
On Composing and Proving the
Correctness of Reactive Behavior

Supplementary Material

David Harel
Weizmann Institute of Science

Rehovot, Israel
david.harel

@weizmann.ac.il

Amir Kantor
Weizmann Institute of Science

Rehovot, Israel
amir.kantor

@weizmann.ac.il

Guy Katz
Weizmann Institute of Science

Rehovot, Israel
guy.katz

@weizmann.ac.il
Assaf Marron

Weizmann Institute of Science
Rehovot, Israel
assaf.marron

@weizmann.ac.il

Lior Mizrahi
Ben-Gurion University

Beer-Sheva, Israel
liormizr

@cs.bgu.ac.il

Gera Weiss
Ben-Gurion University

Beer-Sheva, Israel
geraw

@cs.bgu.ac.il

Appendix 1. Z3 axioms for BP with priorities
As stated in Section 3, the Z3 formulation of the BP ax-
ioms can be altered to accommodate other variants of event-
selection mechanisms. Below, we give the axioms for a
priority-based scheme: each event is requested with an in-
teger representing its priority, and among all events that
are requested and not blocked the one of highest priority is
selected for triggering.
The trace function includes the priority of the event trig-

gered at each step:

Priority = IntSort ();

requested = Function (’requested ’, Event ,
Time , Priority , BoolSort ())

blocked = Function (’blocked ’, Event ,
Time , BoolSort ())

TraceEntry = Datatype (’TraceEntry ’)
TraceEntry . declare (’TEntry ’,

(’event ’, Event),
(’priority ’, Priority))

TraceEntry = TraceEntry . create ()

trace = Function (’trace ’, Time ,
TraceEntry)

The axioms describe priority-based selection:

∀e, t, p : ¬requested (e, t, p) ⇒
trace (t) 6= TraceEntry (e,p)

∀e, t : blocked (e,t) ⇒ event (trace (t)) 6= e

∀e, t, pr: requested (e,t,pr) ∧ ¬blocked (e,t) ⇒
priority (trace (t)) ≥ pr

Finally, the requested_by helper function handles priorities:

requested(e,t,pr) ⇔
∨

bt∈BThreads

requested_by(e,t,pr,bt)

The blocked_by helper function remains unchanged.
These axioms can be used to verify properties of priority-

based BP programs in much the same way as shown in the
examples of Section 4.

Appendix 2. Deadlock-freedom of the applica-
tion in Sec. 4.4
Below is a manual proof that the specification of the dining
philosophers problem with one left-handed philosopher is
deadlock-free. The proof is independent of the number of
philosophers.

Proof. Let Pn be the left-handed philosopher.

1. If any philosopher b-thread is in an “Eating” state or
“Put down one fork” state, the next event associated
with this philosopher is not blocked by any b-thread.
Consequently, the system is not deadlocked.

2. Hence, if there is a deadlock, all philosopher b-threads
are either in a “Thinking” state or in a “Picked up one
fork” state.

3. Thus, Pn is not holding F0.

4. If P0 is in “Picked up one fork” state, then she can
pick up F0 (the event is requested and not blocked).

5. If P0 is in “Thinking” state, then (as P1 is either in
“Thinking” or in “Picked up one fork” state) she can
pick up F1 (the event is requested and not blocked).

6. Hence, the system is not deadlocked.

