
An Abstraction-Refinement Approach
to Verifying Convolutional Neural

Networks

Matan Ostrovsky1, Clark Barrett2, and Guy Katz1(B)

1 The Hebrew University of Jerusalem, Jerusalem, Israel
matan.ostrovsky@mail.huji.ac.il, guykatz@cs.huji.ac.il

2 Stanford University, Stanford, USA

barrett@cs.stanford.edu

Abstract. Convolutional neural networks (CNNs) have achieved
immense popularity in areas like computer vision, image processing,
speech proccessing, and many others. Unfortunately, despite their excel-
lent performance, they are prone to producing erroneous results — for
example, minor perturbations to their inputs can result in severe classi-
fication errors. In this paper, we present the Cnn-Abs framework, which
implements an abstraction-refinement based scheme for CNN verifica-
tion. Specifically, Cnn-Abs simplifies the verification problem through
the removal of convolutional connections in a way that soundly creates
an over-approximation of the original problem; it then iteratively restores
these connections if the resulting problem becomes too abstract. Cnn-
Abs is designed to use existing verification engines as a backend, and our
evaluation demonstrates that it can significantly boost the performance
of a state-of-the-art DNN verification engine, reducing runtime by 15.7%
on average.

1 Overview

Deep neural networks (DNN s) have demonstrated a remarkable ability to solve
extremely complex tasks [4,11]. However, they are also notoriously opaque to
human engineers, and various errors have been demonstrated in real-world, state-
of-the-art DNNs [12]. Such errors are a hindrance to the adoption of DNN-based
methods in critical systems and have sparked great interest in DNN verification
(e.g., [1,2,5,6,9,10,13], among many others). Unfortunately, the DNN formal
verification problem is NP-complete even for simple neural networks and speci-
fications [5], and emperically, it appears to become exponentially harder as the
network size increases — making scalability a key challenge for DNN verification
tools.

Here, we contribute to the ongoing effort to address this challenge with a
new framework called Cnn-Abs, which uses an abstraction-refinement based
approach for verifying convolutional neural networks (CNNs). A CNN is a par-
ticular type of DNN that uses convolutions: constructs that allow for a very
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bouajjani et al. (Eds.): ATVA 2022, LNCS 13505, pp. 391–396, 2022.
https://doi.org/10.1007/978-3-031-19992-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19992-9_25&domain=pdf
https://doi.org/10.1007/978-3-031-19992-9_25


392 M. Ostrovsky et al.

compact representation of the DNN, and consequently enable engineers to over-
come memory-related bottlenecks. CNNs have been shown to perform well in
image processing and computer vision tasks [4,11] and are in widespread use.
Existing verification tools can verify CNNs, but typically only by reducing them
to the general, fully connected case, thus failing to leverage the built-in com-
pactness of CNNs. Because the size of the DNN slows down its verification, such
transformations are costly. In contrast, our proposed framework aims to utilize
the special properties of a CNN in expediting its verification.

At a high level, given a verification query over a CNN, Cnn-Abs first cre-
ates an abstract network, with significantly fewer neurons, with the property
that if the query can be proved for this smaller network, then it also holds for
the original network. Notably, the abstract network that we construct is fully
connected, and can thus be verified using existing technology. Further, because
the verification complexity depends on the number of neurons and edges in the
DNN, verifying this smaller network is faster than transforming the CNN into an
equivalent, fully connected network and verifying it. Due to the abstraction pro-
cedure, verifying the smaller network might produce a spurious counterexample,
in which case our framework refines the network and repeats the process.

The overall flow of Cnn-Abs is depicted in Fig. 1. Initially, Cnn-Abs applies
bound propagation [10,13] to compute lower and upper bounds for all hidden
neurons within the network. Then, it selects a set of neurons and abstracts them
by removing their incoming edges and treating them as input neurons — which
can take on values within the previously-computed range. Any other neurons
that become disconnected from the network’s outputs as a result are pruned
entirely; the number of such neurons tends to be high, due to the nature of
convolutional layers, where each neuron is only connected to a small number of
neurons in following layers. A small illustrative example appears in Fig. 2. For a
more thorough and precise description of the technique, as well as a proof of its
soundness, see the full version of this paper [8].

Fig. 1. The suggested abstraction-refinement scheme.

Related Work. Abstraction-refinement techniques have been successfully
applied in DNN verification [1,3,9], though these attempts were not particu-
larly aimed at CNNs. Specific approaches to CNN verification have also been



An Abstraction-Refinement Approach 393

Fig. 2. A toy CNN, abstracted by disconnecting the edges leading to m1 and pruning
the neurons no longer connected to the output neurons (in gray). m′

1 is now treated as
an input neuron, bounded by its computed bounds 0 ≤ m′

1 ≤ 1.2.

proposed (e.g., [2,14]), but these do not focus on abstraction/refinement. For a
more thorough discussion, see [8].

2 Design of Cnn-Abs

We implemented Cnn-Abs as a set of Python modules, available online.1 Cnn-
Abs currently accepts CNNs stored in Tensorflow format as input. The tool’s
main module, CnnAbs.py, implements the abstraction and refinement principles
described in Sect. 1 and currently supports five different heuristics for iteratively
applying refinement steps when spurious counterexamples are detected (see [8]).
Cnn-Abs can be used in verifying arbitrary CNN properties, although it con-
tains a specialized interface for verifying adversarial robustness properties [12],
which are the most common kinds of properties in currently available verification
benchmarks. The central classes in Cnn-Abs are:

The CnnAbs class, which implements Cnn-Abs’s main functionality, and
manages solving, logging, and heuristic configurations. It includes the following
methods: (i) solveAdversarial(model, abstractionPolicy, sampleIndex, distance):
solves an adversarial robustness query on model, allowing input perturbations
in an ‖‖∞-ball of radius distance around an input sample whose index is sam-
pleIndex in the data-set, using abstractionPolicy as the abstraction policy; (ii)
solve(model, modelTF, abstractionPolicy, property): solves model, which encodes
both a network and a property, using the abstraction policy abstractionPolicy.
For technical reasons, this method also receives a property object property and a
Keras sequential model modelTF ; and (iii) propagateBounds(model): propagates
lower and upper bounds for all neurons in the network and properties encoded
in model. Cnn-Abs includes a novel technique for bound propagation across
Max-Pooling layers — see [8] for details.

Policy Classes: Abstraction policies are implemented as classes inheriting from
the PolicyBase class. Every child class is required to implement the rankAb-
sLayer(model, prop, absLayerPredictions) function. Its arguments are model, a
1 https://drive.google.com/file/d/1En8f I8LWFWQ6LFMHF9SSajszfOEKWF4.

https://drive.google.com/file/d/1En8f_I8LWFWQ6LFMHF9SSajszfOEKWF4


394 M. Ostrovsky et al.

property described in prop, and the assigned values of the abstracted layer for
each point in the test-set. It returns the variable indices of the layer’s neurons,
sorted by their score: the first element is the least important and will thus be
refined last. This modular design allows adding additional heuristics easily.

3 Evaluation

Setup. For our evaluation, we used the Marabou DNN verifier [6] as the backend
DNN verifier within Cnn-Abs, and used MILP-based techniques [13] (enhanced
to better handle Max-Pooling layers) for neuron bound computation.

We trained three convolutional networks on the MNIST digit recognition
data-set [7]. The first network, network A, has two convolution blocks (a convo-
lution layer followed by a ReLU layer and a max-pooling layer), another block
consisting of a weighted-sum layer and a ReLU layer, and a final weighted-sum
layer. When transformed into an equivalent, fully-connected model, it has a total
of 2719 neurons and achieves a test-set accuracy of 93.7%. The second network,
B, has the same layer sequence as A, but its convolution kernels are larger; con-
sequently, it has 4564 neurons and achieves an accuracy of 96.2%. Network C is
similar but has three convolution blocks instead of two; it has 4636 neurons and
achieves an accuracy of 86.6%. Additional details appear in Appendix B of [8].

For specifications, we focused on adversarial robustness properties [12], which
have become the de-facto standard for DNN verification benchmarks [10,13]. An
adversarial robustness query consists of input x0 and some ε > 0, and its goal
is to prove that perturbations to x0 within a ball of radius ε do not result in
a change in the classification. For simplicity, we consider targeted adversarial
robustness, where the goal is to prove that some perturbation cannot result in
the input being classified as some target label l. We select l as the label that
received the second-highest score when the DNN is evaluated on x0.

Fig. 3. Performance over different net-
works and ε values. Each query was ran
in vanilla Marabou (dash-dotted line),
and with Cnn-Abs (solid line).

Experiments. We ran a comprehensive
comparison between vanilla Marabou
and Cnn-Abs (with Marabou as a back-
end). All experiments were run with a
1-hour timeout, and individual verifica-
tion queries on abstract networks were
limited to 800 s. Our benchmarks con-
sisted of our three CNNs and robustness
properties with varying values of ε, 0.01,
0.02, and 0.03, over 100 input points,
resulting in nine combinations and a
total of 900 experiments. The results
are depicted in Fig. 3. Excluding the
(C, 0.03), (B, 0.03), (A, 0.01) queries, in
every category the abstraction-enhanced
version solved more instances than
vanilla and required a shorter total run-
time. In the (A, 0.01) category, both



An Abstraction-Refinement Approach 395

Fig. 4. Cnn-Abs’s runtime vs. vanilla
Marabou’s runtime, on a log scale.
(Color figure online)

Fig. 5. The size of the abstract network
when Cnn-Abs terminates, compared
to the size of the original network.

frameworks performed similarly; and in (C, 0.03), (B, 0.03), Cnn-Abs solved
more instances, but at the cost of additional runtime. Aggregating the results
over all instances solved by both frameworks, Cnn-Abs’s average runtime was
84.3% that of vanilla Marabou’s runtime, and its median runtime 75.4% that of
vanilla Marabou’s. Additionally, Cnn-Abs solved 1.13 times as many instances
as vanilla Marabou. The exact numbers of instances solved, average runtimes,
and median runtimes all appear in Appendix C.2 of [8]. This experiment clearly
indicates the superior performance of Cnn-Abs compared to the vanilla version.

Figure 4 depicts the runtime of Cnn-Abs vs. vanilla Marabou for every query
solved by at least one of the verifiers. There are 526 UNSAT points (green) and
49 SAT points (red). The results show that for SAT instances, the frameworks
achieve similar performance; whereas for UNSAT instances, Cnn-Abs performs
significantly better, solving 61 instances that the vanilla version timed out on.
We thus conclude that the Cnn-Abs is particularly effective on UNSAT instances,
presumably because SAT instances require multiple refinement steps.

In Fig. 5, we measure the number of refinement steps needed by Cnn-Abs
before arriving at an answer. Specifically, it depicts the size of the DNN in the
final iteration of the abstraction/refinement algorithm, as a fraction of the size of
the original DNN. The results differ significantly between UNSAT queries, which
terminate with small networks and few refinement steps, and SAT queries, which
often require the network to be refined back to the original DNN. The corollary
is that slow, gradual refinement is ineffective; and that Cnn-Abs performs better
on UNSAT queries, as these can often be solved on small, abstract networks.

Conclusion. We presented a novel scheme for CNN verification, which uses
abstraction-refinement techniques to effectively reduce network sizes and facil-
itate verification. Our tool, Cnn-Abs, can be used with various existing DNN
verifiers as backends. We regard this effort as a step towards more effective ver-
ification of real-world CNNs.



396 M. Ostrovsky et al.

Acknowledgements. This work was partially supported by the Semiconductor
Research Corporation, the Binational Science Foundation (grant numbers 2017662 and
2020250), the Israel Science Foundation (683/18), and the National Science Foundation
(1814369).

References

1. Ashok, P., Hashemi, V., Křet́ınský, J., Mohr, S.: DeepAbstract: neural network
abstraction for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) ATVA
2020. LNCS, vol. 12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59152-6 5

2. Boopathy, A., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: CNN-Cert: an efficient
framework for certifying robustness of convolutional neural networks. In: Proceed-
ings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), pp. 3240–3247
(2019)

3. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 3

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778 (2016)

5. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient smt solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

6. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

7. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

8. Ostrovsky, M., Barrett, C., Katz, G.: An abstraction-refinement approach
to verifying convolutional neural networks (full version). Technical report.
arxiv.org/abs/2201.01978

9. Prabhakar, P., Afzal, Z.: Abstraction based output range analysis for neural net-
works (2020). Technical report. arxiv.org/abs/2007.09527

10. Singh, G., Gehr, T., Puschel, M., Vechev, M.: An abstract domain for certify-
ing neural networks. In: Proceedings of the 46th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL) (2019)

11. Szegedy, C.: Going deeper with convolutions. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

12. Szegedy, C., et al.: Intriguing properties of neural networks (2013). Technical
report. arxiv.org/abs/1312.6199

13. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2017). Technical report. arxiv.org/abs/1711.07356

14. Xu, J., Li, Z., Zhang, M., Du, B.: Conv-Reluplex: a verification framework for
convolution neural networks. In: Proceedings of the 33rd International Conference
on Software Engineering and Knowledge Engineering (SEKE) (2021)

https://doi.org/10.1007/978-3-030-59152-6_5
https://doi.org/10.1007/978-3-030-59152-6_5
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/2201.01978
http://arxiv.org/2007.09527
http://arxiv.org/1312.6199
http://arxiv.org/1711.07356

	An Abstraction-Refinement Approach to Verifying Convolutional Neural Networks
	1 Overview
	2 Design of Cnn-Abs
	3 Evaluation
	References




