
Verifying Generalization in Deep Learning

Guy Amir(B), Osher Maayan, Tom Zelazny, Guy Katz, and Michael Schapira

The Hebrew University of Jerusalem, Jerusalem, Israel
{guyam,osherm,tomz,guykatz,schapiram}@cs.huji.ac.il

Abstract. Deep neural networks (DNNs) are the workhorses of deep
learning, which constitutes the state of the art in numerous application
domains. However, DNN-based decision rules are notoriously prone to
poor generalization, i.e., may prove inadequate on inputs not encountered
during training. This limitation poses a significant obstacle to employ-
ing deep learning for mission-critical tasks, and also in real-world envi-
ronments that exhibit high variability. We propose a novel, verification-
driven methodology for identifying DNN-based decision rules that gener-
alize well to new input domains. Our approach quantifies generalization
to an input domain by the extent to which decisions reached by inde-
pendently trained DNNs are in agreement for inputs in this domain. We
show how, by harnessing the power of DNN verification, our approach
can be efficiently and effectively realized. We evaluate our verification-
based approach on three deep reinforcement learning (DRL) benchmarks,
including a system for Internet congestion control. Our results establish
the usefulness of our approach. More broadly, our work puts forth a
novel objective for formal verification, with the potential for mitigating
the risks associated with deploying DNN-based systems in the wild.

1 Introduction

Over the past decade, deep learning [35] has achieved state-of-the-art results
in natural language processing, image recognition, game playing, computational
biology, and many additional fields [4,18,21,45,50,84,85]. However, despite its
impressive success, deep learning still suffers from severe drawbacks that limit
its applicability in domains that involve mission-critical tasks or highly variable
inputs.

One such crucial limitation is the notorious difficulty of deep neural networks
(DNNs) to generalize to new input domains, i.e., their tendency to perform
poorly on inputs that significantly differ from those encountered while training.
During training, a DNN is presented with input data sampled from a specific dis-
tribution over some input domain (“in-distribution” inputs). The induced DNN-
based rules may fail in generalizing to inputs not encountered during training
due to (1) the DNN being invoked “out-of-distribution” (OOD), i.e., when there
is a mismatch between the distribution over inputs in the training data and in

G. Amir and O. Maayan—Contributed equally.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 438–455, 2023.
https://doi.org/10.1007/978-3-031-37703-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_21&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_21

Verifying Generalization in Deep Learning 439

the DNN’s operational data; (2) some inputs not being sufficiently represented
in the finite training data (e.g., various low-probability corner cases); and (3)
“overfitting” the decision rule to the training data.

A notable example of the importance of establishing the generalizability of
DNN-based decisions lies in recently proposed applications of deep reinforce-
ment learning (DRL) [56] to real-world systems. Under DRL, an agent, realized
as a DNN, is trained by repeatedly interacting with its environment to learn a
decision-making policy that attains high performance with respect to a certain
objective (“reward”). DRL has recently been applied to many real-world chal-
lenges [20,44,54,55,64–67,96,108]. In many application domains, the learned
policy is expected to perform well across a daunting breadth of operational
environments, whose diversity cannot possibly be captured in the training data.
Further, the cost of erroneous decisions can be dire. Our discussion of DRL-based
Internet congestion control (see Sect. 4.3) illustrates this point.

Here, we present a methodology for identifying DNN-based decision rules
that generalize well to all possible distributions over an input domain of interest.
Our approach hinges on the following key observation. DNN training in general,
and DRL policy training in particular, incorporate multiple stochastic aspects,
such as the initialization of the DNN’s weights and the order in which inputs
are observed during training. Consequently, even when DNNs with the same
architecture are trained to perform an identical task on the same data, somewhat
different decision rules will typically be learned. Paraphrasing Tolstoy’s Anna
Karenina [93], we argue that “successful decision rules are all alike; but every
unsuccessful decision rule is unsuccessful in its own way”. Differently put, when
examining the decisions by several independently trained DNNs on a certain
input, these are likely to agree only when their (similar) decisions yield high
performance.

In light of the above, we propose the following heuristic for generating DNN-
based decision rules that generalize well to an entire given domain of inputs:
independently train multiple DNNs, and then seek a subset of these DNNs that
are in strong agreement across all possible inputs in the considered input domain
(implying, by our hypothesis, that these DNNs’ learned decision rules generalize
well to all probability distributions over this domain). Our evaluation demon-
strates (see Sect. 4) that this methodology is extremely powerful and enables
distilling from a collection of decision rules the few that indeed generalize better
to inputs within this domain. Since our heuristic seeks DNNs whose decisions
are in agreement for each and every input in a specific domain, the decision rules
reached this way achieve robustly high generalization across different possible
distributions over inputs in this domain.

Since our methodology involves contrasting the outputs of different DNNs
over possibly infinite input domains, using formal verification is natural. To
this end, we build on recent advances in formal verification of DNNs [2,12,14,
16,27,60,78,86,102]. DNN verification literature has focused on establishing the
local adversarial robustness of DNNs, i.e., seeking small input perturbations that
result in misclassification by the DNN [31,36,61]. Our approach broadens the

440 G. Amir et al.

applicability of DNN verification by demonstrating, for the first time (to the best
of our knowledge), how it can also be used to identify DNN-based decision rules
that generalize well. More specifically, we show how, for a given input domain,
a DNN verifier can be utilized to assign a score to a DNN reflecting its level
of agreement with other DNNs across the entire input domain. This enables
iteratively pruning the set of candidate DNNs, eventually keeping only those in
strong agreement, which tend to generalize well.

To evaluate our methodology, we focus on three popular DRL benchmarks:
(i) Cartpole, which involves controlling a cart while balancing a pendulum; (ii)
Mountain Car, which involves controlling a car that needs to escape a valley;
and (iii) Aurora, an Internet congestion controller.

Aurora is a particularly compelling example for our approach. While Aurora
is intended to tame network congestion across a vast diversity of real-world
Internet environments, Aurora is trained only on synthetically generated data.
Thus, to deploy Aurora in the real world, it is critical to ensure that its policy
is sound for numerous scenarios not captured by its training inputs.

Our evaluation results show that, in all three settings, our verification-driven
approach is successful at ranking DNN-based DRL policies according to their
ability to generalize well to out-of-distribution inputs. Our experiments also
demonstrate that formal verification is superior to gradient-based methods and
predictive uncertainty methods. These results showcase the potential of our app-
roach. Our code and benchmarks are publicly available as an artifact accompa-
nying this work [8].

The rest of the paper is organized as follows. Section 2 contains background
on DNNs, DRLs, and DNN verification. In Sect. 3 we present our verification-
based methodology for identifying DNNs that successfully generalize to OOD
inputs. We present our evaluation in Sect. 4. Related work is covered in Sect. 5,
and we conclude in Sect. 6.

2 Background

Deep Neural Networks (DNNs) [35]

v11

v21

v12

v22

v13

v23

v14

1

−3

4

2

ReLU

ReLU

2

−1

+1

−2

Weighted
sum

ReLUInput Output

Fig. 1. A toy DNN.

are directed graphs that comprise several
layers. Upon receiving an assignment of
values to the nodes of its first (input)
layer, the DNN propagates these values,
layer by layer, until ultimately reaching
the assignment of the final (output) layer.
Computing the value for each node is
performed according to the type of that
node’s layer. For example, in weighted-
sum layers, the node’s value is an affine combination of the values of the nodes
in the preceding layer to which it is connected. In rectified linear unit (ReLU)
layers, each node y computes the value y = ReLU(x) = max(x, 0), where x is a
single node from the preceding layer. For additional details on DNNs and their

Verifying Generalization in Deep Learning 441

training see [35]. Figure 1 depicts a toy DNN. For input V1 = [1, 2]T , the sec-
ond layer computes the (weighted sum) V2 = [10,−1]T . The ReLU functions are
subsequently applied in the third layer, and the result is V3 = [10, 0]T . Finally,
the network’s single output is V4 = [20].

Deep Reinforcement Learning (DRL) [56] is a machine learning paradigm,
in which a DRL agent, implemented as a DNN, interacts with an environment
across discrete time-steps t ∈ 0, 1, 2.... At each time-step, the agent is presented
with the environment’s state st ∈ S, and selects an action N(st) = at ∈ A.
The environment then transitions to its next state st+1, and presents the agent
with the reward rt for its previous action. The agent is trained through repeated
interactions with its environment to maximize the expected cumulative discounted
reward Rt = E

[∑
t γt · rt

]
(where γ ∈ [

0, 1
]

is termed the discount factor) [38,
82,90,91,97,107].

DNN and DRL Verification. A sound DNN verifier [46] receives as input
(i) a trained DNN N ; (ii) a precondition P on the DNN’s inputs, limiting the
possible assignments to a domain of interest; and (iii) a postcondition Q on
the DNN’s outputs, limiting the possible outputs of the DNN. The verifier can
reply in one of two ways: (i) SAT, with a concrete input x′ for which P (x′) ∧
Q(N(x′)) is satisfied; or (ii) UNSAT, indicating there does not exist such an x′.
Typically, Q encodes the negation of N ’s desirable behavior for inputs that
satisfy P . Thus, a SAT result indicates that the DNN errs, and that x′ triggers
a bug; whereas an UNSAT result indicates that the DNN performs as intended.
An example of this process appears in Appendix B of our extended paper [7].
To date, a plethora of verification approaches have been proposed for general,
feed-forward DNNs [3,31,41,46,61,99], as well as DRL-based agents that operate
within reactive environments [5,9,15,22,28].

3 Quantifying Generalizability via Verification

Our approach for assessing how well a DNN is expected to generalize on out-of-
distribution inputs relies on the “Karenina hypothesis”: while there are many
(possibly infinite) ways to produce incorrect results, correct outputs are likely
to be fairly similar. Hence, to identify DNN-based decision rules that generalize
well to new input domains, we advocate training multiple DNNs and scoring the
learned decision models according to how well their outputs are aligned with
those of the other models for the considered input domain. These scores can be
computed using a backend DNN verifier. We show how, by iteratively filtering
out models that tend to disagree with the rest, DNNs that generalize well can
be effectively distilled.

We begin by introducing the following definitions for reasoning about the
extent to which two DNN-based decision rules are in agreement over an input
domain.

Definition 1 (Distance Function). Let O be the space of possible outputs for
a DNN. A distance function for O is a function d : O × O �→ R

+.

442 G. Amir et al.

Intuitively, a distance function (e.g., the L1 norm) allows us to quantify the
level of (dis)agreement between the decisions of two DNNs on the same input.
We elaborate on some choices of distance functions that may be appropriate in
various domains in Appendix B of our extended paper [7].

Definition 2 (Pairwise Disagreement Threshold). Let N1, N2 be DNNs
with the same output space O, let d be a distance function, and let Ψ be an input
domain. We define the pairwise disagreement threshold (PDT) of N1 and N2

as:

α = PDTd,Ψ (N1, N2) � min
{
α′ ∈ R

+ | ∀x ∈ Ψ : d(N1(x), N2(x)) ≤ α′}

The definition captures the notion that for any input in Ψ , N1 and N2 pro-
duce outputs that are at most α-distance apart. A small α value indicates that
the outputs of N1 and N2 are close for all inputs in Ψ , whereas a high value
indicates that there exists an input in Ψ for which the decision models diverge
significantly.

To compute PDT values, our approach employs verification to conduct a
binary search for the maximum distance between the outputs of two DNNs; see
Algorithm 1.

Algorithm 1. Pairwise Disagreement Threshold
Input: DNNs (Ni, Nj), distance func. d, input domain Ψ , max. disagreement M > 0
Output: PDT(Ni, Nj)

1: low ← 0, high ← M

2: while (low < high) do
3: α ← 1

2 · (low + high)
4: query ← SMT SOLVER 〈P ← Ψ, [Ni; Nj], Q ← d(Ni, Nj) ≥ α〉
5: if query is SAT then: low ← α
6: else if query is UNSAT then: high ← α
7: end while
8: return α

Pairwise disagreement thresholds can be aggregated to measure the disagree-
ment between a decision model and a set of other decision models, as defined
next.

Definition 3 (Disagreement Score). Let N = {N1, N2, . . . , Nk} be a set of
k DNN-induced decision models, let d be a distance function, and let Ψ be an
input domain. A model’s disagreement score (DS) with respect to N is defined
as:

DSN ,d,Ψ (Ni) =
1

|N | − 1

∑

j∈[k],j �=i

PDTd,Ψ (Ni, Nj)

Verifying Generalization in Deep Learning 443

Intuitively, the disagreement score measures how much a single decision model
tends to disagree with the remaining models, on average.

Using disagreement scores, our heuristic employs an iterative scheme for
selecting a subset of models that generalize to OOD scenarios—as encoded by
inputs in Ψ (see Algorithm 2). First, a set of k DNNs {N1, N2, . . . , Nk} are inde-
pendently trained on the training data. Next, a backend verifier is invoked to
calculate, for each of the

(
k
2

)
DNN-based model pairs, their respective pairwise-

disagreement threshold (up to some ε accuracy). Next, our algorithm iteratively:
(i) calculates the disagreement score for each model in the remaining subset of
models; (ii) identifies the models with the (relative) highest DS scores; and (iii)
removes them (Line 9 in Algorithm 2). The algorithm terminates after exceed-
ing a user-defined number of iterations (Line 3 in Algorithm 2), or when the
remaining models “agree” across the input domain, as indicated by nearly iden-
tical disagreement scores (Line 7 in Algorithm 2). We note that the algorithm
is also given an upper bound (M) on the maximum difference, informed by the
user’s domain-specific knowledge.

Algorithm 2. Model Selection
Input: Set of models N = {N1, . . . , Nk}, max disagreement M, number of ITERATIONS

Output: N ′ ⊆ N
1: PDT ← Pairwise Disagreement Thresholds(N , d, Ψ, M) � table with all PDTs
2: N ′ ← N
3: for l = 1 . . .ITERATIONS do
4: for Ni ∈ N ′ do
5: currentDS[Ni] ← DSN ′(Ni, PDT) � based on definition 3
6: end for
7: if modelScoresAreSimilar(currentDS) then: break
8: modelsToRemove ← findModelsWithHighestDS(currentDS)

9: N ′ ← N ′ \ modelsToRemove � remove models that tend to disagree
10: end for
11: return N ′

DS Removal Threshold. Different criteria are possible for determining the DS
threshold above for which models are removed, and how many models to remove
in each iteration (Line 8 in Algorithm 2). A natural and simple approach, used
in our evaluation, is to remove the p% models with the highest disagreement
scores, for some choice of p (25% in our evaluation). Due to space constraints, a
thorough discussion of additional filtering criteria (all of which proved successful)
is relegated to Appendix C of our extended paper [7].

4 Evaluation

We extensively evaluated our method using three DRL benchmarks. As discussed
in the introduction, verifying the generalizability of DRL-based systems is impor-
tant since such systems are often expected to provide robustly high performance

444 G. Amir et al.

across a broad range of environments, whose diversity is not captured by the
training data. Our evaluation spans two classic DRL settings, Cartpole [17] and
Mountain Car [68], as well as the recently proposed Aurora congestion controller
for Internet traffic [44]. Aurora is a particularly compelling example for a fairly
complex DRL-based system that addresses a crucial real-world challenge and
must generalize to real-world conditions not represented in its training data.

Setup. For each of the three DRL benchmarks, we first trained multiple DNNs
with the same architecture, where the training process differed only in the ran-
dom seed used. We then removed from this set of DNNs all but the ones that
achieved high reward values in-distribution (to eliminate the possibility that a
decision model generalizes poorly simply due to poor training). Next, we defined
out-of-distribution input domains of interest for each specific benchmark, and
used Algorithm 2 to select the models most likely to generalize well on those
domains according to our framework. To establish the ground truth for how
well different models actually generalize in practice, we then applied the models
to OOD inputs drawn from the considered domain and ranked them based on
their empirical performance (average reward). To investigate the robustness of
our results, the last step was conducted for varying choices of probability dis-
tributions over the inputs in the domain. All DNNs used have a feed-forward
architecture comprised of two hidden layers of ReLU activations, and include
32-64 neurons in the first hidden layer, and 16 neurons in the second hidden
layer.

The results indicate that models selected by our approach are likely to per-
form significantly better than the rest. Below we describe the gist of our evalua-
tion; extensive additional information is available in [7].

4.1 Cartpole

Fig. 2. Cartpole: in-distribution setting
(blue) and OOD setting (red). (Color figure
online)

Cartpole [33] is a well-known RL
benchmark in which an agent con-
trols the movement of a cart with
an upside-down pendulum (“pole”)
attached to its top. The cart moves
on a platform and the agent’s goal is
to keep the pole balanced for as long
as possible (see Fig. 2).

Agent and Environment. The agent’s inputs are s = (x, vx, θ, vθ), where x
represents the cart’s location on the platform, θ represents the pole’s angle (i.e.,
|θ| ≈ 0 for a balanced pole, |θ| ≈ 90◦ for an unbalanced pole), vx represents the
cart’s horizontal velocity and vθ represents the pole’s angular velocity.

In-Distribution Inputs. During training, the agent is incentivized to balance
the pole, while staying within the platform’s boundaries. In each iteration, the
agent’s single output indicates the cart’s acceleration (sign and magnitude) for
the next step. During training, we defined the platform’s bounds to be [−2.4, 2.4],

Verifying Generalization in Deep Learning 445

and the cart’s initial position as near-static, and close to the center of the plat-
form (left-hand side of Fig. 2). This was achieved by drawing the cart’s initial
state vector values uniformly from the range [−0.05, 0.05].

(OOD) Input Domain. We consider an input domain with larger platforms
than the ones used in training. To wit, we now allow the x coordinate of the
input vectors to cover a wider range of [−10, 10]. For the other inputs, we used
the same bounds as during the training. See [7] for additional details.

Fig. 3. Cartpole: Algorithm 2’s results, per iteration: the
bars reflect the ratio between the good/bad models (left
y-axis) in the surviving set of models, and the curve indi-
cates the number of surviving models (right y-axis).

Evaluation. We trained
k = 16 models, all
of which achieved high
rewards during training
on the short platform.
Next, we ran Algorithm 2
until convergence (7 itera-
tions, in our experiments)
on the aforementioned
input domain, resulting in
a set of 3 models. We
then tested all 16 origi-
nal models using (OOD)
inputs drawn from the
new domain, such that
the generated distribu-
tion encodes a novel set-
ting: the cart is now placed at the center of a much longer, shifted platform (see
the red cart in Fig. 2).

All other parameters in the OOD environment were identical to those used
for the original training. Figure 9 (in [7]) depicts the results of evaluating the
models using 20, 000 OOD instances. Of the original 16 models, 11 scored a low-
to-mediocre average reward, indicating their poor ability to generalize to this
new distribution. Only 5 models obtained high reward values, including the 3
models identified by Algorithm 2; thus implying that our method was able to
effectively remove all 11 models that would have otherwise performed poorly in
this OOD setting (see Fig. 3). For additional information, see [7].

4.2 Mountain Car

For our second experiment, we evaluated our method on the Mountain Car [79]
benchmark, in which an agent controls a car that needs to learn how to escape
a valley and reach a target. As in the Cartpole experiment, we selected a set of
models that performed well in-distribution and applied our method to identify
a subset of models that make similar decisions in a predefined input domain.
We again generated OOD inputs (relative to the training) from within this
domain, and observed that the models selected by our algorithm indeed general-
ize significantly better than their peers that were iteratively removed. Detailed

446 G. Amir et al.

information about this benchmark can be found in Appendix E of our extended
paper [7].

4.3 Aurora Congestion Controller

In our third benchmark, we applied our method to a complex, real-world system
that implements a policy for Internet congestion control. The goal of congestion
control is to determine, for each traffic source in a communication network, the
pace at which data packets should be sent into the network. Congestion control is
a notoriously difficult and fundamental challenge in computer networking [59,69];
sending packets too fast might cause network congestion, leading to data loss
and delays. Conversely, low sending rates might under-utilize available network
bandwidth. Aurora [44] is a DRL-based congestion controller that is the subject
of recent work on DRL verification [9,28]. In each time-step, an Aurora agent
observes statistics regarding the network and decides the packet sending rate
for the following time-step. For example, if the agent observes excellent network
conditions (e.g., no packet loss), we expect it to increase the packet sending rate
to better utilize the network. We note that Aurora handles a much harder task
than classical RL benchmarks (e.g., Cartpole and Mountain Car): congestion
controllers must react gracefully to various possible events based on nuanced
signals, as reflected by Aurora’s inputs. Here, unlike in the previous benchmarks,
it is not straightforward to characterize the optimal policy.

Agent and Environment. Aurora’s inputs are t vectors v1, . . . , vt, representing
observations from the t previous time-steps. The agent’s single output value
indicates the change in the packet sending rate over the next time-step. Each
vector vi ∈ R

3 includes three distinct values, representing statistics that reflect
the network’s condition (see details in Appendix F of [7]). In line with previous
work [9,28,44], we set t = 10 time-steps, making Aurora’s inputs of size 3t = 30.
The reward function is a linear combination of the data sender’s throughput,
latency, and packet loss, as observed by the agent (see [44] for additional details).

In-Distribution Inputs. Aurora’s training applies the congestion controller
to simple network scenarios where a single sender sends traffic towards a single
receiver across a single network link. Aurora is trained across varying choices of
initial sending rate, link bandwidth, link packet-loss rate, link latency, and size
of the link’s packet buffer. During training, packets are initially sent by Aurora
at a rate corresponding to 0.3 − 1.5 times the link’s bandwidth.

(OOD) Input Domain. In our experiments, the input domain encoded a link
with a shallow packet buffer, implying that only a few packets can accumulate in
the network (while most excess traffic is discarded), causing the link to exhibit a
volatile behavior. This is captured by the initial sending rate being up to 8 times
the link’s bandwidth, to model the possibility of a dramatic decrease in available
bandwidth (e.g., due to competition, traffic shifts, etc.). See [7] for additional
details.

Verifying Generalization in Deep Learning 447

Evaluation. We ran our algorithm and scored the models based on their dis-
agreement upon this large domain, which includes inputs they had not encoun-
tered during training, representing the aforementioned novel link conditions.

Experiment (1): High Packet Loss. In this experiment, we trained over 100
Aurora agents in the original (in-distribution) environment. Out of these, we
selected k = 16 agents that achieved a high average reward in-distribution (see
Fig. 20a in [7]). Next, we evaluated these agents on OOD inputs that are included
in the previously described domain. The main difference between the training
distribution and the new (OOD) ones is the possibility of extreme packet loss
rates upon initialization.

Our evaluation over the OOD inputs, within the domain, indicates that
although all 16 models performed well in-distribution, only 7 agents could suc-
cessfully handle such OOD inputs (see Fig. 20b in [7]). When we ran Algorithm 2
on the 16 models, it was able to filter out all 9 models that generalized poorly
on the OOD inputs (see Fig. 4). In particular, our method returned model {16},
which is the best-performing model according to our simulations. We note that
in the first iterations, the four models to be filtered out were models {1, 2, 6, 13},
which are indeed the four worst-performing models on the OOD inputs (see
Appendix F of [7]).

(a) Reward statistics of remaining models (b) Ratio between good/bad models

Fig. 4. Aurora: Algorithm 2’s results, per iteration.

Experiment (2): Additional Distributions over OOD Inputs. To further
demonstrate that, in the specified input domain, our method is indeed likely to
keep better-performing models while removing bad models, we reran the previous
Aurora experiments for additional distributions (probability density functions)
over the OOD inputs. Our evaluation reveals that all models removed by Algo-
rithm 2 achieved low reward values also for these additional distributions. These
results highlight an important advantage of our approach: it applies to all inputs
within the considered domain, and so it applies to all distributions over these
inputs.

Additional Experiments. We also generated a new set of Aurora models
by altering the training process to include significantly longer interactions. We

448 G. Amir et al.

then repeated the aforementioned experiments. The results (summarized in [7])
demonstrate that our approach (again) successfully selected a subset of models
that generalizes well to distributions over the OOD input domain.

4.4 Comparison to Additional Methods

Gradient-based methods [40,53,62,63] are optimization algorithms capable of
finding DNN inputs that satisfy prescribed constraints, similarly to verification
methods. These algorithms are extremely popular due to their simplicity and
scalability. However, this comes at the cost of being inherently incomplete and
not as precise as DNN verification [11,101]. Indeed, when modifying our algo-
rithm to calculate PDT scores with gradient-based methods, the results (sum-
marized in Appendix G of [7]) reveal that, in our context, the verification-based
approach is superior to the gradient-based ones. Due to the incompleteness of
gradient-based approaches [101], they often computed sub-optimal PDT values,
resulting in models that generalize poorly being retained.

Predictive uncertainty methods [1,74] are online methods for assessing uncer-
tainty with respect to observed inputs, to determine whether an encountered
input is drawn from the training distribution. We ran an experiment com-
paring our approach to uncertainty-prediction-based model selection: we gen-
erated ensembles [23,30,51] of our original models, and used a variance-based
metric (motivated by [58]) to identify subsets of models with low output vari-
ance on OOD-sampled inputs. Similar to gradient-based methods, predictive-
uncertainty techniques proved fast and scalable, but lacked the precision afforded
by verification-driven model selection and were unable to discard poorly general-
izing models. For example, when ranking Cartpole models by their uncertainty
on OOD inputs, the three models with the lowest uncertainty included also
“bad” models, which had been filtered out by our approach.

5 Related Work

Recently, a plethora of approaches and tools have been put forth for ensur-
ing DNN correctness [2,6,10,15,19,24–27,29,31,32,34,36,37,41–43,46–49,52,
57,61,70,76,81,83,86,87,89,92,94,95,98,100,102,104,106], including techniques
for DNN shielding [60], optimization [14,88], quantitative verification [16],
abstraction [12,13,73,78,86,105], size reduction [77], and more. Non-verification
techniques, including runtime-monitoring [39], ensembles [71,72,80,103] and
additional methods [75] have been utilized for OOD input detection.

In contrast to the above approaches, we aim to establish generalization guar-
antees with respect to an entire input domain (spanning all distributions across
this domain). In addition, to the best of our knowledge, ours is the first attempt
to exploit variability across models for distilling a subset thereof, with improved
generalization capabilities. In particular, it is also the first approach to apply
formal verification for this purpose.

Verifying Generalization in Deep Learning 449

6 Conclusion

This work describes a novel, verification-driven approach for identifying DNN
models that generalize well to an input domain of interest. We presented an
iterative scheme that employs a backend DNN verifier, allowing us to score
models based on their ability to produce similar outputs on the given domain.
We demonstrated extensively that this approach indeed distills models capable
of good generalization. As DNN verification technology matures, our approach
will become increasingly scalable, and also applicable to a wider variety of DNNs.

Acknowledgements. The work of Amir, Zelazny, and Katz was partially supported
by the Israel Science Foundation (grant number 683/18). The work of Amir was sup-
ported by a scholarship from the Clore Israel Foundation. The work of Maayan and
Schapira was partially supported by funding from Huawei.

References

1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: tech-
niques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

2. Alamdari, P., Avni, G., Henzinger, T., Lukina, A.: Formal methods with a touch
of magic. In: Proceedings 20th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp. 138–147 (2020)

3. Albarghouthi, A.: Introduction to Neural Network Verification (2021). verified-
deeplearning.com

4. AlQuraishi, M.: AlphaFold at CASP13. Bioinformatics 35(22), 4862–4865 (2019)
5. Amir, G., et al.: Verifying learning-based robotic navigation systems. In: Sankara-

narayanan, S., Sharygina, N. (eds.) Proceedings 29th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pp. 607–627. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30823-
9 31

6. Amir, G., Freund, Z., Katz, G., Mandelbaum, E., Refaeli, I.: veriFIRE: verify-
ing an industrial, learning-based wildfire detection system. In: Proceedings 25th
International Symposium on Formal Methods (FM), pp. 648–656. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-27481-7 38

7. Amir, G., Maayan, O., Zelazny, O., Katz, G., Schapira, M.: Verifying generaliza-
tion in deep learning. Technical report (2023). https://arxiv.org/abs/2302.05745

8. Amir, G., Maayan, O., Zelazny, T., Katz, G., Schapira, M.: Verifying general-
ization in deep learning: artifact (2023). https://zenodo.org/record/7884514#.
ZFAz 3ZBy3B

9. Amir, G., Schapira, M., Katz, G.: Towards scalable verification of deep reinforce-
ment learning. In: Proceedings 21st Internationl Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 193–203 (2021)

10. Amir, G., Wu, H., Barrett, C., Katz, G.: An SMT-based approach for verify-
ing binarized neural networks. In: TACAS 2021. LNCS, vol. 12652, pp. 203–222.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 11

11. Amir, G., Zelazny, T., Katz, G., Schapira, M.: Verification-aided deep ensemble
selection. In: Proceedings 22nd International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp. 27–37 (2022)

https://doi.org/10.1007/978-3-031-30823-9_31
https://doi.org/10.1007/978-3-031-30823-9_31
https://doi.org/10.1007/978-3-031-27481-7_38
https://arxiv.org/abs/2302.05745
https://zenodo.org/record/7884514#.ZFAz_3ZBy3B
https://zenodo.org/record/7884514#.ZFAz_3ZBy3B
https://doi.org/10.1007/978-3-030-72013-1_11

450 G. Amir et al.

12. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction:
a synergistic approach for analyzing neural network robustness. In: Proceedings
40th ACM SIGPLAN Conference on Programming Languages Design and Imple-
mentations (PLDI), pp. 731–744 (2019)

13. Ashok, P., Hashemi, V., Kretinsky, J., Mohr, S.: DeepAbstract: neural network
abstraction for accelerating verification. In: Proceedings 18th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA), pp.
92–107 (2020)

14. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger,
S.: Run-time optimization for learned controllers through quantitative games. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 630–649. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 36

15. Bacci, E., Giacobbe, M., Parker, D.: Verifying reinforcement learning up to infin-
ity. In: Proceedings 30th International Joint Conference on Artificial Intelligence
(IJCAI) (2021)

16. Baluta, T., Shen, S., Shinde, S., Meel, K., Saxena, P.: Quantitative verification
of neural networks and its security applications. In: Proceedings ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 1249–1264
(2019)

17. Barto, A., Sutton, R., Anderson, C.: Neuronlike adaptive elements that can solve
difficult learning control problems. In: Proceedings of IEEE Systems Man and
Cybernetics Conference (SMC), pp. 834–846 (1983)

18. Bojarski, M., et al.: End to end learning for self-driving cars. Technical report
(2016). http://arxiv.org/abs/1604.07316

19. Bunel, R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.: A unified view of
piecewise linear neural network verification. In: Proceedings 32nd Conference on
Neural Information Processing Systems (NeurIPS), pp. 4795–4804 (2018)

20. Chen, W., Xu, Y., Wu, X.: Deep reinforcement learning for multi-resource
multi-machine job scheduling. Technical report (2017). http://arxiv.org/abs/
1711.07440

21. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. (JMLR)
12, 2493–2537 (2011)

22. Corsi, D., Marchesini, E., Farinelli, A.: Formal verification of neural networks for
safety-critical tasks in deep reinforcement learning. In: Proceedings 37th Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pp. 333–343 (2021)

23. Dietterich, T.: Ensemble methods in machine learning. In: Proceedings 1st Inter-
national Workshop on Multiple Classifier Systems (MCS), pp. 1–15 (2020)

24. Dong, G., Sun, J., Wang, J., Wang, X., Dai, T.: Towards repairing neural networks
correctly. Technical report (2020). http://arxiv.org/abs/2012.01872

25. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Proceedings 22nd
ACM International Conference on Hybrid Systems: Computation and Control
(HSCC), pp. 157–168 (2019)

26. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of
feedback control systems using feedforward neural networks. IFAC-PapersOnLine
51(16), 151–156 (2018)

27. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Proceedings 15th International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA), pp. 269–286 (2017)

https://doi.org/10.1007/978-3-030-25540-4_36
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1711.07440
http://arxiv.org/abs/1711.07440
http://arxiv.org/abs/2012.01872

Verifying Generalization in Deep Learning 451

28. Eliyahu, T., Kazak, Y., Katz, G., Schapira, M.: Verifying learning-augmented
systems. In: Proceedings Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), pp. 305–318 (2021)

29. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward
safe control through proof and learning. In: Proceedings 32nd AAAI Conference
on Artificial Intelligence (AAAI) (2018)

30. Ganaie, M., Hu, M., Malik, A., Tanveer, M., Suganthan, P.: Ensemble deep learn-
ing: a review. Eng. Appl. Artif. Intell. 115, 105151 (2022)

31. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, E., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings 39th IEEE Symposium on Security and Privacy (S&P)
(2018)

32. Geng, C., Le, N., Xu, X., Wang, Z., Gurfinkel, A., Si, X.: Toward reliable neural
specifications. Technical report (2022). https://arxiv.org/abs/2210.16114

33. Geva, S., Sitte, J.: A cartpole experiment benchmark for trainable controllers.
IEEE Control Syst. Mag. 13(5), 40–51 (1993)

34. Goldberger, B., Adi, Y., Keshet, J., Katz, G.: Minimal modifications of deep
neural networks using verification. In: Proceedings 23rd Proceedings Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), pp.
260–278 (2020)

35. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
36. Gopinath, D., Katz, G., Pǎsǎreanu, C., Barrett, C.: DeepSafe: a data-driven app-

roach for assessing robustness of neural networks. In: Proceedings 16th Inter-
national Symposium on Automated Technology for Verification and Analysis
(ATVA), pp. 3–19 (2018)

37. Goubault, E., Palumby, S., Putot, S., Rustenholz, L., Sankaranarayanan, S.: Static
analysis of ReLU neural networks with tropical Polyhedra. In: Proceedings 28th
International Symposium on Static Analysis (SAS), pp. 166–190 (2021)

38. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: Proceedings
Conference on Machine Learning, pp. 1861–1870. PMLR (2018)

39. Hashemi, V., Křet́ınsky, J., Rieder, S., Schmidt, J.: Runtime monitoring for out-
of-distribution detection in object detection neural networks. Technical report
(2022). http://arxiv.org/abs/2212.07773

40. Huang, S., Papernot, N., Goodfellow, I., Duan, Y., Abbeel, P.: Adversarial attacks
on neural network policies. Technical report (2017). https://arxiv.org/abs/1702.
02284

41. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neu-
ral networks. In: Proceedings 29th International Conference on Computer Aided
Verification (CAV), pp. 3–29 (2017)

42. Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural network verification with proof
production. In: Proceedings 22nd International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 38–48 (2022)

43. Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invari-
ant inference. In: Proceedings 18th International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA), pp. 57–74 (2020)

44. Jay, N., Rotman, N., Godfrey, B., Schapira, M., Tamar, A.: A deep reinforce-
ment learning perspective on internet congestion control. In: Proceedings 36th
International Conference on Machine Learning (ICML), pp. 3050–3059 (2019)

https://arxiv.org/abs/2210.16114
http://arxiv.org/abs/2212.07773
https://arxiv.org/abs/1702.02284
https://arxiv.org/abs/1702.02284

452 G. Amir et al.

45. Julian, K., Lopez, J., Brush, J., Owen, M., Kochenderfer, M.: Policy compression
for aircraft collision avoidance systems. In: Proceedings 35th Digital Avionics
Systems Conference (DASC), pp. 1–10 (2016)

46. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: an efficient
SMT solver for verifying deep neural networks. In: Proceedings 29th International
Conference on Computer Aided Verification (CAV), pp. 97–117 (2017)

47. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: a calculus
for reasoning about deep neural networks. Formal Methods Syst. Des. (FMSD)
(2021)

48. Katz, G., et al.: The marabou framework for verification and analysis of deep neu-
ral networks. In: Proceedings 31st International Conference on Computer Aided
Verification (CAV), pp. 443–452 (2019)

49. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Proceedings International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISoLA), pp. 290–306 (2020)

50. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convo-
lutional neural networks. In: Proceedings 26th Conference on Neural Information
Processing Systems (NeurIPS), pp. 1097–1105 (2012)

51. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active
learning. In: Proceedings 7th Conference on Neural Information Processing Sys-
tems (NeurIPS), pp. 231–238 (1994)

52. Kuper, L. Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward scalable verification for safety-critical deep networks. Technical report
(2018). https://arxiv.org/abs/1801.05950

53. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical
world. Technical report (2016). http://arxiv.org/abs/1607.02533

54. Lekharu, A., Moulii, K., Sur, A., Sarkar, A.: Deep learning based prediction model
for adaptive video streaming. In: Proceedings 12th International Conference on
Communication Systems & Networks (COMSNETS), pp. 152–159. IEEE (2020)

55. Li, W., Zhou, F., Chowdhury, K.R., Meleis, W.: QTCP: adaptive congestion
control with reinforcement learning. IEEE Trans. Netw. Sci. Eng. 6(3), 445–458
(2018)

56. Li, Y.: Deep reinforcement learning: an overview. Technical report (2017). http://
arxiv.org/abs/1701.07274

57. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. Technical report (2017). http://arxiv.org/abs/1706.07351

58. Loquercio, A., Segu, M., Scaramuzza, D.: A general framework for uncertainty
estimation in deep learning. In: Proceedings International Conference on Robotics
and Automation (ICRA), pp. 3153–3160 (2020)

59. Low, S., Paganini, F., Doyle, J.: Internet congestion control. IEEE Control Syst.
Mag. 22(1), 28–43 (2002)

60. Lukina, A., Schilling, C., Henzinger, T.A.: Into the unknown: active monitoring
of neural networks. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974,
pp. 42–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9 3

61. Lyu, Z., Ko, C.Y., Kong, Z., Wong, N., Lin, D., Daniel, L.: Fastened crown: tight-
ened neural network robustness certificates. In: Proceedings 34th AAAI Confer-
ence on Artificial Intelligence (AAAI), pp. 5037–5044 (2020)

62. Ma, J., Ding, S., Mei, Q.: Towards more practical adversarial attacks on graph
neural networks. In: Proceedings 34th Conference on Neural Information Process-
ing Systems (NeurIPS) (2020)

https://arxiv.org/abs/1801.05950
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1706.07351
https://doi.org/10.1007/978-3-030-88494-9_3

Verifying Generalization in Deep Learning 453

63. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learn-
ing models resistant to adversarial attacks. Technical report (2017). http://arxiv.
org/abs/1706.06083

64. Mammadli, R., Jannesari, A., Wolf, F.: Static neural compiler optimization via
deep reinforcement learning. In: Proceedings 6th IEEE/ACM Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierar-
chical Parallelism for Exascale Computing (HiPar), pp. 1–11 (2020)

65. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with
deep reinforcement learning. In: Proceedings 15th ACM Workshop on Hot Topics
in Networks (HotNets), pp. 50–56 (2016)

66. Mao, H., Netravali, R., Alizadeh, M.: Neural adaptive video streaming with Pen-
sieve. In: Proceedings Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), pp. 197–210 (2017)

67. Mnih, V., et al.: Playing Atari with deep reinforcement learning. Technical report
(2013). https://arxiv.org/abs/1312.5602

68. Moore, A.: Efficient Memory-based Learning for Robot Control. University of
Cambridge (1990)

69. Nagle, J.: Congestion control in IP/TCP internetworks. ACM SIGCOMM Com-
put. Commun. Rev. 14(4), 11–17 (1984)

70. Okudono, T., Waga, M., Sekiyama, T., Hasuo, I.: Weighted automata extraction
from recurrent neural networks via regression on state spaces. In: Proceedings
34th AAAI Conference on Artificial Intelligence (AAAI), pp. 5037–5044 (2020)

71. Ortega, L., Cabañas, R., Masegosa, A.: Diversity and generalization in neural
network ensembles. In: Proceedings 25th International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 11720–11743 (2022)

72. Osband, I., Aslanides, J., Cassirer, A.: Randomized prior functions for deep rein-
forcement learning. In: Proceedings 31st International Conference on Neural Infor-
mation Processing Systems (NeurIPS), pp. 8617–8629 (2018)

73. Ostrovsky, M., Barrett, C., Katz, G.: An abstraction-refinement approach to ver-
ifying convolutional neural networks. In Proceedings 20th International Sympo-
sium on Automated Technology for Verification and Analysis (ATVA), pp. 391–
396 (2022)

74. Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predic-
tive uncertainty under dataset shift. In: Proceedings 33rd Conference on Neural
Information Processing Systems (NeurIPS), pp. 14003–14014 (2019)

75. Packer, C., Gao, K., Kos, J., Krähenbühl, P., Koltun, V., Song, D.: Assessing
generalization in deep reinforcement learning. Technical report (2018). https://
arxiv.org/abs/1810.12282

76. Polgreen, E., Abboud, R., Kroening, D.: Counterexample guided neural synthesis.
Technical report (2020). https://arxiv.org/abs/2001.09245

77. Prabhakar, P.: Bisimulations for neural network reduction. In: Finkbeiner, B.,
Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 285–300. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-94583-1 14

78. Prabhakar, P., Afzal, Z.: Abstraction based output range analysis for neural net-
works. Technical report (2020). https://arxiv.org/abs/2007.09527

79. Riedmiller, M.: Neural fitted Q iteration – first experiences with a data efficient
neural reinforcement learning method. In: Gama, J., Camacho, R., Brazdil, P.B.,
Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 317–328.
Springer, Heidelberg (2005). https://doi.org/10.1007/11564096 32

http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1810.12282
https://arxiv.org/abs/1810.12282
https://arxiv.org/abs/2001.09245
https://doi.org/10.1007/978-3-030-94583-1_14
https://arxiv.org/abs/2007.09527
https://doi.org/10.1007/11564096_32

454 G. Amir et al.

80. Rotman, N., Schapira, M., Tamar, A.: Online safety assurance for deep reinforce-
ment learning. In: Proceedings 19th ACM Workshop on Hot Topics in Networks
(HotNets), pp. 88–95 (2020)

81. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings 27th International Joint Confer-
ence on Artificial Intelligence (IJCAI) (2018)

82. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal pol-
icy optimization algorithms. Technical report (2017). http://arxiv.org/abs/1707.
06347

83. Seshia, S., et al.: Formal specification for deep neural networks. In: Proceedings
16th International Symposium on Automated Technology for Verification and
Analysis (ATVA), pp. 20–34 (2018)

84. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

85. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Technical report (2014). http://arxiv.org/abs/1409.1556

86. Singh, G., Gehr, T., Puschel, M., Vechev, M.: An abstract domain for certifying
neural networks. In: Proceedings 46th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL) (2019)

87. Sotoudeh, M., Thakur, A.: Correcting deep neural networks with small, general-
izing patches. In: Workshop on Safety and Robustness in Decision Making (2019)

88. Strong, C., et al.: Global optimization of objective functions represented by ReLU
networks. J. Mach. Learn., 1–28 (2021)

89. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings 22nd ACM International Conference on
Hybrid Systems: Computation and Control (HSCC) (2019)

90. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press
(2018)

91. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation. In: Proceedings 12th Con-
ference on Neural Information Processing Systems (NeurIPS) (1999)

92. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. Technical report (2017). http://arxiv.org/abs/1711.
07356

93. Tolstoy, L.: Anna Karenina. The Russian Messenger (1877)
94. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness

certification of neural networks. In: Proceedings ACM International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA),
pp. 1–30 (2020)

95. Usman, M., Gopinath, D., Sun, Y., Noller, Y., Pǎsǎreanu, C.: NNrepair:
constraint-based repair of neural network classifiers. Technical report (2021).
http://arxiv.org/abs/2103.12535

96. Valadarsky, A., Schapira, M., Shahaf, D., Tamar, A.: Learning to route with deep
RL. In: NeurIPS Deep Reinforcement Learning Symposium (2017)

97. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-
learning. In: Proceedings 30th AAAI Conference on Artificial Intelligence (AAAI)
(2016)

98. Vasić, M., Petrović, A., Wang, K., Nikolić, M., Singh, R., Khurshid, S.: MoËT:
mixture of expert trees and its application to verifiable reinforcement learning.
Neural Netw. 151, 34–47 (2022)

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/2103.12535

Verifying Generalization in Deep Learning 455

99. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: Proceedings 27th USENIX Security
Symposium, pp. 1599–1614 (2018)

100. Wu, H., et al.: Parallelization techniques for verifying neural networks. In: Pro-
ceedings 20th International Conference on Formal Methods in Computer-Aided
Design (FMCAD), pp. 128–137 (2020)

101. Wu, H., Zeljić, A., Katz, K., Barrett, C.: Efficient neural network analysis with
sum-of-infeasibilities. In: Proceedings 28th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pp. 143–163
(2022)

102. Xiang, W., Tran, H., Johnson, T.: Output reachable set estimation and verifi-
cation for multi-layer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
(TNNLS) (2018)

103. Yang, J., Zeng, X., Zhong, S., Wu, S.: Effective neural network ensemble approach
for improving generalization performance. IEEE Trans. Neural Netw. Learn. Syst.
(TNNLS) 24(6), 878–887 (2013)

104. Yang, X., Yamaguchi, T., Tran, H., Hoxha, B., Johnson, T., Prokhorov, D.: Neu-
ral network repair with reachability analysis. In: Proceedings 20th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS),
pp. 221–236 (2022)

105. Zelazny, T., Wu, H., Barrett, C., Katz, G.: On reducing over-approximation errors
for neural network verification. In: Proceedings 22nd International Conference on
Formal Methods in Computer-Aided Design (FMCAD), pp. 17–26 (2022)

106. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verifi-
cation of recurrent neural networks for cognitive tasks via reachability analysis.
In: Proceedings 24th European Conference on Artificial Intelligence (ECAI), pp.
1690–1697 (2020)

107. Zhang, J., Kim, J., O’Donoghue, B., Boyd, S.: Sample efficient reinforcement
learning with REINFORCE. Technical report (2020). https://arxiv.org/abs/2010.
11364

108. Zhang, J., et al.: An end-to-end automatic cloud database tuning system using
deep reinforcement learning. In: Proceedings of the 2019 International Conference
on Management of Data (SIGMOD), pp. 415–432 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2010.11364
https://arxiv.org/abs/2010.11364
http://creativecommons.org/licenses/by/4.0/

	Verifying Generalization in Deep Learning
	1 Introduction
	2 Background
	3 Quantifying Generalizability via Verification
	4 Evaluation
	4.1 Cartpole
	4.2 Mountain Car
	4.3 Aurora Congestion Controller
	4.4 Comparison to Additional Methods

	5 Related Work
	6 Conclusion
	References

