
Minimal Multi-Layer Modifications
of Deep Neural Networks

Idan Refaeli and Guy Katz(B)

The Hebrew University of Jerusalem, Jerusalem, Israel
{idan.refaeli,g.katz}@mail.huji.ac.il

Abstract. Deep neural networks (DNNs) have become increasingly
popular in recent years. However, despite their many successes, DNNs
may also err and produce incorrect and potentially fatal outputs in
safety-critical settings, such as autonomous driving, medical diagnosis,
and airborne collision avoidance systems. Much work has been put into
detecting such erroneous behavior in DNNs, e.g., via testing or verifica-
tion, but removing these errors after their detection has received lesser
attention. We present here a new tool, called 3M-DNN, for repairing
a given DNN, which is known to err on some set of inputs. The novel
repair procedure implemented in 3M-DNN computes a modification to
the network’s weights that corrects its behavior, and attempts to min-
imize this change via a sequence of calls to a backend, black-box DNN
verification engine. To the best of our knowledge, our method is the first
one that allows repairing the network by simultaneously modifying mul-
tiple layers. This is achieved by splitting the network into sub-networks,
and applying a single-layer repairing technique to each component. We
evaluated 3M-DNN tool on an extensive set of benchmarks, obtaining
promising results.

1 Introduction

The popularity of deep neural networks (DNNs) [21] has increased significantly
over the past few years. DNNs are machine-learned artifacts, trained using
a finite training set of examples; and they are capable of correctly handling
previously-unseen inputs. DNNs have shown great success in many application
domains, such as image recognition [10,39], audio transcription [50], language
translation [52], and even in safety-critical domains such as medical diagno-
sis [38], autonomous driving [6], and airborne collision avoidance [28].

Despite their evident success, DNNs can sometimes contain bugs. This
has been demonstrated repeatedly: in one famous example, Goodfellow et
al. [22] showed that slight perturbations to a DNN’s input could lead to
misclassification—a phenomenon now known as susceptibility to adversarial per-
turbations. In another case, Liu et al. [44] showed how DNNs are vulnerable to
Trojan attacks. These issues, and others, combined with the increasing integra-
tion of DNNs into safety-critical systems, have created a surge of interest in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Isac et al. (Eds.): NSV 2022/FoMLAS 2022, LNCS 13466, pp. 46–66, 2022.
https://doi.org/10.1007/978-3-031-21222-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21222-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-21222-2_4

Minimal Multi-Layer Modifications of Deep Neural Networks 47

establishing their correctness. A great deal of effort has been put into devel-
oping methods for testing DNNs [57], and, more recently, also into verifying
them [14,34,60]. These verification methods could play a significant role in the
future certification of DNN-based systems.

Here, we deal with the case where we already know that a given DNN is
malfunctioning; specifically, we assume we have a finite set of concrete inputs
which are handled erroneously (discovered by testing, verification, or any other
method). In this situation, we would like to modify the network, so that it
produces correct predictions for these inputs. A näıve approach for accomplishing
this is to add these faulty inputs to the training set used to create the DNN,
and then retrain it, but this is often too computationally expensive [24]. Also,
retraining may change the network significantly, potentially introducing new
bugs on inputs that were previously correctly handled. Finally, retraining might
be impossible when the original training set is inaccessible, e.g., due to its privacy
or sensitivity [28].

Instead, we advocate an approach that requires no retraining, and which
has recently gained some attention [11,43,59,63]: we present a new tool, called
3M-DNN (M inimal, Multi-layer M odifications for DNNs), which can directly
find a modification to the network and correct the erroneous behavior. In this
context, a modification means changing the networks weights—the set of real
values that determine the DNN’s output, and which are initially selected during
training. Further, because we assume the original network is mostly correct, we
seek to find a modification which is also minimal. The motivation is that such a
change would maintain as much as possible of the network’s behavior on other
inputs. In other words, our goal is to improve the DNN’s overall accuracy—the
percentage of correctly handled inputs, which is normally measured with respect
to a test set of examples—by improving its handling of problematic inputs, and
without harming its handling of other inputs.

A DNN is, by definition, a layered artifact; and to the best of our knowledge,
all previous work on finding minimal modifications to a DNN’s weights focused
on changing the weights of a single layer [11,20,59]. Intuitively, and as we later
demonstrate, this significant restriction could prevent one from finding poten-
tially smaller (and thus preferable) changes to the network. In 3M-DNN, we
seek to lift this restriction by proposing and implementing a novel method for
the multi-layer modification of a DNN, with the goal of finding smaller modifi-
cations than could be otherwise possible. The key idea of our approach is to split
the network into multiple sub-networks along certain layers, which we refer to as
separation layers; and then attempt to find a minimal change for each of these
sub-networks separately, in a way that brings about the desired overall change
to the network.

More concretely, 3M-DNN is comprised of two logical levels. In the top,
search level, the tool conducts a heuristic search through possible changes to the
values computed by the separation layers. Each possible change to these values
that we consider, translates into a possible fix to the DNN; it naturally gives rise
to a sequence of problems on the bottom, single-layer modification level, each

48 I. Refaeli and G. Katz

involving a single sub-network. Solving these single-layer modification problems
can be performed using existing techniques; and the changes discovered to the
sub-networks modify the values of the separation layers as selected by the top
level. Thus, the process as a whole allows 3M-DNN to reduce the problem of
multi-layer changes into a sequence of single-layer change problems, which can
be dispatched using existing DNN modification tools as backends.

In its search for a minimal change, 3M-DNN alternates between the two
levels: each time the top-level examines a potential change to the separation
layers, and invokes the lower level in order to compute the overall cost of using
that change (by combining the costs of changing each individual sub-network).
The top-level always maintains the minimal change it has encountered so far,
and uses search heuristics in order to find new, better options. The search space
is infinite, and so our tool is anytime—it is designed to be run with a timeout,
and whenever it is stopped, it returns the best (smallest) change discovered so
far.

The search heuristic used by the top-level can have a crucial impact on per-
formance. The approach implemented in 3M-DNN is general, in the sense that
any search heuristic can be plugged in; and here, we consider and implement
three such heuristics. The first is a random search, in which the top level ran-
domly explores possible changes; this heuristic serves as a baseline. The second
is a greedy search heuristic, in which the search always progresses in the direc-
tion that produces the most immediate gain. The third heuristic is a Monte
Carlo Tree Search (MCTS) approach [7], which attempts to balance between
exploration of the search space and the exploitation of regions already known to
produce good solutions.

The 3M-DNN tool is available online.1 It is designed in a modular fashion, so
that additional search heuristics can be plugged in; it currently uses the Marabou
DNN verification tool [34,55,61,62] as a backend, although other tools could
be used as well. We used 3M-DNN to compare the different aforementioned
heuristic strategies, and to compare our method to a single-layer modification
method, with respect to the accuracy and minimal change size found. In our
experiments, 3M-DNN achieved favorable results when compared to single-layer
modification techniques. The greedy and MCTS heuristics both performed better
than the random one; and while the greedy approach generally outperformed
MCTS, there were cases where the latter proved superior. Finally, we also used
3M-DNN to find three-layers modification to a network, as a proof-of-concept
that demonstrates its ability to modify any number of layers simultaneously.

The rest of this paper is organized as follows. In Sect. 2 we provide the neces-
sary background on DNNs and repairing DNNs with minimal modifications. In
Sect. 3 we describe 3M-DNN’s algorithm for multi-layer modification in greater
detail, and explain its different strategies for the heuristic search. Then, in Sect. 4
we provide additional technical details on our implementation of 3M-DNN. We
describe our experiments and results in Sect. 5. In Sect. 6 we review relevant
related work, and finally in Sect. 7 we conclude and describe our plans for future
work.

1 https://zenodo.org/record/5735194#.Ysvf nZByUk.

https://zenodo.org/record/5735194#.Ysvf_nZByUk

Minimal Multi-Layer Modifications of Deep Neural Networks 49

2 Background

Deep Neural Networks. A deep neural network (a model) N is comprised of
n layers, L1, . . . , Ln. Each layer Li is comprised of si nodes, also called neurons.
The first layer, L1, is the input layer, and is used to provide the network with an
input vector v1 ∈ R

s1 . The network is then evaluated by iteratively computing
the assignment vi of layer Li for i = 2, . . . , n, each time using the assignment
vi−1 as part of the computation. Finally, the DNN computes the assignment vn

of layer Ln, which is the output layer. vn serves as the output of the entire neural
network. Layers L2, . . . , Ln−1 are referred to as hidden layers.

Each assignment vi for 2 ≤ i ≤ n is computed by multiplying vi−1 by a real-
valued weight matrix θi, and applying a non-linear activation function (except
for the final output layer, where no activation function is applied). We use θ to
denote the set of all weights θ = [θ2, . . . , θn], and use Nθ to refer to the function
Nθ : Rs1 → R

sn computed by N . The weight matrices θi are key, and they are
selected during the network’s training phase, which is beyond our scope here
(see, e.g., [21] for details). Modern DNNs use various activation functions [47];
for simplicity, we restrict our attention here to the popular rectified linear unit
(ReLU) function, defined as

ReLU(x) = max (0, x) ,

although our approach could be used with other functions as well. When ReLUs
are used, the values vi of layer Li are computed as vi = ReLU(θi · vi−1), where
the ReLUs are applied element-wise. We use the term network architecture to
refer to the number of layers in N , the size of each layer si, and the activation
functions in use. Note that the network’s weights are not considered part of the
network’s architecture.

For a given point x ∈ R
s1 , we refer to the assignment of the output layer

Nθ(x) as the network’s prediction on x. A common class of DNNs are designed for
the purpose of classification, where the maximal entry of the prediction Nθ(x)
indicates the label to which x is classified. In other words, the classification
of x ∈ R

s1 as determined by Nθ is defined as arg max Nθ(x). Classification
DNNs are useful, for example, for image recognition [51], and are highly popular.
When dealing with classification networks, we say that Nθ produces an erroneous
output for x if it classifies it differently than some given, ground-truth label l:

arg max Nθ(x) �= l

A small, running example is depicted in Fig. 1. This toy DNN is comprised
of five layers—an input layer with a single node, three hidden layers with two
nodes each, and an output layer with two nodes. The weight of each edge appears
in the figure (a missing edge indicates a weight of 0). All activation functions
in this example are ReLUs. When the network is evaluated on input v1 = [1],
the assignment of the first hidden layer is v2 = [1, 1]; the second hidden layer
evaluates to v3 = [0.01, 100]; the third hidden layer evaluates to v4 = [10, 1]; and
finally, the output layer evaluates to v5 = [11,−11]. If we treat this DNN as a
classification model, the classification of x = 1 is 1, as 11 = v1

5 > v2
5 = −11.

50 I. Refaeli and G. Katz

v11

v12

v22

v13

v23

v14

v24

v15

v25

1

1

0.01

100

1000

0.01

1

1
−1

−1

Fig. 1. A toy DNN.

Repairing DNNs with Minimal Modification. For a given DNN Nθ :
R

s1 → R
sn with n layers, and a finite set of points S ⊂ R

s1 for which we know
Nθ produces a wrong prediction, our goal is to change the network’s weights θ,
so that its classification of S becomes correct.

We begin by formally defining the minimal modification problem for classifi-
cation networks (later, we extend this definition to other networks as well). Let
Nθ be a classification DNN, let S be a set of inputs, and let F be an oracle
function F : Rs1 → {1, . . . , sn} which indicates the correct classification for each
point x ∈ S. Our goal is to produce a modification to θ, which we denote δ, and
obtain a new set of weights θ′ = θ + δ, such that:

∀x ∈ S. arg max Nθ′(x) = F (x) (1)

Observe that the architecture of N is unchanged. Our goal is to find a δ that
is minimal, with the goal of preserving N ’s behavior on points outside S. The
magnitude of δ can be measured using any metric, such as the L1 or L∞ norms.

Using these definitions, the minimal modification problem for classification
DNNs is defined as follows:

Definition 1. The Minimal Modification Problem for Classification
Models. Let Nθ : Rs1 → R

sn be a classification model with n layers, and let
S ⊂ R

s1 be a set of points. Let F : S → {1, . . . , sn} be an oracle function,
which indicates the correct classification for each x ∈ S. Let ‖.‖ be some norm
function. The Minimal Modification Problem is:

minimize ‖δ‖
subject to arg max Nθ′(x) = F (x) ∀x ∈ S

θ′ = θ + δ

We continue with our running example from Fig. 1. Recall that for input
x = 1, we get v1

5 = 11 and v2
5 = −11. Now assume that S = {1}, and that the

desired classification for x = 1 is actually F (1) = 2. Thus, we need the network
to satisfy that v1

5 < v2
5 when evaluated on x = 1. We make an even stronger

requirement, that v1
5 +μ ≤ v2

5 , for some small μ > 0; this guarantees a small gap
in the scores assigned to v1

5 and v2
5 , and avoids draws. For this example, we set

μ = 0.1. Using the L1 norm, the minimal single-layer modification that achieves
the desired changes has size 2.21, as depicted in Fig. 2. With this change to the
network, we get that v1

5 = −11.1 < −11 = v2
5 . However, if we allow changing

two layers, we can actually achieve a smaller minimal modification of size 2.11,

Minimal Multi-Layer Modifications of Deep Neural Networks 51

v11

v12

v22

v13

v23

v14

v24

v15

v25

1

1

0.01

100

1000

0.01

1−1.21

1
−1

−1

Fig. 2. Minimal single-layer modification for the toy example of Fig. 1. The only
changed layer is the output layer, where the weight of the edge v1

4 → v1
5 was changed

from 1 to −1.21. The size of the change (using the L1 norm) is 2.21.

which is preferable because it has a smaller impact on the DNN’s behavior. We
will later return to this example in Sect. 3.

Definition 1 is typically sufficient for classification DNNs, but it can be gen-
eralized to support arbitrary constraints on the DNN’s outputs. Let Nθ be a
general DNN (not necessarily a classification DNN). For each point x ∈ S, we
consider a matrix Ax ∈ R

kx×sn and a vector bx ∈ R
kx , where kx is the number

of linear constraints on the output of the network on x. The aim is to produce a
modification to θ, which we denote again with δ, and get new weights θ′ = θ+δ,
which satisfies:

AxNθ′(x) ≤ bx (2)

Under this formulation we can express constraints such as “the first output of
Nθ′ on x should satisfy 3 ≤ Nθ′(x) ≤ 5”, which could not be expressed using the
previous formulation. This formulation subsumes the classification case. Again
notice that we keep the architecture of N the same, and we only make modifi-
cations to θ. More formally, the minimal modification problem for the general
case is defined as follows:

Definition 2. The Minimal Modification Problem. Let Nθ : Rs1 → R
sn

be a DNN model with n layers, and let S ⊂ R
s1 be a set of points. For each point

x ∈ S, let Ax ∈ R
kx×sn , bx ∈ R

kx be the output constraints of Nθ on x. Let ‖.‖
be some norm function. The Minimal Modification Problem is:

minimize ‖δ‖
subject to AxNθ′(x) ≤ bx ∀x ∈ S

θ′ = θ + δ

To the best of our knowledge, all previous approaches for solving the problems
stated in Definitions 1 and 2 focused on finding a minimal modification for only
a single layer of N . In contrast, in 3M-DNN we seek to solve the problem while
allowing multiple layers of N to be modified, as we discuss next.

3 3M-DNN: Finding Multi-Layer DNN Changes

The key idea incorporated into 3M-DNN is to reduce the multi-layer modifi-
cation problem into a sequence of single-layer modification problems. Specifi-
cally, given a DNN N with n layers L1, . . . , Ln and a list of k separation layer

52 I. Refaeli and G. Katz

indices 1 < i1 < . . . < ik < n, we wish to partition the layers of N into k + 1
sub-networks N0, N1, . . . , Nk. Each sub-network is comprised of a subset of the
original network’s layers L1, . . . , Ln, as follows: sub-network N0 is comprised of
layers L1, . . . , Li1 ; sub-network Nk is comprised of layers Lik , . . . Ln; and for each
1 ≤ j ≤ k − 1, sub-network N j is comprised of layers Lij , . . . , Lij+1 . Note that
each pair of consecutive sub-networks N j and N j+1 both contain layer Lij+1 ,
which functions once as N j ’s output layer, and once as N j+1’s input layer. We
refer to the shared layers Li1 , . . . , Lik as the separation layers.

We apply this partitioning to our running example, as depicted in Fig. 3.
There, we split the DNN into two sub-networks N0 and N1, with the original
L3 layer serving as the only separation layer. Observe that the input layer of N0

is the input layer of the original network, and that the output layer of N1 is the
output layer of the original network. Indeed, if we were to evaluate N0 on some
input x, and then feed its output as the input to N1, then N1’s output would
match the output of the original network when evaluated on x.

v11

v12

v22

v13

v23

v13

v23

v14

v24

v15

v25

1

1

0.01

100

1000

0.01

1

1
−1

−1

N0 N1

Fig. 3. Splitting a network along a separation layer.

Next, we wish to modify N0 and N1, and then combine these modifications
into a modification of the original network. Let S = {1}, i.e. x = 1 is our only
misclassified input, and let us require that x be classified as class 2. In other
words, we wish N(1) to produce output values for which v1

5 + μ ≤ v2
5 for some

small μ > 0. 3M-DNN begins by deciding on a change of values for the neurons
of the separation layer, v1

3 and v2
3 . In the original evaluation of the network on

x = 1, we got v1
3 = 0.01 and v2

3 = 100. Let us require that v1
3 ’s value be changed

to 0, and that v2
3 ’s value remains unchanged. This requirement translates into

two single-layer modification queries: for N0, 3M-DNN will require that on
input x = 1, the outputs be [0, 100]; and for N1, 3M-DNN will require that on
input [0, 100], the network’s outputs satisfy v1

5 + μ ≤ v2
5 . Both these single-layer

modification queries can be solved using a black-box modification procedure;
for example, here, if we assume again that μ = 0.1, a possible modification is
to change the weight of edge v1

2 → v1
3 to 0 in N0, and to change the weight

of edge v2
4 → v2

5 to 1.1 in N1. Applying both of these changes to the original
network produces a modification of size 2.11 (using the L1-norm), which results
in the desired behavior for x = 1; indeed, after applying this change, we get that
1 = v1

5 < v2
5 = 1.1. The modified network is depicted in Fig. 4. Observe that

this change is minimal for our particular selection of a separation layer index
and the ensuing selection of changes to the separation layer’s assignment; but it

Minimal Multi-Layer Modifications of Deep Neural Networks 53

is not necessarily globally minimal, as a different choice of separation index or
assignment could result in smaller changes.

v11

v12

v22

v13

v23

v14

v24

v15

v25

1

1

0
0.01

100

1000

0.01

1

1
−1

−1

1.1

Fig. 4. The two-layer modification found using 3M-DNN.

The example described above is generalized into 3M-DNN’s full algorithm,
which appears as Algorithm 1. For simplicity of presentation, Algorithm 1 han-
dles the classification model case from Definition 1; 3M-DNN actually supports
the more general case from Definition 2, and the implemented algorithm is very
similar to the one given here. Algorithm 1 takes as input the DNN N in ques-
tion, the set of misclassified points S and the oracle function F that describes
these points desired classification; the separation indices I = {i1, . . . , ik} indi-
cating how the network is to be broken down into sub-networks, in which only a
single layer will be changed; and a timeout value T . The algorithm then begins
its heuristic search for a minimal change to the network that brings about the
desired changes.

First, in Lines 1–3, the algorithm evaluates the assignments of the separation
layers, for each input point in S. Then, in Line 4, the algorithm constructs the
sub-networks N0, . . . , Nk, according to the separation indices. Recall that our
algorithm is anytime, i.e., always maintains the best modification discovered so
far; this modification, and its cost (i.e., its distance from the original network
according to the distance metric in use) is stored in the variables initialized in
Line 5. The algorithm then begins running in a loop until exhausting its timeout
value.

In every iteration of its main loop, the algorithm begins (Lines 8–11) by
selecting a modified assignment for each separation layer Lil for 1 ≤ l ≤ k. This
modification is selected by the place-holder function ProposeChange(); this
function is where the heuristic search used in the search level of 3M-DNN comes
into play. We discuss these heuristics in detail in Sect. 3.1. Then, in Lines 13–
17, the algorithm computes for each of the sub-networks N0, . . . , Nk the min-
imal, single-layer changes required to bring about the global changes selected
by the search level. These changes are computed by repeated invocations of the
SingleLayerModification() function, which is again a place-holder function
that represents the single-layer modification level of 3M-DNN; we describe it in
more depth in Sect. 3.2. This function takes as input a DNN, and a list of pairs
of input points and their desired outputs; and returns the modified DNN, and

54 I. Refaeli and G. Katz

Algorithm 1 The 3M-DNN Algorithm (For Classification Networks)
Input: DNN N , set of input points S = {x1, . . . , xn}, oracle function F , separation

indices I = {i1, . . . , ik}, timeout T
Output: A repaired DNN N ′ with the same architecture as N

1: for j = 1 . . . n do
2: vj

i1
, . . . , vj

ik
← N(xj) � Compute the separation layers’ assignments

3: end for
4: N0, . . . , Nk ← Split(N, I)
5: bestChange ← ⊥, bestCost ← ∞
6: while timeout T not exceeded do
7: for l = 1 . . . k do
8: cl ← ProposeChange()
9: for j = 1 . . . n do

10: v′j
il

← vj
il

+ cl � Select new assignments for the separation layers
11: end for
12: end for
13: N ′0, cost0 ← SingleLayerModification(N0, 〈x1, v

′1
i1〉, . . . , 〈xn, v′n

i1 〉)
14: for l = 1 . . . k − 1 do
15: N l, costl ← SingleLayerModification(N ′l, 〈v′1

il
, v′1

il+1
〉, . . . , 〈v′n

il
, v′n

il+1
〉)

16: end for
17: N ′k, costk ← SingleLayerModification(Nk, 〈v′1

ik
, F (x1)〉, . . . , 〈v′n

ik
, F (xn)〉)

18: cost ← TotalCost(cost0, . . . , costk)
19: if cost < bestCost then
20: bestCost ← cost
21: bestChange ← 〈N ′0, . . . , N ′k〉
22: end if
23: end while
24: return 〈bestCost,Combine(bestChange)〉

the modification’s cost.2 In Line 13, we use SingleLayerModification() to
modify N0: we required that the original input points x1, . . . , xn produce out-
puts that match the selected modified assignments v′1

i1
, . . . , v′n

i1
of L1. In Line 15,

SingleLayerModification() is used to modify each of the N1, . . . , Nk−1 sub-
networks, so that each sub-network produces as output the input selected for
its successor. Finally, in Line 17, the last sub-network Nk is modified, so that
it produces outputs that match the oracle’s predictions on the original input
points.

The single-layer modification procedures invoked for N0, . . . , Nk each return
the modified sub-networks N ′0, . . . , N ′k, and the respective costs of the modifi-
cations cost0, . . . , costk. The total modification cost for the complete network is
then computed by the TotalCost() function in Line 18, whose implementation

2 It may be possible that an invocation of SingleLayerModification() fails because
no change is possible that obtains the desired results. Whenever this happens, 3M-

DNN continues to the next iteration, exploring a different change to the separation
layers’ values. This situation is theoretically possible, but did not occur in our exper-
iments.

Minimal Multi-Layer Modifications of Deep Neural Networks 55

depends on the norm used for measuring distance; for example, in the case of L1

norm, it returns the sum of its inputs; for L∞, it returns the maximal input; etc.
The modified sub-networks with the lowest total cost found so far, along with
the cost itself, are saved in Lines 19–22.

The algorithm halts when the provided timeout is exhausted, and it then
returns the complete modified network with the best modifications found so
far, and the cost of that modification. The re-assembling of the complete modi-
fied network is performed by the function Combine(), whose implementation is
omitted for brevity.

Soundness and Completeness. Assuming that the SingleLayerModifi-

cation() is sound—for example, if it is implemented using a sound DNN ver-
ifier [20]—any modification returned by our tool will indeed correct the global
DNN behavior on the input set S. In that sense, 3M-DNN is sound. It is, how-
ever, generally incomplete; there are infinitely many modifications that can be
attempted for the separation layers, and it is infeasible to try them all. This
is our motivation for introducing the timeout mechanism and making the algo-
rithm anytime; and indeed, the algorithm is not guaranteed to return the small-
est change possible. It does, however, attempt to minimize the change based on
search heuristics that we discuss next.

3.1 The Search Level

Algorithm 1 considers an infinite space of possible changes to the values of the
separation layers, each time selecting a single possible change and computing
its cost (Line 8 of the Algorithm). For a single separation layer with n neurons,
the search space is R

n in its entirety, and the problem is compounded when
multiple separation layers are involved. To exacerbate matters even further, the
computed cost function for possible changes need not be convex; see Fig. 5 for
an illustration.

Fig. 5. The cost function for a small DNN, with a single separation layer with 2 neurons.
The X and Y axes represents the change for each neuron, and the color represents the
size of the minimal modification achieved. The function is not convex.

56 I. Refaeli and G. Katz

To circumvent this difficulty, we first define the following grid, parameterized
by a step size ε:

Gε = {v = 〈α1 · ε, α2 · ε, . . . , αn · ε〉 | αi ∈ Z}
Each point in the grid represents a single, possible change for a separation layer,
and the discretization allows us to better handle the search space. Naturally, this
comes at the cost of possibly overlooking better changes that do not coincide
with the grid, but this can be mitigated by making the grid dense (picking a
smaller ε). The grid’s origin, i.e., point 0n ∈ R

n, corresponds to no change at
all to the separation layer; and points that are very far away from the origin are
likely to represent significant changes to the DNN.

Despite the discretization, the grid is still infinite and multi-dimensional, and
so 3M-DNN implements three search heuristics: random search, greedy search
and Monte-Carlo Tree Search (MCTS). Each of these heuristics can be regarded
as a possible implementation of the ProposeChange() method from Algo-
rithm 1. We next elaborate on each of them.

Random Search. This heuristic performs a uniform random search over Gε.
Specifically, it samples a grid point uniformly at random, and that point consti-
tutes the proposed change to the separation layer. We treat this simple heuristic
as a baseline, to which the more sophisticated heuristics are compared.

Greedy Search. The motivation for this heuristic is that the optimal grid
point is likely not far away from the origin (as far away points likely correspond
to significant changes to the network). Thus, we start from the grid’s origin
as our current change, and at each iteration, consider the grid points that are
immediate neighbors of our current points—that is, points obtained by adding or
subtracting ε from one of the coordinates of the current point. We then compute
the costs associated with each of these points, and pick the cheapest one as our
new current point.

More formally, if g0 ∈ Gε is our current search point, we observe all points
g ∈ Gε such that ‖g0−g‖L1 = ε, invoke the SingleLayerModification() with
appropriate parameters to compute the cost of each g, and update g0 to be the
g that obtained the lowest cost.

Monte Carlo Tree Search. The aforementioned greedy approach can be
regarded as an attempt to optimize exploitation: whenever a good “direction”
on the grid is discovered, we follow that direction. A natural concern is that
such an approach might lead to local minima, and fail to detect cheaper changes
that can only be reached via grid points with higher costs (recall that the cost
function is not necessarily convex). To balance the greedy approach’s exploita-
tion with exploration for detecting possibly better changes, we employ a Monte
Carlo Tree Search (MCTS) heuristic [7]. We give here a short overview of this
approach; see [7] for a more in-depth review.

Minimal Multi-Layer Modifications of Deep Neural Networks 57

MCTS is a heuristic search algorithm over a discrete set of actions, with the
goal of selecting the most promising move based on simulations. It has recently
been shown quite successful in multiple application domains, most notably in
board games such as Go [17]. The search is conducted on a search tree, where
each node represents a state. The root node of the search tree represents the
initial state, and a child of a node represents another state that can be reached
by performing a single action. Initially, the entire search tree is yet unexplored ;
and the algorithm iteratively explores additional parts thereof, one node in every
iteration. In our setting, each node of the search tree is a grid point; and the
possible moves include moving to one of the adjacent grid points (similarly to
the greedy approach).

In each iteration, MCTS performs simulations in order to decide which unex-
plored node to visit next. Specifically, these simulations allow MCTS to compute
a cost for each of the candidate nodes, and then pick the candidate with the low-
est cost as the next node to visit.

More concretely, each MCTS iteration consists of 4 steps:

1. Selection: one of the nodes at each level in the explored portion of tree is
selected, according to some policy, until reaching a leaf node. A common
policy, also used in 3M-DNN, is the upper confidence bound (UCB) policy.
The policy’s details are beyond our scope here; see [7] for additional details.

2. Expansion: one of the unexplored children of the leaf node from Step 1 is
selected randomly.

3. Simulation: one or more simulations are carried out for the node selected in
Step 2. Each simulation explores deeper into the search sub-tree rooted at the
new node until reaching a predefined tree depth, by picking a child randomly
in each level of the sub-tree. When the simulation arrives at the last node, it
computes a cost value that takes into account all the steps that led from the
node picked at Step 2 to the final node that was reached.

4. Backpropagation: the cost computed in each simulation is back-propagated
through all the nodes in the path leading back up to the root. Each node
aggregates the costs of simulations of paths containing it, and the aggregated
cost is used for Step 1 in the next iteration of MCTS.

After reaching a predefined number of iterations, the unexplored node that
has obtained the lowest cost so far is chosen as the next move.

In our implementation of the MCTS search heuristic, every invocation of
ProposeChange() for a given separation layer Lj runs the MCTS algorithm,
which in turn performs a predefined number of sub-iterations. The root of the
search tree represents the current change to the assignment of Lj , and a move to
a child node represents a single step along the grid. Consequently, for each tree
node of the search tree in the MCTS algorithm, there are 2sj + 1 child nodes
(including the option to not take a step at all). The simulation step of MCTS
includes, in our case, dispatching single-layer modification queries.

58 I. Refaeli and G. Katz

3.2 The Single-Layer Modification Level

As part of its operation, our algorithm needs to dispatch numerous queries of
single-layer modifications in DNN (the SingleLayerModification() calls in
Algorithm 1). In each of these queries, the sub-network in question has specific
inputs, for which certain output constraints need to hold—either the outputs
need to classify the inputs as a certain label (for the last sub-network), or they
need to take on exact, predetermined values (for all other sub-networks). Solving
such queries has been studied before, and as part of our solution, we propose to
use existing techniques and tools as a backend. In our implementation (described
in greater detail later), we used the approach proposed by Goldberger et al. [20].

4 Implementation

We implemented Algorithm 1 and the aforementioned search heuristics in the
new 3M-DNN tool. 3M-DNN is implemented as a Python 3.7.3 module, and
uses TensorFlow-Keras 2.3 as a backend for representing DNNs. We attempted
to design 3M-DNN in a modular fashion, in order to easily allow the future
addition of new search heuristics in the search level, as well as additional backend
engines for dispatching single-layer modification queries.

The main class of 3M-DNN is the abstract NetworkCorrectionMethod class.
It defines the interfaces and methods that a subclass must implement in order to
fit the mold defined by Algorithm 1. Specifically, the class defines the following
methods:

init (DNN N , [x1, . . . , xn], [o1, . . . , on]): a constructor for the inheriting
class. It takes as input a TensorFlow-Keras DNN, a list of input points as NumPy
arrays, and a list of output constraints for each point. Each output constraint is
a list of 2 items: a NumPy array A and a NumPy vector b, and the output y of
the corresponding point should satisfy Ay ≤ b (per Definition 2).

correct network(): the main entry point for the inheriting class, responsi-
ble for running the correction procedure for the DNN and constraints provided
through the constructor. Its implementation depends on the heuristic search
method and the single-layer modification method chosen. Returns True if a
modification to the network was found, or False otherwise.

get corrected network(): this method is invoked after correct network(), and
returns the corrected network as a tensorflow-keras model.

Minimal Multi-Layer Modifications of Deep Neural Networks 59

get minimal change(): a method called after correct network(), which returns
the list of the changes found during the modification process, for each changed
layer.

get changed layers(): a method called after correct network(), which returns
a list of layer indices of the layers changed during the modification process.

Our implementation of 3M-DNN includes multiple instantiations of the Net-
workCorrectionMethod class that implement the heuristics defined in Sect. 3.
Specifically, class NetworkCorrectionTwoLayersUniform implements the random
search heuristic; the core of the implementation appears in the correct network()
method. Similarly, class NetworkCorrectionTwoLayersGreedy implements the
greedy search approach; and its core is again in method correct network().
Finally, the MCTS approach is implemented in classes NetworkCorrectionT-
woLayersTreeSearch and MCTS. Class MCTS controls the various configurable
parameters of the search, such as the step size, the number of simulations per
iteration, and the maximal depth of the search tree. All three grid search heuris-
tics are currently linked to the Marabou DNN verification as the single-layer
change backend; this connection is implemented in class MarabouRunner.

5 Evaluation

Setup. We used 3M-DNN to evaluate the usefulness of our modification app-
roach. Specifically, we experimented with a DNN trained on the MNIST dataset
for digit recognition [42]. The dataset contains 70,000 handwritten digit images
with 28 × 28 pixels, split into a training set of 60,000 images, and a test set of
10,000 images. We trained a network N comprised of 8 layers: an input layer
of size 784 neurons, six hidden layers, each of size 20 neurons, and an output
layer with ten neurons. The hidden layers all used the ReLU activation function.
We then used network N to conduct three kinds of experiment (all conducted
with the L∞-norm): (i) comparing search heuristics: an experiment where we
used 3M-DNN to find two-layer modifications for N , using each of the three
heuristic search strategies discussed in Sect. 3; (ii) comparing multi-layer and
single-layer modifications: here, we used 3M-DNN to search for repairs for N
that modified either a single layer or two layers, in order to evaluate the necessity
of modifying multiple layers; and (iii) three-layer repairs: we attempted to repair
N by modifying three layers, to demonstrate 3M-DNN ability to repair the net-
work by changing any number of layers. Below we provide additional information
on each of the experiments, and their results are summarized in Table 1.

60 I. Refaeli and G. Katz

Table 1. Results of experiments. The 1-Layer search strategy stands for a single-layer
modification process. Greedy-3 stands for three-layer-modification using the greedy
heuristic search.

Exp. # Search

Strategy

Number

of input

points

Average

Change

Minimal

Change

Maximal

Change

Average

Accuracy

Minimal

Accuracy

Maximal

Accuracy

1 Random 1 0.1520 0.0615 0.4922 0.6865 0.1916 0.9308

Greedy 0.0133 0.001 0.0566 0.943 0.7971 0.9576

MCTS 0.0139 0.001 0.0566 0.943 0.7971 0.9576

Random 2 0.197 0.0791 0.4775 0.6302 0.2563 0.9161

Greedy 0.0463 0.0058 0.1435 0.9245 0.7417 0.9598

MCTS 0.0478 0.0058 0.1484 0.9261 0.7398 0.9594

2 Greedy 1 0.0305 0.0029 0.1699 0.9397 0.5856 0.9565

1-Layer 0.0307 0.0029 0.1875 0.9394 0.585 0.9562

Greedy 2 0.0459 0.0039 0.2041 0.9178 0.3124 0.9576

1-Layer 0.0464 0.0039 0.208 0.9163 0.3124 0.9576

3 Greedy-3 1 0.25097 0.25097 0.25097 0.886 0.886 0.886

Experiment 1: Comparing Search Heuristics. We used 3M-DNN in each
of the three search method configurations, to solve: (i) 100 benchmarks where
N was modified to repair its output on 1 input point; and (ii) another 100
benchmarks with repair on 2 input points. In all experiments, we split N into two
sub-networks along its fourth hidden layer, with ε = 0.5 as the grid parameter;
and the timeout value was set to 1000 s seconds. In experiments involving two
input points, we expedited the process by restricting changes solely to the final
layer of each sub-network. The results are summarized in Table 1, and illustrated
in Fig. 6. Both the Greedy and MCTS strategies significantly outperform the
uniform random search heuristic, achieving higher accuracy and smaller change
size. The Greedy and MCTS heuristics are relatively equal in their performance,
with each strategy outperforming the other in some cases.

Fig. 6. Minimal modification size achieved by the Greedy and MCTS heuristic strate-
gies in Experiment 1.

Minimal Multi-Layer Modifications of Deep Neural Networks 61

Experiment 2: Comparing Multi- And Single-Layer modifications.
Here, we configured 3M-DNN to use the greedy search heuristic, and used it
to solve: (i) 2000 minimal modification queries where where a single input point
had to be corrected; and (ii) another 2000 minimal modification queries with
repair on 2 input points. We ran each query once, looking for a one-layer min-
imal modification, and once searching for a two-layer modification. As before,
we set ε = 0.5 and a timeout value of 1000 s seconds (for both methods). To
expedite the experiments, we allowed the single-layer method to modify only
the final layer of the network [20], and the two-layers greedy method to modify
the last layer of each of the two sub-networks. Table 1 shows the superior perfor-
mance of the two-layers greedy method over the single-layer method; although
the single-layer modification method was usually able to find its minimal modi-
fication within a minute, while the two-layers greedy method took longer. This
is not surprising, as the single-layer modification problem is significantly easier
computationally [20].

Experiment 3: Three-Layer Repairs. In the final experiment, serving as a
proof-of-concept, we used 3M-DNN to find a three-layer modification for N . We
ran this experiment once, with 3M-DNN configured to use the greedy search
heuristic on a single input point. We used a step size of ε = 0.5. The timeout
value was set to 3600 s seconds, and Table 1 depicts the results. The search space
when changing three layers is significantly more complex than in the previous
experiments, and so it is not surprising that 3M-DNN was only able to discover
changes that were larger than before. As we continue to improve our search
heuristics, and as the underlying verification engines continue to improve, the
scalability of 3M-DNN will also improve.

6 Related Work

The need to modify existing DNNs in order to correct them naturally arises
as part of the DNN life cycle, and has been a topic of interest in the wider
machine learning community. Most existing approaches are heuristic in nature:
for example, one approach is to iteratively apply Max-SMT solvers in search for
changes to the DNN [53]; another is to use reachability analysis to enrich the
training data [63]; and yet another approach is to heuristically identify “prob-
lematic” neurons and modify them [11]. A common property of most of these
approaches is that, in contrast to verification-based approaches, they provide no
formal guarantees about the minimality of the fixes that they produce.

Another approach for modifying the behavior of an existing DNN is to aug-
ment it with additional, non-DNN components that can override its output in
certain cases. This has been attempted using, e.g., decision trees [35,36] and
scenario objects [29,33]. A different technique is to transform the DNN into
another object, which is simpler to repair: for example, a pair of DNNs, in which
one determines the weights and another the activation functions [54]; or a DNN
with a self-repairing output layer [43]. Our technique is separated from these

62 I. Refaeli and G. Katz

approaches by the fact that the repaired artifact that it produces is a standard
DNN, and is thus directly compatible with existing tools and infrastructure.

The approach that we take here, namely the application of DNN verification
technology in order to find minimal modifications, has already received some
attention. The approach that most closely resembles our own is the one proposed
by Goldberger et al. [20]; and a related approach has also been proposed by
Usman et al. [59]. However, these approaches are limited to modifying a single
layer of the DNN in question, whereas the novelty of our approach is in enabling
the simultaneous modification of multiple layers.

The technique proposed here uses a DNN verification engine as a black-
box. DNN verification is an active research field, with many available tools and
techniques. These include SMT-based approaches [25,30,32,34], LP- and MILP-
solver based approaches [8,14,26,58], symbolic interval propagation [60], abstrac-
tion and abstract-interpretation based techniques [5,15,18,48,64], techniques for
tackling recurrent networks [27,65] and binarized networks [4,46], and many oth-
ers (e.g., [13,45,49]); and these techniques have been applied to multiple ends,
such as DNN ensemble optimization [2], verifying adversarial robustness proper-
ties [9,18,23,31,40,58], verifying hybrid systems with DNN controllers [12,56],
verifying DNNs that serve as controllers for congestion control systems [3,16,37]
or robots [1], and DNN simplification [19,41]. As DNN verification engines con-
tinue to improve, so will the speed and scalability of our approach. Further, our
line of work continues to demonstrate that DNN repair is an attractive applica-
tion domain for verification.

7 Conclusion and Future Work

Due to the recent surge in DNN popularity, it is becoming increasingly important
to provide tools and methodologies for facilitating tasks that naturally arise
as part of DNN usage—such as modifying existing DNNs. Verification-based
modification techniques offer significant advantages, and in this work, we have
taken a step towards improving their applicability. Specifically, we were able
to move beyond the single-layer change barrier that existed in prior work, and
propose an approach that can simultaneously modify multiple layers of the DNN.
Consequently, our approach can find modifications that are superior to those that
would have been discovered by existing techniques.

Moving forward, we plan to extend our approach along several axes. First,
we intend to explore additional strategies for conducting the grid search, as
the strategy in use has a significant effect on overall performance. Specifically,
we intend to train a DNN controller to manage the search strategy. Second,
we observe that the grid search naturally lends itself to parallelization, and so
we intend to explore parallelization techniques; and third, we intend to further
demonstrate the usefulness of our technique by applying it to additional DNNs
and case studies.

Acknowledgement. This work was partially supported by the Israel Science Foun-
dation (grant number 683/18) and the HUJI Federmann Cyber Security Center.

Minimal Multi-Layer Modifications of Deep Neural Networks 63

References

1. Amir, G., et al.: Verifying Learning-Based Robotic Navigation Systems. Technical
report (2022). http://arxiv.org/abs/2205.13536

2. Amir, G., Katz, G., Schapira, M.: Verification-aided deep ensemble selection. In:
Proceedings of 22nd International Conference on Formal Methods in Computer-
Aided Design (FMCAD) (2022)

3. Amir, G., Schapira, M., Katz, G.: Towards scalable verification of deep reinforce-
ment learning. In: Proceedings of 21st International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 193–203 (2021)

4. Amir, G., Wu, H., Barrett, C., Katz, G.: An SMT-based approach for verifying
binarized neural networks. In: Proceedings of 27th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pp.
203–222 (2021)

5. Ashok, P., Hashemi, V., Kretinsky, J., Mohr, S.: DeepAbstract: neural network
abstraction for accelerating verification. In: Proceedings of 18th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA), pp. 92–
107 (2020)

6. Bojarski, M., et al.: End to End Learning for Self-Driving Cars. Technical report
(2016). http://arxiv.org/abs/1604.07316

7. Browne, C., et al.: A survey of monte Carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

8. Bunel, R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.: A Unified View of
Piecewise Linear Neural Network Verification. In: Proceedings of 32nd Conference
on Neural Information Processing Systems (NeurIPS), pp. 4795–4804 (2018)

9. Carlini, N., Katz, G., Barrett, C., Dill, D.: Provably Minimally-Distorted Adver-
sarial Examples. Technical report (2017). http://arxiv.org/abs/1709.10207

10. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3642–3649 (2012)

11. Dong, G., Sun, J., Wang, J., Wang, X., Dai, T.: Towards Repairing Neural Net-
works Correctly. Technical report (2020). http://arxiv.org/abs/2012.01872

12. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Proceedings of 22nd
ACM International Conference on Hybrid Systems: Computation and Control
(HSCC) (2019)

13. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks. In: Proceedings of 10th NASA Formal Methods Symposium
(NFM), pp. 121–138 (2018)

14. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Proceedings of 15th International Symposium on Automated Technology for
Verification and Analysis (ATVA), pp. 269–286 (2017)

15. Elboher, Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural
network verification. In: Proceedings of 32nd International Conference on Com-
puter Aided Verification (CAV), pp. 43–65 (2020)

16. Eliyahu, T., Kazak, Y., Katz, G., Schapira, M.: Verifying learning-augmented sys-
tems. In Proceedings of Conference on the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), pp. 305–318 (2021)

http://arxiv.org/abs/2205.13536
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1709.10207
http://arxiv.org/abs/2012.01872

64 I. Refaeli and G. Katz

17. Fu, M.: AlphaGo and Monte Carlo tree search: the simulation optimization per-
spective. In: Proceedings of Winter Simulation Conference (WSC), pp. 659–670
(2016)

18. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, E., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings of 39th IEEE Symposium on Security and Privacy (S&P)
(2018)

19. Gokulanathan, S., Feldsher, A., Malca, A., Barrett, C., Katz, G.: Simplifying neural
networks using formal verification. In: Proceedings of 12th NASA Formal Methods
Symposium (NFM), pp. 85–93 (2020)

20. Goldberger, B., Adi, Y., Keshet, J., Katz, G.: Minimal modifications of deep neural
networks using verification. In: Proceedings of 23rd International Conference on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR), pp. 260–278
(2020)

21. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning. MIT Press
Cambridge, Cambridge (2016)

22. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial
Examples. Technical report (2014). http://arxiv.org/abs/1412.6572

23. Gopinath, D., Katz, G., Pǎsǎreanu, C., Barrett, C.: DeepSafe: a data-driven app-
roach for checking adversarial robustness in neural networks. In: Proceedings of
16th International Symposium on Automated Technology for Verification and
Analysis (ATVA), pp. 3–19 (2018)

24. Hao, K.: Training a Single AI Model can Emit as much Carbon as Five Cars In
Their Lifetimes. MIT Technology Review (2019)

25. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Proceedings of 29th International Conference on Computer Aided
Verification (CAV), pp. 3–29 (2017)

26. Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural network verification with proof
production. In: Proceedings of 22nd International Conference on Formal Methods
in Computer-Aided Design (FMCAD) (2022)

27. Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invari-
ant inference. In: Proceedings of 18th International Symposium on Automated
Technology for Verification and Analysis (ATVA), pp. 57–74 (2020)

28. Julian, K., Lopez, J., Brush, J., Owen, M., Kochenderfer, M.: Policy compression
for aircraft collision avoidance systems. In: Proceedings of 35th Digital Avionics
Systems Conference (DASC), pp. 1–10 (2016)

29. Katz, G.: Guarded deep learning using scenario-based modeling. In: Proceedings
of 8th International Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD), pp. 126–136 (2020)

30. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: an efficient
SMT solver for verifying deep neural networks. In: Proceedings of 29th Interna-
tional Conference on Computer Aided Verification (CAV), pp. 97–117 (2017)

31. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Towards proving the
adversarial robustness of deep neural networks. In: Proceedings of 1st Workshop
on Formal Verification of Autonomous Vehicles (FVAV), pp. 19–26 (2017)

32. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: a calculus
for reasoning about deep neural networks. In: Formal Methods in System Design
(FMSD) (2021)

33. Katz, G., Elyasaf, A.: Towards combining deep learning, verification, and
scenario-based programming. In: Proceedings of 1st Workshop on Verification of
Autonomous and Robotic Systems (VARS), pp. 1–3 (2021)

http://arxiv.org/abs/1412.6572

Minimal Multi-Layer Modifications of Deep Neural Networks 65

34. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Proceedings of 31st International Conference on Computer
Aided Verification (CAV), pp. 443–452 (2019)

35. Kauschke, D., Lehmann, S.: Towards Neural Network Patching: Evaluating
Engagement-Layers and Patch-Architectures. Technical report (2018). http://
arxiv.org/abs/1812.03468

36. Kauschke, S., Furnkranz, J.: Batchwise patching of classifiers. In: Proceedings of
32nd AAAI Conference on Artificial Alliance (2018)

37. Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven systems.
In: Proceedings of 1st ACM SIGCOMM Workshop on Network Meets AI & ML
(NetAI), pp. 83–89 (2019)

38. Kermany, D., et al.: Identifying medical diagnoses and treatable diseases by image-
based deep learning. Cell 172(5), 1122–1131 (2018)

39. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convo-
lutional neural networks. In: Proceedings of 26th Conference on Neural Information
Processing Systems (NIPS), pp. 1097–1105 (2012)

40. Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward Scalable Verification for Safety-Critical Deep Networks. Technical report
(2018). http://arxiv.org/abs/1801.05950

41. Lahav, O., Katz, G.: Pruning and slicing neural networks using formal verification.
In: Proceedings of 21st International Conference on Formal Methods in Computer-
Aided Design (FMCAD), pp. 183–192 (2021)

42. LeCun, Y.: The MNIST Database of Handwritten Digits (1998). http://yann.lecun.
com/exdb/mnist/

43. Leino, K., Fromherz, A., Mangal, R., Fredrikson, M., Parno, B., Păsăreanu, C.:
Self-Repairing Neural Networks: Provable Safety for Deep Networks via Dynamic
Repair. Technical report (2021). http://arxiv.org/abs/2107.11445

44. Liu, Y., et al.: Trojaning Attack on Neural Networks (2017)
45. Lomuscio, A., Maganti, L.: An Approach to Reachability Analysis for Feed-Forward

ReLU Neural Networks. Technical report (2017). http://arxiv.org/abs/1706.07351
46. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying

Properties of Binarized Deep Neural Networks. Technical report (2017). http://
arxiv.org/abs/1709.06662

47. Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S.: Activation Functions: Com-
parison of Trends in Practice and Research for Deep Learning. Technical report
(2018). http://arxiv.org/abs/1811.03378

48. Ostrovsky, M., Barrett, C., Katz, G.: An Abstraction-refinement approach to ver-
ifying convolutional neural networks. In: Proceedings of 20th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA) (2022)

49. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of 27th International Joint Con-
ference on Artificial Intelligence (IJCAI) (2018)

50. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-
dependent deep neural networks. In: Proceedings of 12th Conference of the Inter-
national Speech Communication Association (Interspeech), pp. 437–440 (2011)

51. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. Technical report (2014). http://arxiv.org/abs/1409.1556

52. Singh, S., Kumar, A., Darbari, H., Singh, L., Rastogi, A., Jain, S.: Machine transla-
tion using deep learning: an overview. In: Proceedings of International Conference
on Computer, Communications and Electronics (Comptelix), pp. 162–167 (2017)

http://arxiv.org/abs/1812.03468
http://arxiv.org/abs/1812.03468
http://arxiv.org/abs/1801.05950
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/2107.11445
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1409.1556

66 I. Refaeli and G. Katz

53. Sotoudeh, M., Thakur, A.: Correcting deep neural networks with small, generaliz-
ing patches. In: Workshop on Safety and Robustness in Decision Making (2019)

54. Sotoudeh, M., Thakur, A.: Provable repair of deep neural networks. In: Proceed-
ings of 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI), pp. 588–603 (2021)

55. Strong, C., et al.: Global optimization of objective functions represented by ReLU
networks. J. Mach. Learn. 2021, 1–28 (2021). https://doi.org/10.1007/s10994-021-
06050-2 ¡error l=”305” c=”Invalid ¡error l=”303” c=”Invalid
command: paragraph not started.” /¿ command: paragraph not started.” /¿ ¡error
l=”305” c=”Invalid
command: paragraph not started.” /¿

56. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings of 22nd ACM International Conference on
Hybrid Systems: Computation and Control (HSCC) (2019)

57. Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M., Ashmore, R.: Testing Deep
Neural Networks. Technical report (2018). http://arxiv.org/abs/1803.04792

58. Tjeng, V., Xiao, K., Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In: Proceedings of 7th International Conference on Learning
Representations (ICLR) (2019)

59. Usman, M., Gopinath, D., Sun, Y., Noller, Y., Pǎsǎreanu, C.: NNrepair:
Constraint-based Repair of Neural Network Classifiers. Technical report (2021).
http://arxiv.org/abs/2103.12535

60. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: Proceedings of 27th USENIX Security
Symposium, pp. 1599–1614 (2018)

61. Wu, H., et al.: Parallelization techniques for verifying neural networks. In: Pro-
ceedings of 20th International Conference on Formal Methods in Computer-Aided
Design (FMCAD), pp. 128–137 (2020)

62. Wu, H., Zeljić, A., Katz, G., Barrett, C.: Efficient neural network analysis with
sum-of-infeasibilities. In: Proceedings of 28th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), pp. 143–
163 (2022)

63. Yang, X., Yamaguchi, T., Tran, H.-D., Hoxha, B., Johnson, T., Prokhorov, D.: Neu-
ral Network Repair with Reachability Analysis. Technical report (2021). http://
arxiv.org/abs/2108.04214

64. Zelazny, T., Wu, C., Barrett, H., Katz, G.: On reducing over-approximation errors
for neural network verification. In: Proceedings of 22nd International Conference
on Formal Methods in Computer-Aided Design (FMCAD) (2022)

65. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verifica-
tion of recurrent neural networks for cognitive tasks via reachability analysis. In:
Proceedings of 24th Conference of European Conference on Artificial Intelligence
(ECAI) (2020)

https://doi.org/10.1007/s10994-021-06050-2
https://doi.org/10.1007/s10994-021-06050-2
http://arxiv.org/abs/1803.04792
http://arxiv.org/abs/2103.12535
http://arxiv.org/abs/2108.04214
http://arxiv.org/abs/2108.04214

