spacecraft
(starting from the red point) eventually reaches the destination
(orange) point within the docking region.

spacecraft’s maximal velocity magnitude (while approaching
the chief): √

ẋ2 + ẏ2 ≤ 0.2 + 2n
√
x2 + y2 (16)

We construct a linear over-approximation of this safety con-
straints (with OVERT [83]). It can then be incorporated into
the description of the unsafe region.

The goal is for the deputy to successfully dock with the chief
without ever violating the velocity safety constraint. In the
original benchmark [78], the docking (goal) region is defined
as a circle of diameter d = 1m centered at the origin (0,0).
In our evaluation, we use this same goal region for the initial
training of the DRL controller. However, during the CEGIS
iteration (i.e., the “Train” and “Verify” steps in Fig. 1), we
use a conservative subset of this goal region, namely a square
centered at the origin whose sides have length l = 0.7m. The
reason for this is so that the goal region can easily be described
using linear inequalities.

B. DNN architecture

We explored various architectures for the DNN used to
control the (deputy) spacecraft. During this exploration phase,
we trained each DNN architecture using the original Proximal
Policy Optimization RL algorithm implemented by Ray RLlib
as described in [78] (without any CEGIS iteration).

After training, we simulated each architecture on 4,000
random trajectories. Some selected results are shown in Ta-
ble I. There are two main observations to take away from
these results: (i) while a robust docking capability can be
achieved fairly easily, even for small architectures, safety is
more difficult and appears to not be robust, even for large
architectures; (ii) in all cases, it takes an average of at least 50
steps to dock. The first observation suggests that verification
of the liveness (docking) property should be feasible and that
training a controller that verifiably achieves both safety and
liveness is challenging. The second observation suggests that
even state-of-the-art DNN verifiers are unlikely to be unable
to fully verify the liveness property using the naive unrolling
approach [9].

We also note that the spacecraft often exhibits highly non-
linear spiral trajectories (as depicted in Fig. 3), making DNN
verification based on induction difficult, as it is difficult to find

an inductive property over such irregular trajectories. These
results help motivate the use of NLB certificates for formal
verification of the desired properties. For the experiments
below, we settled on a DNN architecture of two hidden layers
with 20 neurons each, and a certificate architecture of two
hidden layers with 30 neurons each. Both DNNs use ReLU
activations for all hidden layers. The DNN sizes were chosen
based on experimentation and the rough criterion that we
wanted the smallest DNNs for which the CEGIS loop would
converge in a reasonable amount of time.

TABLE I: Performance of various DNN architectures. Statis-
tics are collected (per architecture) over 4,000 trials, with
a maximum trajectory length of 2,000, initialized arbitrarily
to set x, y ∈ [−10,10], but outside the docking region, and
ẋ = ẏ = 0. The first column indicates the number of neurons
per hidden layer.

DNN Architecture Safety Success Docking Success Average Docking Steps
[4,4] 100 10 1,821
[8,8] 11 100 389

[16,16] 30 100 50
[32,32] 5 100 59
[64,64] 100 100 55

[64,64,64,64] 100 99 58
[200,200] 92 100 51

C. Implementation and Setup

The training and verification of the DRL controllers and
certificates were carried out on a cluster of Intel Xeon E5-2637
machines, with eight cores of v4 CPUs, running the Ubuntu
20.04 operating system. Verification queries were dispatched
using the Marabou DNN verifier [58], [87] (used in previous
DNN safety research [10]–[14], [17], [23], [30], [61], [79]) as
well as its Gurobi back end.

For training and verification of RWA, FRWA, and CRWA
certificates, we use the following parameters: α = 1 + 10−5,
β = 1, ϵ = 10−7 (the same for all certificates); c1 = −10,
c2 = 1.2, δ1 = 10−4 −10−5, and δ2 = 10−4 −10−7. These values
were determined to work well experimentally.

For weighting of the training objectives, we use cs = 1 and
cd = 10. The rationale for this is that constraint (4) is much
easier to satisfy than (5), so we use the weights to force the
training to focus on (5).

In the CEGIS loop, a learning rate of 5 × 10−3 is used to
train the first network iteration in the CEGIS loop, and for
retraining, a learning rate of 10−4 is used, since we treat the
incorporation of counterexamples as a “fine-tuning” step and
do not want to overfit to the counterexamples. In the CEGIS
loop, we train until a loss of 0 is achieved and then use the
verification step to find counterexamples. We repeat this until
there are no more counterexamples or a timeout (12 hours) is
reached.

All of our experiments aim to solve RWA tasks, as defined
in Definition 1. The system dynamics are those of the 2D
spacecraft, as described in Section VI-A. RWA tasks are

101

FRWA

RWA

CFRWA-1

CFRWA-2

CFRWA-3
0 2 4 6 8 10 12

mean time (hr)

0
20
40
60
80

100

su
cc

es
s r

at
e

(%
) Average Results:[-1,1]

0 2 4 6 8 10 12
mean time (hr)

0
20
40
60
80

100

su
cc

es
s r

at
e

(%
) Average Results:[-2,2]

0 2 4 6 8 10 12
mean time (hr)

0
20
40
60
80

100

su
cc

es
s r

at
e

(%
) Average Results:[-3,3]

0 2 4 6 8 10 12
mean time (hr)

0
20
40
60
80

100

su
cc

es
s r

at
e

(%
) Average Results:[-4,4]

0 2 4 6 8 10 12
mean time (hr)

0
20
40
60
80

100

su
cc

es
s r

at
e

(%
) Average Results:[-5,5]

F-FRWA

F-RWA

V-FRWA

V-RWA

V-CFRWA-1

V-CFRWA-2

V-CFRWA-3
0 2 4 6 8 10 12

trial time (hr)

1
2
3
4
5

tri
al

All Trials: [-1,1]

0 2 4 6 8 10 12
trial time (hr)

1
2
3
4
5

tri
al

All Trials: [-1,1]

0 2 4 6 8 10 12
trial time (hr)

1
2
3
4
5

tri
al

All Trials: [-3,3]

0 2 4 6 8 10 12
trial time (hr)

1
2
3
4
5

tri
al

All Trials: [-4,4]

0 2 4 6 8 10 12
trial time (hr)

1
2
3
4
5

tri
al

All Trials: [-5,5]

Fig. 4: The first 2 rows show average times and success rates
for creating verified certificates over 5 trials. The bottom 2
rows show specific times for each trial, separated into failed
(“F-”) and verified (“V-”) certificates. CFRWA-1, CFRWA-2,
and CFRWA-3 refer to the first (up to) three CRWA tasks for
the given starting region, corresponding, respectively to the
first (up to) three rows for that starting region in Table II.

parameterized by XG, XI , and XU . For these sets of states,
we typically use square regions centered at the origin. For
convenience, we refer to the set {(x, y) ∣ x, y ∈ [−a, a]}
with the abbreviation [−a, a]. For example, as outlined in
Section VI-A, we set XG = [−0.35,0.35]. We use different
values for XI , depending on the experiment (indeed, this is the
primary variable we vary in our experiments), but whenever
XI = [−a, a], we then set XU = [−(a + 1), a + 1].

D. Experimental Results

RWA vs. FRWA. In our first set of experiments, we select a
set of RWA tasks and train both RWA and FRWA certificates
using our CEGIS loop.8 We select five RWA tasks, where XI

is set to [−i, i] for the ith task. For the RWA certificates, we
follow the approach of [37], whereas our FRWA certificates
are constructed as described in Sec. IV. In each case, we run
five independent trials for each task.

The results are summarized in Fig. 4. The first two rows
show, for each starting region, the number of successful runs
(a run is successful if the CEGIS loop produces a fully verified
controller/certificate pair within the 12 hour time limit) and the

8The Fossil 2.0 tool provides an implementation for computing the RWA
certificates used in [37]. However, our definition of RWA is slightly different,
and we use a different DNN verification tool, so we compare with our own
implementation of RWA certificates to have a more meaningful comparison
and to better isolate the contribution of the filtering technique.

average time required for the successful runs. Results for RWA
are shown as red circles and FRWA as blue squares (we explain
the diamonds later). For example, for starting region [−2,2],
all five trials are successful for FWRA, with an average time
of 2 hours, whereas all five trials are unsuccessful for RWA.
The bottom two rows show data from the same experiments,
but here we show the time taken for each of the five trials. An
unfilled circle or box represents a timeout.

The results suggest that FWRA has a clear advantage
over standard RWA. In fact, RWA only succeeded once in
producing any verified certificate, and only for the simplest
starting region. On the other hand, our FRWA approach is
able to produce certificates faster and for starting regions up
to [−3,3]. After that, both techniques time out.

Compositional Certificates. As demonstrated above, RWA
and FRWA certificates quickly run into scalability challenges
on our case study problem. For example, even with 5 tries and
a 12 hour timeout, neither approach could produce a verified
controller for the [−4,4] or [−5,5] starting regions.

Our second set of experiments demonstrates that this scal-
ability challenge can be addressed with compositional cer-
tificates. We train a set of compositional certificates (each
composed of multiple FRWA certificates) and report the results
in Table II.

Each row of the table corresponds to a compositional
certificate. The first column shows the value of XI for this
certificate. The next columns indicate the number n of com-
posed certificates, the values of X i

I for 0 ≤ i < n − 1, and the
cumulative time required for all but the last certificate. The
next three columns give the minimum, mean, and maximum
time required to produce the controller and certificate for the
last stage of the compositional certificate (recall that we run
five independent trials for all CEGIS loops). The next three
columns show the minimum, mean, and maximum number
of CEGIS iterations used, and the last column indicates how
many of the trials succeeded. Note that when n = 1, the row
corresponds to a single FRWA certificate.

The results clearly indicate that compositional certificates
greatly improve scalability. Whereas the stand-alone certifi-
cates could not scale beyond [−3,3] in 12 hours, we were able
to successfully produce a formally verified 5-stage certificate
for [−11,11] in a little over 5.7 hours. It is also worth noting
that we do get a significant benefit by running 5 independent
CEGIS loops, as both the time and the number of loops can
vary significantly from the minimum to the maximum. Nearly
all of the CEGIS loops eventually completed—only the initial
[3,3] region failed to complete all of its trials—suggesting that
the compositional approach is also more stable and robust.
This can also be seen in Fig. 4: for each starting region
[−a, a], the diamond point labeled CFRWA-i corresponds to
the ith row containing [−a, a] in column 1. We can see that,
compared to the stand-alone RWA and FRWA certificates, the
compositional certificates can be trained faster and with fewer
failures.

102

TABLE II: Compositional certificate results. The columns indicate: the initial set for the final certificate, the size of the
compositional certificate, the initial sets for all but the final certificate, the cumulative time for all but the final certificate,
the total time (min, mean, and max) for training all certificates, and statistics for training the final certificate. We note that
the cumulative time column is always equal to the corresponding value in the min column corresponding to the penultimate
certificate. The wall time is the total time including the final controller/certificate. The CEGIS iterations and success stats are
for the final controller/certificate only.

Compositional Certificate Wall Time (s) CEGIS Iterations
XI n X0

I . . .Xn−2
I Cumulative Time (s) min(t) mean(t) max(t) min(i) mean(i) max(i) success (%)

[-2,2] 1 N/A 0 4199 6890 8322 3 4.8 10 100
[-3,3] 1 N/A 0 3650 6644.5 9639 2 2.5 3 40
[-3,3] 2 [-2,2] 4199 8514 9421 10271 4 4.4 5 100
[-4,4] 2 [-3,3] 3650 5802 6374 6790 2 2.4 3 100
[-4,4] 2 [-2,2] 4199 8940 11026 13620 3 4.2 6 100
[-4,4] 3 [-2,2], [-3,3] 8514 10901 12829 17248 2 4.2 8 100
[-5,5] 2 [-3,3] 3650 6526 10716 19331 2 4.4 9 100
[-5,5] 3 [-3,3], [-4,4] 5802 7171 9884 11945 1 3.4 5 100
[-5,5] 4 [-2,2],[-3,3],[-4,4] 10901 12130 13710 15353 1 2.4 4 100
[-6,6] 3 [-2,2],[-4,4] 8940 13183 16384 20059 4 4.4 5 100
[-6,6] 4 [-3,3],[-4,4],[-5,5] 7171 9680 14027 32103 2 4.6 9 100
[-6,6] 5 [-2,2],[-3,3],[-4,4],[-5,5] 12130 18607 21768 24356 3 4.4 5 100
[-7,7] 3 [-3,3],[-5,5] 6526 9158 10171 10848 2 2.8 3 100
[-7,7] 5 [-3,3],[-4,4],[-5,5],[-6,6] 9680 11878 15967 23419 2 3.6 7 100
[-8,8] 4 [-2,2],[-4,4],[-6,6] 13183 16677 22623 33849 2 3.2 4 100
[-9,9] 4 [-3,3],[-5,5],[-7,7] 9158 12919 16013 18507 2 3.4 5 100

[-10,10] 5 [-2,2],[-4,4],[-6,6],[-8,8] 16677 18137 23421 30872 1 3.4 6 100
[-11,11] 5 [-3,3],[-5,5],[-7,7],[-9,9] 12919 20641 27860 32834 1 2.6 5 100

VII. CONCLUSION

In this work, we present a novel framework for formally
verifying DRL-based controllers. Our approach leverages Neu-
ral Lyapunov Barrier certificates and demonstrates how they
can be used to verify DNN-based controllers for complex
systems. We use a CEGIS loop for training and formally
verifying certificates, and we introduce filters for reach-while-
avoid certificates, which simplify the training and verification
process. We also introduce compositional certificates which
use a sequence of simpler certificates to scale to large state
spaces.

We demonstrate the merits of our approach on a 2D case
study involving a DRL-controlled spacecraft which is required
to dock in a predefined region, from any initialization point.
We demonstrate that for small subdomains, our FRWA ap-
proach is strictly better than competing RWA-based certificate
methods. Furthermore, we demonstrate that our compositional
approach unlocks significant additional scalability.

In the future, we plan to extend our approach to be
compatible with additional formal techniques (e.g., shielding
against safety violations [6], [18], [31], [60], [74], [81], [89],
and Scenario-Based Programming [32], [44], [47], [54], [57],
[59], [92], [93]). We also plan to apply our approach to more
challenging case studies with larger DRL controllers. We see
this work as an important step towards the safe and reliable
use of DRL in real-world systems.

VIII. ACKNOWLEDGEMENTS

This work was supported by AFOSR (FA9550-22-1-0227),
the Stanford CURIS program, the NSF-BSF program (NSF:
1814369, BSF: 2017662), and the Stanford Center for AI
Safety. The work of Amir was further supported by a schol-
arship from the Clore Israel Foundation. We thank Keri-
anne Hobbs (AFRL), Thomas Henzinger (ISTA), Chuchu Fan
(MIT), and Songyuan Zhang (MIT) for useful conversations
and advice which contributed to the success of this project.

103

REFERENCES

[1] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo. Fossil:
a software tool for the formal synthesis of lyapunov functions and
barrier certificates using neural networks. In Proceedings of the 24th
International Conference on Hybrid Systems: Computation and Control,
pages 1–11, 2021.

[2] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo. Formal synthesis of
lyapunov neural networks. IEEE Control Systems Letters, 5(3):773–778,
2020.

[3] A. Abate, S. Bogomolov, A. Edwards, K. Potomkin, S. Soudjani, and
P. Zuliani. Safe reach set computation via neural barrier certificates.
arXiv preprint arXiv:2404.18813, 2024.

[4] D. Ahmed, A. Peruffo, and A. Abate. Automated and sound synthesis
of lyapunov functions with smt solvers. In Tools and Algorithms for the
Construction and Analysis of Systems: 26th International Conference,
TACAS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30,
2020, Proceedings, Part I 26, pages 97–114. Springer, 2020.

[5] B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed
Computing, 2:117–126, 09 1987.

[6] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu. Safe Reinforcement Learning via Shielding. In Proc. of
the 32nd AAAI Conference on Artificial Intelligence, pages 2669–2678,
2018.

[7] A. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier
function based quadratic programs for safety critical systems. Trans.
on Automatic Control, 2017.

[8] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada. Control barrier functions: Theory and applications. In
European Control Conf., 2019.

[9] G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli,
and G. Katz. Verifying Learning-Based Robotic Navigation Systems. In
Proc. 29th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 607–627, 2023.

[10] G. Amir, Z. Freund, G. Katz, E. Mandelbaum, and I. Refaeli. veriFIRE:
Verifying an Industrial, Learning-Based Wildfire Detection System. In
Proc. 25th Int. Symposium on Formal Methods (FM), pages 648–656,
2023.

[11] G. Amir, O. Maayan, T. Zelazny, G. Katz, and M. Schapira. Verifying
Generalization in Deep Learning. In Proc. 35th Int. Conf. on Computer
Aided Verification (CAV), pages 438–455, 2023.

[12] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification
of Deep Reinforcement Learning. In Proc. 21st Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD), pages 193–203, 2021.

[13] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[14] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Verification-Aided
Deep Ensemble Selection. In Proc. 22nd Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD), pages 27–37, 2022.

[15] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-Jacobi
reachability: A brief overview and recent advances. In Conf. on Decision
and Control, 2017.

[16] G. Basile and G. Marro. Controlled and conditioned invariant subspaces
in linear system theory. Journal of Optimization Theory and Applica-
tions, 3:306–315, 1969.

[17] S. Bassan, G. Amir, D. Corsi, I. Refaeli, and G. Katz. Formally
Explaining Neural Networks within Reactive Systems. In Proc. 23rd
Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD),
pages 10–22, 2023.

[18] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang. Shield
Synthesis: - Runtime Enforcement for Reactive Systems. In Proc. of
the 21st Int. Conf. in Tools and Algorithms for the Construction and
Analysis of Systems, (TACAS), volume 9035, pages 533–548, 2015.

[19] N. Boffi, S. Tu, N. Matni, J.-J. Slotine, and V. Sindhwani. Learning
stability certificates from data. In Conference on Robot Learning, pages
1341–1350. PMLR, 2021.

[20] C. Brix, S. Bak, C. Liu, and T. T. Johnson. The fourth international
verification of neural networks competition (vnn-comp 2023): Summary
and results. arXiv preprint arXiv:2312.16760, 2023.

[21] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig. Safe learning in robotics: From learning-based control
to safe reinforcement learning. Annual Review of Control, Robotics, and
Autonomous Systems, 5:411–444, 2022.

[22] Y. Cao, H. Zhao, Y. Cheng, T. Shu, G. Liu, G. Liang, J. Zhao, and
Y. Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods, 2024.

[23] M. Casadio, E. Komendantskaya, M. Daggitt, W. Kokke, G. Katz,
G. Amir, and I. Refaeli. Neural Network Robustness as a Verification
Property: A Principled Case Study. In Proc. 34th Int. Conf. on Computer
Aided Verification (CAV), pages 219–231, 2022.

[24] F. Castañeda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath.
Gaussian Process-based Min-norm Stabilizing Controller for Control-
Affine Systems with Uncertain Input Effects. arXiv, Nov 2020.

[25] Y.-C. Chang and S. Gao. Stabilizing neural control using self-learned
almost lyapunov critics. 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 1803–1809, 2021.

[26] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[27] J. Choi, F. Castañeda, C. J. Tomlin, and K. Sreenath. Reinforcement
Learning for Safety-Critical Control under Model Uncertainty, using
Control Lyapunov Functions and Control Barrier Functions. In Robotics:
Science and Systems. Robotics: Science and Systems, Apr 2020.

[28] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 31,
pages 8092–8101. Curran Associates, Inc., 2018.

[29] W. Clohessy and R. Wiltshire. Terminal guidance system for satellite
rendezvous. Journal of the aerospace sciences, 27(9):653–658, 1960.

[30] D. Corsi, G. Amir, G. Katz, and A. Farinelli. Analyzing Adversarial
Inputs in Deep Reinforcement Learning, 2024. Technical Report. https:
//arxiv.org/abs/2402.05284.

[31] D. Corsi, G. Amir, A. Rodriguez, C. Sanchez, G. Katz, and R. Fox.
Verification-Guided Shielding for Deep Reinforcement Learning, 2024.
Technical Report. http://arxiv.org/abs/2406.06507.

[32] D. Corsi, R. Yerushalmi, G. Amir, A. Farinelli, D. Harel, and G. Katz.
Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming, 2022. Technical Report. https://arxiv.org/abs/2206.09603.

[33] C. Dawson, S. Gao, and C. Fan. Safe control with learned certificates: A
survey of neural lyapunov, barrier, and contraction methods for robotics
and control. IEEE Transactions on Robotics, 2023.

[34] C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control
using robust neural lyapunov-barrier functions. In Conference on Robot
Learning, pages 1724–1735. PMLR, 2022.

[35] J. L. C. B. de Farias and W. M. Bessa. Intelligent control with artificial
neural networks for automated insulin delivery systems. Bioengineering,
9(11):664, 2022.

[36] A. Edwards, A. Peruffo, and A. Abate. Fossil 2.0: Formal certificate
synthesis for the verification and control of dynamical models. arXiv
preprint arXiv:2311.09793, 2023.

[37] A. Edwards, A. Peruffo, and A. Abate. A general verification framework
for dynamical and control models via certificate synthesis, 2023.

[38] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. Reach-avoid
problems with time-varying dynamics, targets and constraints. In
Proceedings of the 18th international conference on hybrid systems:
computation and control, pages 11–20, 2015.

[39] M. Ganai, Z. Gong, C. Yu, S. L. Herbert, and S. Gao. Iterative
reachability estimation for safe reinforcement learning. In Advances
in Neural Information Processing Systems, 2023.

[40] M. Ganai, C. Hirayama, Y.-C. Chang, and S. Gao. Learning stabilization
control from observations by learning lyapunov-like proxy models. 2023
IEEE International Conference on Robotics and Automation (ICRA),
pages 2913–2920, 2023.

[41] S. Gao, S. Kong, and E. M. Clarke. dreal: An smt solver for nonlinear
theories over the reals. In International conference on automated
deduction, pages 208–214. Springer, 2013.

[42] P. Giesl and S. Hafstein. Review on computational methods for lyapunov
functions. Discrete and Continuous Dynamical Systems-B, 20(8):2291–
2331, 2015.

[43] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

104

https://arxiv.org/abs/2402.05284
https://arxiv.org/abs/2402.05284
http://arxiv.org/abs/2406.06507
https://arxiv.org/abs/2206.09603

[44] M. Gordon, A. Marron, and O. Meerbaum-Salant. Spaghetti for
the Main Course? Observations on the Naturalness of Scenario-Based
Programming. In Proc. 17th ACM Annual Conf. on Innovation and
Technology in Computer Science Education (ITCSE), pages 198–203,
2012.

[45] D. Grande, E. Anderlini, A. Peruffo, and G. Salavasidis. Augmented
neural lyapunov control. IEEE Access, 2023.

[46] D. Grande, D. Fenucci, A. Peruffo, E. Anderlini, A. B. Phillips,
G. Thomas, and G. Salavasidis. Systematic synthesis of passive fault-
tolerant augmented neural lyapunov control laws for nonlinear systems.
In 2023 62nd IEEE Conference on Decision and Control (CDC), pages
5851–5856. IEEE, 2023.

[47] J. Greenyer, D. Gritzner, G. Katz, and A. Marron. Scenario-Based
Modeling and Synthesis for Reactive Systems with Dynamic System
Structure in ScenarioTools. In Proc. 19th ACM/IEEE Int. Conf. on Model
Driven Engineering Languages and Systems (MODELS), pages 16–23,
2016.

[48] W. Haddad and V. Chellaboina. Nonlinear dynamical systems and
control: A lyapunov-based approach. Nonlinear Dynamical Systems and
Control: A Lyapunov-Based Approach, 01 2008.

[49] T. Hester, M. Quinlan, and P. Stone. A real-time model-based reinforce-
ment learning architecture for robot control, 2011.

[50] G. W. Hill. Researches in the lunar theory. American journal of
Mathematics, 1(1):5–26, 1878.

[51] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac. Safety
and liveness guarantees through reach-avoid reinforcement learning. In
Proceedings of Robotics: Science and Systems, Virtual, 7 2021.

[52] T. Huang, S. Gao, and L. Xie. A neural lyapunov approach to
transient stability assessment of power electronics-interfaced networked
microgrids. IEEE transactions on smart grid, 13(1):106–118, 2021.

[53] Z. Jarvis-Wloszek, R. Feeley, Weehong Tan, Kunpeng Sun, and
A. Packard. Some controls applications of sum of squares programming.
In 42nd IEEE International Conference on Decision and Control (IEEE
Cat. No.03CH37475), volume 5, pages 4676–4681 Vol.5, Dec 2003.

[54] G. Katz. Guarded Deep Learning using Scenario-Based Modeling.
In Proc. 8th Int. Conf. on Model-Driven Engineering and Software
Development (MODELSWARD), pages 126–136, 2020.

[55] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[56] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021.

[57] G. Katz and A. Elyasaf. Towards Combining Deep Learning, Verifi-
cation, and Scenario-Based Programming. In Proc. 1st Workshop on
Verification of Autonomous and Robotic Systems (VARS), pages 1–3,
2021.

[58] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[59] G. Katz, A. Marron, A. Sadon, and G. Weiss. On-the-Fly Construction
of Composite Events in Scenario-Based Modeling Using Constraint
Solvers. In Proc. 7th Int. Conf. on Model-Driven Engineering and
Software Development (MODELSWARD), pages 143–156, 2019.

[60] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[61] O. Lahav and G. Katz. Pruning and Slicing Neural Networks using
Formal Verification. In Proc. 21st Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 183–192, 2021.

[62] M. Landers and A. Doryab. Deep reinforcement learning verification:
A survey. ACM Comput. Surv., 55(14s), jul 2023.

[63] B. Li, S. Wen, Z. Yan, G. Wen, and T. Huang. A survey on the control
lyapunov function and control barrier function for nonlinear-affine
control systems. IEEE/CAA Journal of Automatica Sinica, 10(3):584–
602, 2023.

[64] Y. Li. Deep Reinforcement Learning: An Overview, 2017. Technical
Report. http://arxiv.org/abs/1701.07274.

[65] J. Lu. Protein folding structure prediction using reinforcement learning
with application to both 2d and 3d environments. In Proceedings of

the 5th International Conference on Computer Science and Software
Engineering, CSSE ’22, page 534–542, New York, NY, USA, 2022.
Association for Computing Machinery.

[66] A. M. Lyapunov. The general problem of motion stability. Annals of
Mathematics Studies, 17(1892), 1892.

[67] Z. Lyu, C. Y. Ko, Z. Kong, N. Wong, D. Lin, and L. Daniel. Fastened
Crown: Tightened Neural Network Robustness Certificates. In Proc.
34th AAAI Conf. on Artificial Intelligence (AAAI), pages 5037–5044,
2020.

[68] A. Majumdar and R. Tedrake. Funnel libraries for real-time robust
feedback motion planning. The International Journal of Robotics
Research, 36(8):947–982, 2017.

[69] U. Mandal, G. Amir, H. Wu, I. Daukantas, F. Newell, U. Ravaioli,
B. Meng, M. Durling, M. Ganai, T. Shim, G. Katz, and C. Barrett.
Formally Verifying Deep Reinforcement Learning Controllers with
Lyapunov Barrier Certificates, 2024. Technical Report. https://arxiv.org/
abs/2405.14058.

[70] U. Mandal, G. Amir, H. Wu, I. Daukantas, F. Newell, U. Ravaioli,
B. Meng, M. Durling, K. Hobbs, M. Ganai, T. Shim, G. Katz, and
C. Barrett. Safe and Reliable Training of Learning-Based Aerospace
Controllers, 2024. Technical Report. http://arxiv.org/abs/2407.07088.

[71] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. Communications of the ACM, 65(1):99–106, 2021.

[72] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning,
2013.

[73] A. Peruffo, D. Ahmed, and A. Abate. Automated and formal synthesis
of neural barrier certificates for dynamical models. In International
conference on tools and algorithms for the construction and analysis of
systems, pages 370–388. Springer, 2021.

[74] S. Pranger, B. Könighofer, M. Tappler, M. Deixelberger, N. Jansen, and
R. Bloem. Adaptive Shielding under Uncertainty. In American Control
Conference, (ACC), pages 3467–3474, 2021.

[75] Z. Qin, T.-W. Weng, and S. Gao. Quantifying safety of learning-based
self-driving control using almost-barrier functions. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 12903–12910. IEEE, 2022.

[76] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. Learning safe multi-
agent control with decentralized neural barrier certificates. In ICLR,
2021.

[77] M. Rada and M. Cerny. A new algorithm for enumeration of cells
of hyperplane arrangements and a comparison with avis and fukuda’s
reverse search. SIAM Journal on Discrete Mathematics, 32(1):455–473,
2018.

[78] U. J. Ravaioli, J. Cunningham, J. McCarroll, V. Gangal, K. Dunlap,
and K. L. Hobbs. Safe reinforcement learning benchmark environments
for aerospace control systems. In 2022 IEEE Aerospace Conference
(AERO), pages 1–20. IEEE, 2022.

[79] I. Refaeli and G. Katz. Minimal Multi-Layer Modifications of Deep
Neural Networks, 2021. Technical Report. https://arxiv.org/abs/2110.
09929.

[80] S. M. Richards, F. Berkenkamp, and A. Krause. The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems. In Proceedings of The 2nd Conference on Robot Learning,
volume 87 of Proceedings of Machine Learning Research, pages 466–
476, 29–31 Oct 2018.

[81] A. Rodriguez, G. Amir, D. Corsi, C. Sanchez, and G. Katz. Shield
Synthesis for LTL Modulo Theories, 2024. Technical Report. http://
arxiv.org/abs/2406.04184.

[82] P. Samanipour and H. A. Poonawala. Stability analysis and controller
synthesis using single-hidden-layer relu neural networks. IEEE Trans-
actions on Automatic Control, 2023.

[83] C. Sidrane, A. Maleki, A. Irfan, and M. J. Kochenderfer. Overt: An
algorithm for safety verification of neural network control policies for
nonlinear systems. Journal of Machine Learning Research, 23(117):1–
45, 2022.

[84] O. So and C. Fan. Solving stabilize-avoid optimal control via epigraph
form and deep reinforcement learning. In Proceedings of Robotics:
Science and Systems, 2023.

[85] V. Talpaert, I. Sobh, B. R. Kiran, P. Mannion, S. Yogamani, A. El-Sallab,
and P. Perez. Exploring applications of deep reinforcement learning for
real-world autonomous driving systems, 2019.

105

http://arxiv.org/abs/1701.07274
https://arxiv.org/abs/2405.14058
https://arxiv.org/abs/2405.14058
http://arxiv.org/abs/2407.07088
https://arxiv.org/abs/2110.09929
https://arxiv.org/abs/2110.09929
http://arxiv.org/abs/2406.04184
http://arxiv.org/abs/2406.04184

[86] M. Tong, C. Dawson, and C. Fan. Enforcing safety for vision-based
controllers via control barrier functions and neural radiance fields.
In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 10511–10517. IEEE, 2023.

[87] H. Wu, O. Isac, A. Zeljić, T. Tagomori, M. Daggitt, W. Kokke, I. Refaeli,
G. Amir, K. Julian, S. Bassan, et al. Marabou 2.0: A versatile formal
analyzer of neural networks. arXiv preprint arXiv:2401.14461, 2024.

[88] J. Wu, A. Clark, Y. Kantaros, and Y. Vorobeychik. Neural lyapunov
control for discrete-time systems. Advances in Neural Information
Processing Systems, 36:2939–2955, 2023.

[89] M. Wu, J. Wang, J. Deshmukh, and C. Wang. Shield Synthesis for Real:
Enforcing Safety in Cyber-Physical Systems. In Proc. 19th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 129–137,
2019.

[90] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. Robustness of control
barrier functions for safety critical control. Int. Federation of Automatic
Control, 2015.

[91] Y. Yang, Y. Jiang, Y. Liu, J. Chen, and S. E. Li. Model-free safe
reinforcement learning through neural barrier certificate. IEEE Robotics
and Automation Letters, 2023.

[92] R. Yerushalmi, G. Amir, A. Elyasaf, D. Harel, G. Katz, and A. Marron.
Scenario-Assisted Deep Reinforcement Learning. In Proc. 10th Int.
Conf. on Model-Driven Engineering and Software Development (MOD-
ELSWARD), pages 310–319, 2022.

[93] R. Yerushalmi, G. Amir, A. Elyasaf, D. Harel, G. Katz, and A. Marron.
Enhancing Deep Reinforcement Learning with Scenario-Based Model-
ing. SN Computer Science, 4(2):156, 2023.

[94] D. Yu, H. Ma, S. Li, and J. Chen. Reachability constrained reinforcement
learning. In International Conference on Machine Learning, pages
25636–25655. PMLR, 2022.

[95] H. Yu, C. Hirayama, C. Yu, S. Herbert, and S. Gao. Sequential neural
barriers for scalable dynamic obstacle avoidance. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 11241–11248. IEEE, 2023.

[96] H. Zhang, J. Wu, Y. Vorobeychik, and A. Clark. Exact verification of
relu neural control barrier functions. Advances in Neural Information
Processing Systems, 36, 2024.

[97] R. Zhou, T. Quartz, H. De Sterck, and J. Liu. Neural lyapunov control
of unknown nonlinear systems with stability guarantees. Advances in
Neural Information Processing Systems, 35:29113–29125, 2022.

106

	Introduction
	Preliminaries
	Property Types
	DNNs, DNN Verification, and Dynamical Systems.
	Control Lyapunov Barrier Functions

	Related Work
	Control Certificates
	Formal Verification of Neural Certificates
	Data-driven Neural Certificates

	Reach-Avoid methods

	Reach-While-Avoid Certificates
	RWA certificates
	FRWA certificates
	CEGIS loop

	Compositional Certificates
	Evaluation
	Case Study
	DNN architecture
	Implementation and Setup
	Experimental Results

	Conclusion
	Acknowledgements
	References

