
Taming Reachability Analysis
of DNN-Controlled Systems

via Abstraction-Based Training

Jiaxu Tian1, Dapeng Zhi1, Si Liu2, Peixin Wang3,
Guy Katz4, and Min Zhang1(B)

1 Shanghai Key Laboratory of Trustworthy
Computing, East China Normal University,

Shanghai, China
zhangmin@sei.ecnu.edu.cn

2 ETH Zurich, Zurich, Switzerland
3 University of Oxford, Oxford, UK

peixin.wang@cs.ox.ac.uk
4 The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract. The intrinsic complexity of deep neural networks (DNNs)
makes it challenging to verify not only the networks themselves but
also the hosting DNN-controlled systems. Reachability analysis of these
systems faces the same challenge. Existing approaches rely on over-
approximating DNNs using simpler polynomial models. However, they
suffer from low efficiency and large overestimation, and are restricted to
specific types of DNNs. This paper presents a novel abstraction-based
approach to bypass the crux of over-approximating DNNs in reachabil-
ity analysis. Specifically, we extend conventional DNNs by inserting an
additional abstraction layer, which abstracts a real number to an inter-
val for training. The inserted abstraction layer ensures that the values
represented by an interval are indistinguishable to the network for both
training and decision-making. Leveraging this, we devise the first black-
box reachability analysis approach for DNN-controlled systems, where
trained DNNs are only queried as black-box oracles for the actions on
abstract states. Our approach is sound, tight, efficient, and agnostic to
any DNN type and size. The experimental results on a wide range of
benchmarks show that the DNNs trained by using our approach exhibit
comparable performance, while the reachability analysis of the corre-
sponding systems becomes more amenable with significant tightness and
efficiency improvement over the state-of-the-art white-box approaches.

1 Introduction

Deep neural networks (DNNs) have demonstrated their remarkable capability
of driving systems to perform specific tasks intelligently in open environments.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Dimitrova et al. (Eds.): VMCAI 2024, LNCS 14500, pp. 73–97, 2024.
https://doi.org/10.1007/978-3-031-50521-8_4

https://figshare.com/articles/software/BBReach_docker_image/24136047
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50521-8_4&domain=pdf
http://orcid.org/0000-0003-1938-2902
https://doi.org/10.1007/978-3-031-50521-8_4

74 J. Tian et al.

They determine optimal actions during interactions between the hosting sys-
tems and their surroundings. Formally verifying DNNs can provide safety guar-
antees [27,48,55], which is, however, difficult in practice due to their black-box
nature and lack of interpretability [10,61]. Furthermore, their hosting systems
aggravate the difficulty since determining system actions requires computations
over nonlinear system dynamics [19,54].

Reachability analysis, one of the powerful formal methods, has been widely
applied to the verification of continuous and hybrid systems [7,11,15]. Its success-
ful applications include invariant checking [24,29], robust control [37,49], fault
detection [50,53], set-based predication [6,46], etc. The essence of reachability
analysis is to compute all reachable system states from given initial state(s),
which can be used in various verification tasks such as model checking [9]. As an
emerging approach to verifying DNN-controlled systems, reachability analysis
has already been shown to be promisingly effective [21,23,32].

The Problem. Compared to continuous hybrid systems, it is significantly more
challenging to compute reachable states for DNN-controlled systems due to the
embedded complex and inexplicable DNNs. In addition to over-approximating
nonlinear system dynamics [14,25,38], one also has to over-approximate the
embedded DNNs for computing overestimated action sets [30,32] of such sys-
tems. Specifically, given a set Si of continuous system states at time step i,1

one first overestimates a set Ãi of actions that will be applied to Si by over-
approximating the neural network on Si, and then overestimates a set S̃i+1 of
successors by applying Ãi to Si using over-approximated system dynamics. We
consider such dual over-approximations as white-box approaches since all the
information of DNNs, such as architectures, activation functions, and weights,
shall be known before defining appropriate over-approximated models [21,23,32].
Consequently, these approaches are restricted to certain types of DNNs. For
instance, Verisig 2.0 [32] does not support neural networks with the ReLU
activation functions; Sherlock [21] is only applicable to ReLU-based networks;
ReachNN* [23] is not scalable against the network size and introduces more
overestimation; Polar [30] also suffers from the efficiency problem when dealing
with networks with differentiable activation functions (e.g., Tanh). Moreover,
dual over-approximations introduce large overestimation accumulatively, which
results in a considerable number of unreachable states in the overestimated sets.

Our Approach. We present a novel abstraction-based approach for bypassing
the over-approximation of DNNs in computing the reachable states of DNN-
controlled systems. Our approach introduces an abstraction layer into the neural
network before training, which abstracts concrete system states into abstract
ones. This abstraction ensures that concrete states that are abstracted into the
same state share the same action determined by the trained DNN. Leveraging
this property, we can therefore compute the actions of a set of concrete states by
mapping them to the corresponding abstract states and by feeding the abstract
states into the trained DNNs to query for the output action. As DNNs are used

1 Continuous time is uniformly discretized into time steps.

Taming Reachability Analysis of DNN-Controlled Systems 75

as black-box oracles during the entire process, it suffices to know how system
states are abstracted and to query the trained DNNs with the abstract states
for the actions. Hence, the over-approximation of DNNs for computing actions
is decently bypassed. Consequently, the overestimation due to the embedded
network is avoided and no assumption is made on a network including its size,
weight, architecture, and activation function.

The abstraction-based training also allows us to avoid state explosion during
the computation of reachable states. This is because adjacent abstract states,
e.g., the two intervals [0, 1] and [1, 2], can be efficiently aggregated, e.g., to [0, 2],
which substantially restrains the exponential growth in the number of computed
reachable states. Additionally, we propose a parallel optimization via initial-set
partitioning, which further accelerates the process of computing reachable states.

We have implemented our proposed approach into a tool called BBReach and
extensively evaluated over a wide range of benchmarks. The experimental results
show that DNNs trained by using our abstraction-based approach achieve com-
petitive performance in terms of system cumulative reward. Our approach pro-
vides a black-box alternative to the reachability analysis of DNN-controlled sys-
tems, which bypasses the crux of DNN over-approximation and significantly
improves the state-of-the-art white-box counterparts with respect to the tight-
ness and efficiency in reachable state computation.

Contributions. Overall, we provide:

1. a novel abstraction-based training approach of DNNs, which mitigates the
limitation of DNN over-approximation in the reachability analysis of DNN-
controlled systems, without sacrificing the performance of trained DNNs
(Sect. 4);

2. the first, sound black-box approach for the reachability analysis of trained
DNN-controlled systems, which not only enhances computational tightness
and efficiency, but also are compatible with various DNNs (Sect. 5); and

3. a prototype BBReach and an extensive assessment, which shows that BBReach
improves existing white-box tools with respect to both the precision of results
and the computational efficiency (Sect. 6).

2 Preliminaries

2.1 DNN-Controlled Systems

A DNN-controlled system is typically a cyber-physical system where a DNN is
planted and trained as a decision-making controller. It can be modeled as a 6-
tuple D = 〈S, S0, A, π, f, δ〉, where S is the set of n-dimensional system states on
n continuous variables, S0 ⊆ S is the set of initial states, A is the set of system
actions, π : S → A is a policy function realized by the DNN in the system,
f : S × A → Ṡ is a non-linear continuous environment dynamics represented by
an ordinary differential equation (ODE) [26] that maps the current state and
control input (i.e., action) into the derivative of states with respect to time tc,
and δ is the time step size.

76 J. Tian et al.

In a DNN-controlled system, an agent reacts to the environment over time.
The time is usually discretized by a time scale δ called the time step size, assum-
ing that actions during each time scale δ are constants [44]. At each time step
i ∈ N, the agent first observes a state si from the environment and feeds the
state into the network to compute a constant action ai. The agent then transits
to the successor state si+1 by performing ai on si according to some environment
dynamics f . During the training phase of DNN-controlled systems, the agent also
receives a reward ri which is determined by a reward function ri = R(si, a, si+1)
from the environment after each state transition. Once the task is finished, e.g.,
the agent reaches the goal region at time step T , we obtain the sequence of
traversed system states from an initial state, called a trace, and the cumulative
reward

∑T
i=0 ri which quantitatively measures the system performance.

Example 1. (A DNN-Controlled System). Figure 1(a) shows a DNN-controlled
system where a two-dimensional agent moves from the region x1 ∈ [0.7, 0.9],
x2 ∈ [0.7, 0.9] to the goal region x′

1 ∈ [−0.3, 0.1], x′
2 ∈ [−0.35, 0.05], trying to

avoid the red unsafe regions. The environment dynamics f is defined by the
following ODEs:

ẋ1 = x2 − x3
1 ẋ2 = a (1)

The action a = π(x1, x2) is computed by applying the DNN π to the values of
x1 and x2. Based on a and f , the successor state s′ can be computed for the
agent to move. Figure 1(b) shows the traces (colored lines) of the system from
some selected concrete initial states and an over-approximated set of reachable
states (blue area) on the x1 dimension from all the initial states.

Fig. 1. The workflow of the DNN-controlled system in
Example 1, the execution traces (colored lines) and an
over-estimated set of reachable states (blue region) with
respect to the dimension of x1. (Color figure online)

The DNN planted in
a system must be trained
first so that it can deter-
mine optimal actions to
complete a task. After
making a decision, a loss
is computed by a prede-
fined loss function based
on the reward that the
agent receives for the
decision. The parameters
in the neural network are
updated based on the loss
by backpropagation [35].
The objective of the training phase is to maximize the cumulative reward. Once
the training is completed, the network implements a state-action policy function
that maps each system state to its optimal action. It drives the system to run
and to interact with the environment.

Taming Reachability Analysis of DNN-Controlled Systems 77

2.2 Reachability Problem of DNN-Controlled Systems

Given a DNN-controlled system D, whether or not a state is reachable is known
as the reachability problem. The verification of safety properties can be reduced
to the reachability problem. For instance, one can verify whether a system never
moves to unsafe states or not, such as those in Example 1. Unfortunately, the
problem is undecidable even for conventional cyber-physical systems that are
controlled by explicit programmable rules, let alone uninterpretable neural net-
works. This is because such systems are more expressive than two-counter state
machines whose reachability problem is proved to be undecidable [41].

When the set of initial states is a singleton, it is straightforward to compute
the reachable state at any given time tc. Let δ be a time scale during which
system actions can be considered constant. Given an initial state s0, the state
at time tc = kδ + t′c for some integer k ≥ 0 and 0 ≤ t′c ≤ δ is defined as follows:

ϕf (s0, π, tc) = sk +
∫ t′

c

0

f(s, π(sk))dx,

where si+1 = si +
∫ δ

0
f(s, π(si))dx for all i ∈ {0, . . . , k − 1}. Intuitively, we can

compute the state si+1 at the (i + 1)-th time step based on the state si at its
preceding time step i and the corresponding action π(si). The state at tc can
be computed based on sk, plus the offset caused by performing action π(sk) on
state sk with t′c time scale.

Definition 1. (Reachable States of DNN-controlled Systems). Given
a DNN-controlled system D = 〈S, S0, A, π, f, δ〉, the sets of all the reachable
states of the system at and during time tc are denoted as Reachtc

f (S0) and

Reach[0,tc]
f (S0), respectively. We have Reachtc

f (S0) = {ϕf (s, π, tc)|s ∈ S0} and

Reach[0,tc]
f (S0) = {ϕf (s, π, t)|s ∈ S0, t ∈ [0, tc]}.

Fig. 2. Reachable states of DNN-controlled systems.

Figure 2 depicts an
example of the reachable
states from S0. For each
time step i, we compute
the set Reach[0,δ]

f (Si) of
all the reachable states
during the time period
from i to i + 1. The
actions used for comput-
ing Reach[0,δ]

f (Si) are the constants determined by the DNN π on the states in
Si. In particular, we compute the set Si+1 = Reachδ

f (Si) of the reachable states

at step i + 1. Note that Si+1 is a subset of Reach[0,δ]
f (Si). We need to compute

Si+1 independently from Reach[0,δ]
f (Si) because it is the basis of computing the

reachable states in next step.

78 J. Tian et al.

The procedure depicted in Fig. 2 indicates that the problem of computing
Reach[0,tc]

f (S0) can be reduced to the problem of computing one-time-step reach-

able states, i.e., Reach[0,δ]
f (S0) and Reachδ

f (S0). However, the reduced problem
is still intractable. This is because S0 is usually an infinite set, meaning that it
is impractical to enumerate each state in S0, feed it into the DNN to compute
the corresponding action, and then compute the state by Formula 2 for the set
Reachδ

f (S0). Computing the states in Reach[0,δ]
f (S0) is even more challenging due

to the continuous time in [0, δ].

3 Motivation

The combination of nonlinear dynamics and neural network controllers makes the
calculation of Reach

[0,δ]
f (S0) intractable. This is because the function ϕf (For-

mula 2) can not be expressed in a known closed form for most nonlinear dynamics
f [13]. Additionally, a DNN π neither can be replaced by a known form equiva-
lent function. A pragmatic solution is to compute tight over-approximation for
ϕf and π. Most of the state-of-the-art approaches, such as Verisig [33], Polar [30],
and ReachNN [31], adopt this strategy.

Fig. 3. An example of overestimation blowup of
computed reachable states.

Without loss of generality,
we show the process of over-
approximating Reachδ

f (S0) in
Example 1 using Polar. Given
a set S0 of states, Polar first
over-approximates the neural
network using a Taylor model
(p, Ir) [39] on domain S0 such
that ∀s ∈ S0, π(s) ∈ p(s) +
[−ε, ε], where p is a polynomial
over the set of state variables
x1, . . . , xn such as p(x1, x2) =
0.5 + 0.1x1 + 0.6x1x2 + 0.3x2

1x2 and Ir = [−ε, ε] is called the remainder interval.
The range of π(s) can be overestimated based on the Taylor model. Next, Polar
over-approximates the solution of environment dynamics ϕf using another Tay-
lor model over domains s0 ∈ S0, π(s0) ∈ p(s0) + [−ε, ε], tc ∈ [0, δ] and obtains
x′
1 ∈ p1(x1, x2, tc) + [−ε1, ε1], x′

2 ∈ p2(x1, x2, tc) + [−ε2, ε2]. Finally, Polar pro-
duces an overestimated set of S1 at time δ based on x′

1 and x′
2. A smaller range

of Ir means less over-approximation error.
Suppose the initial region in Example 1 is x1 ∈ [0.7, 0.9], x2 ∈ [0.7, 0.9]. The

overestimated reachable states can be calculated over 4 time steps according
to the aforementioned method, which are depicted as red boxes (�) in Fig. 3.
For comparison, Fig. 3 also shows the reachable states by simulation with 1000
samples, which are shown as the small violet boxes (�). We observe that the
overestimation is amplified at the third and the fourth time step. At the third
time step, the calculated remainder interval of the Taylor model for network is

Taming Reachability Analysis of DNN-Controlled Systems 79

[−0.98, 0.98] while the one at the fourth time step is [−4.47, 4.47]. Correspond-
ingly, the remainder intervals of the Taylor model for dynamics are [−0.17, 0.17]
and [−0.46, 0.46] at the third and the fourth time step. The overestimation is
accumulated and amplified step by step.

The above example shows that overestimation is mainly introduced by the
over-approximation of the DNN. We further observe that if we could group the
states in S0 into several subsets such that all the states in the same subset have
the same action according to π, we do not need to over-approximate π but,
instead, replace π(s) with its corresponding action. That is, if we know that all
the states in a set S′

0 share the same action, e.g., a, according to π, the problem
of computing Reachδ

f (S′
0) can be simplified to solving the following problem:

⋃

s′
0∈S′

0

{s′
0 +

∫ δ

0

f(s′
0, a)dx}. (2)

Naturally, we only need to over-approximate ϕf to solve the above problem.
Therefore, we identify a condition of bypassing over-approximating π: S0 can be
divided into a finite number of subsets such that the states in the same subset
have the same action according to π. This will be elaborated in our following
abstraction-based approach.

4 Abstraction-Based Training

Given a DNN π and a set S0 of system states, it is almost intractable to group
the states in S0 that have the same action according to π. It becomes even worse
when actions are continuous, where each state in S0 may have a different action
from others. Instead of calculating these states ex post facto, we propose an ex
ante approach by abstraction-based training, in which system states are first
grouped by abstraction before training, and a trained DNN provably yields a
unique action for the states in the same group.

4.1 Approach Overview

The process of grouping a set of system states and making them indistinguish-
able to neural networks is called abstraction. A group is considered as an abstract
state. The indistinguishability of the states in the same group guarantees that
a DNN computes a unique action for those states. This idea is inspired by the
abstraction approaches in formal methods, by which system states are abstracted
to reduce state space and improve verification scalability without losing the
soundness of verification results [17]. The same idea is also studied in the AI
communities. State abstraction has been proved useful for conventional Rein-
forcement Learning (RL) [2,4,51] and recently applied to Deep RL for training
DNN controllers [34]. Studies show that one can train nearly optimal system
policies via approximate state abstraction, while the trained policies are more
concise and amenable for reasoning and verification than those trained on con-
crete states [2,34].

80 J. Tian et al.

Fig. 4. Abstraction-based training.

To implement state abstrac-
tion into deep learning, we
extend ordinary DNN architec-
tures by introducing an abstrac-
tion layer between the input
layer and the first hidden layer.
This layer is used to map con-
crete system states in a group
to the same abstract repre-
sentation, which is propagated
throughout the hidden layers for
training. We call a neural net-
work that contains such an abstraction layer an abstract neural network (ANN).
Note that an ANN is a special model of DNN. In what follows, we call the systems
with ANN controllers ANN-controlled systems to differ from those controlled by
conventional DNNs.

The training of ANNs is almost the same as for conventional DNNs. Figure 4
shows the training workflows with ANNs. We can simply replace DNNs with
ANNs in existing training algorithms, such as Deep Q-Network (DQN) [42] and
Deep Deterministic Policy Gradient (DDPG) [36], as the inserted abstraction
layers in ANNs are invisible to these algorithms.

Therefore, an algorithm that supports training DNN-controlled systems can
be seamlessly adapted to train ANN-controlled systems. When applying these
algorithms to ANNs, the only difference is that we need to freeze the parameters
on the edges between the input layer and the abstraction layer because they are
determined and fixed according to the way in which system states are abstracted.
Parameter freezing is a common operation in deep learning and is supported by
most of the training platforms such as TensorFlow [1] and PyTorch [45]. After
encoding the abstraction layer and freezing the parameters, a network can be
trained just like conventional DNNs by these training algorithms.

4.2 Interval-Based State Abstraction

We propose a general approach for encoding interval-based abstractions into
equivalent abstraction layers. Interval-based state abstraction is a very primitive,
yet effective abstraction approach. In the domain of abstract interpretation [17],
it is known as interval abstract domain and has been well studied for system [3]
and program verification [28], as well as neural network approximation [59]. By
interval-based abstraction, the domain of each dimension is evenly divided into
several intervals. The Cartesian product of the intervals in all the dimensions
constitutes a finite and discrete set, with each element representing an infinite
set of concrete states.

Definition 2. (Interval-Based State Abstraction). Given an n-dimen-
sional continuous state space S and an abstract state space Sφ obtained by
discretizing S based on an abstraction granularity γ, for every concrete state

Taming Reachability Analysis of DNN-Controlled Systems 81

s = (x1, . . . , xn) ∈ S and abstract state sφ = (l1, u1, . . . , ln, un) ∈ Sφ, the
interval-based abstraction function φ : S → Sφ is defined as φ(s) = sφ if and
only if for each dimension 1 ≤ i ≤ n : li ≤ xi < ui.

Fig. 5. An example of defining abstraction layers.

Specifically, the abstract
state space Sφ is obtained
by dividing each dimen-
sion in the original n-
dimensional state space
S into a set of inter-
vals, which means that
each abstract state can
be represented as a 2n-
dimensional vector (l1, u1, . . . , ln, un). We also call the 2n-dimensional vec-
tor as interval box. In what follows, an interval box is used to represent a
set of concrete states that fall into it. That is, for a 2n-dimensional vector
(l1, u1, . . . , ln, un), we use it to represent the set of n-dimensional concrete states
{(x1, . . . , xn) | li ≤ xi < ui,∀1 ≤ i ≤ n}. In this work, we divide the state space
uniformly for better scalability so that we do not need extra data structure to
store the mapping between S and Sφ. More specifically, let Li and Ui be the
lower and upper bounds for the i-th dimension of S. We define the abstraction
granularity as an n-dimensional vector γ = (d1, d2, . . . , dn), and then evenly
divide the i-th dimension into (Ui − Li)/di intervals.

An interval-based abstraction can be naturally encoded as an abstraction
layer. The layer consists of 2n neurons, each of which represents an element
in the 2n-dimensional vector (l1, u1, . . . , ln, un). Each neuron has an activation
function in either of the following two forms:

φi
l(xi) = Li +
 (xi − Li)

di
�di, φi

u(xi) = Li +
 (xi − Li + di)
di

�di

for converting the value xi in a concrete state to its lower and upper bounds,
respectively. The sign
·� is the floor function. The weights of the edges connect-
ing the i-th neuron in the input layer to the (2i − 1)-th and 2i-th neurons in
the abstraction layer are assigned a value of 1, whereas the weights of all other
edges are set with 0.

Example 2. Suppose that the ranges of both x1 and x2 in Example 1 are [0, 0.5],
and they are evenly partitioned into 5 intervals. The state space [0, 0.5]× [0, 0.5]
is then uniformly partitioned into 25 interval boxes, as shown in Fig. 5. A con-
crete state such as (0.35, 0.25) is mapped to an interval box represented by the
corresponding lower bounds (0.3, 0.2) of the first dimension and upper bounds
(0.4, 0.3) of the second dimension.

This abstraction can be realized by an abstraction layer, where there are four
neurons and their activation functions are φ1

u(x) = φ2
u(x) =
x+0.1

0.1 � × 0.1 and
φ1

l (x) = φ2
l (x) =
 x

0.1� × 0.1, respectively.

82 J. Tian et al.

5 Abstraction-Based Reachability Analysis

5.1 Approach Overview
Algorithm 1: Overall process.
Input : Initial set S0, ANN π, step

size δ, dynamics f , abstraction
function φ, maximal time step
T

Output: Over-approximation sets⋃T
t=1 Xt

1 Compute I0 satisfying S0 ⊆ I0,
X0 ← [I0]

2 foreach t in {1, ..., T} do
3 interval arr ← {}
4 foreach I in Xt−1 do
5 BI ← segment(I, φ)
6 foreach I in BI do
7 a ← π(ŝ) for some ŝ ∈ I
8 I ′ ← post(I, a, f)
9 interval arr ← interval arr

∪{I ′}
10 Xt = aggregate(interval arr)
11 return

⋃T
t=1 Xt

With the abstraction layer,
we propose our abstraction-
based black-box reachability
analysis approach for ANN-
controlled systems. Given an
ANN-controlled system, a set
S0 of initial states and a max-
imal time step T , our task is
to calculate a sequence of over-
approximation sets consisting
of interval boxes, denoted by
X0,X1, . . . , XT , which are over-
approximations of the actu-
ally reachable state sets S0, S1,
. . . , ST with St+1 = Reachδ

f (St),
0 ≤ t < T . The overall process
is presented in Algorithm 1. It
is an iterative process of calcu-
lating an over-approximated set
Xt of states that are reachable
from a set Xt−1 of states after
time δ. After we determine the
range of π(s) over s ∈ Xt−1, the reachable states during the time slot (tδ, (t+1)δ]
can be over-approximated as a continuous system without a neural network.
In what follows, we focus on the computation of the over-approximation sets
X0,X1, ...XT .

Fig. 6. An example of over-approximating one-step reachable states.

Figure 6 depicts an example of one time-step iteration. Without loss of gen-
erality, we suppose that Xt−1 is a singleton, e.g., Xt−1 = {I}, where I is an
interval box. We segment I into four smaller interval boxes (Fig. 6(ii) and Line
5 of Algorithm 1) based on the abstraction function φ that is used for training
the network.

We then compute the action for the states in each segmented interval box
by arbitrarily selecting a state ŝ in the box and then feeding ŝ into π to get

Taming Reachability Analysis of DNN-Controlled Systems 83

the output (Line 7), e.g., a. Next, we compute a set I ′ of successor states of
the states in I by over-approximating the environment dynamic f in Formula
2 (Fig. 6(iii) and Line 8 of Algorithm 1). Finally, we aggregate those adjacent
successor interval boxes (Fig. 6(iv) and Line 10 of Algorithm 1) and obtain an
over-estimated set Xt of reachable states at time step t.

5.2 Key Operations in Algorithm 1

We now describe in detail three key operations in Algorithm 1, namely interval
segmentation, post operation, and adjacent interval aggregation. We fulfill the
interval set propagation at each time step t ∈ N for the ANN-controlled systems
based on these interval operations.

Interval Segmentation. Given an interval box I and an abstraction function
φ, segment(I, φ) returns a set BI of interval boxes which satisfy the following
three segmentation conditions:

1. All the interval boxes constitute I;
2. Interval boxes do not overlap each other;
3. All the states in the same interval box have a unique action according to the

trained ANN.

For conventional DNNs, one has to resort to brute-force interval splitting to find
consistent regions that satisfy the above three conditions; this approach is only
applicable to discrete action space [8]. We can easily partition I into such a
set BI , thanks to the specialized design of ANN. First, we determine the set of
abstract states that intersect with I and denote the set by SI = {sφ | sφ∩I �= ∅}.
We then calculate the intersection part between I and the abstract states in SI

individually. Each intersection part is a segmented interval box. In this way, we
obtain a set of segmented interval boxes that satisfy the aforementioned three
conditions and denote it by BI = {I | I = sφ ∩ I ∧ sφ ∈ SI}. With the interval
segmentation, through feeding an arbitrary state in the segmented interval box
I ∈ BI into ANN, we can obtain the corresponding unique action performed on
I. Since BI is a finite set, the decisions of the network controller on I can be
directly obtained without the layer-by-layer analysis process as in the white-box
approaches [30,32]. This makes our reachability analysis approach a black-box
one.

Recall the example in Fig. 6(i), where the black dotted lines denote the par-
tition of the state space with abstraction granularity γ = (0.1, 0.1). There exists
an interval box I = (0.15, 0.25, 0.15, 0.3) that intersects with four abstract states.
The intersection of each abstract state with I is a segmented interval box. We
have four interval boxes BI = {I1, I2, I2, I4}. Apparently, the segmented inter-
val boxes in BI satisfy the three segmentation conditions.

Post Operation. Given an interval box I, the action a applied to I and envi-
ronment dynamics f , post(I, a, f) returns an interval box I ′, which is an over-
approximation set of all the successor states by applying a to the states in I
after δ.

84 J. Tian et al.

We can solve post(I, a, f) as an ordinary continuous system without neural
networks. Suppose that the environment dynamics is an ODE ṡ = f(s, a). We
use a Taylor model p′(s, a, tc) + I ′

r to over-approximate the function ϕf (s, a, tc)
over the domain s ∈ I, tc ∈ [0, δ]. That is,

Reach
[0,δ]
f (I) =

⋃

s∈I,tc∈[0,δ]

{ϕf (s, a, tc)} ⊆ p′(s, a, tc) + I ′
r,

where I ′
r is a remainder interval. The successor interval box I ′ can be calculated

through evaluating the range of p′(s, a, δ) + I ′
r.

Let us consider an example for the segmented interval box I1 =
(0.15, 0.2, 0.2, 0.3) in Fig. 6(ii). The dynamics is defined as in Example 1. Sup-
pose the action for the states in the interval box is a = 0.5 and the time scale
δ = 0.1. We can compute an over-approximated Taylor model for the solution of
dynamics f : ẋ1 = x2 − x3

1, ẋ2 = 0.5 over s ∈ I1, tc ∈ [0, 0.1]. The Taylor models
for state variable x1, x2 are as follows:

x′
1 = 1.75 × 10−1 + 1.91 × 10−8x2 + 2.5 × 10−2x1 + 0.245tc

− 1.25 × 10−10x2
1 + 5 × 10−2x2tc − 2.3 × 10−3x1tc + 0.239t2c

− 5 × 10−10x1x2tc + . . . + [−1.03 × 10−4, 8.94 × 10−5]
x′
2 = x2 + 0.5tc + [−0, 0]

Using these two expressions, we can over-approximate the set of
reachable states at every moment during [0, 0.1]. In particular, we have
(0.172, 0.232, 0.25, 0.35) when tc = 0.1.

Algorithm 2: Adjacent interval aggre-
gation.
Input : An interval array IntArr
Output: The aggregation results Arr

1 Initialize flag ← [False, False,...], Arr ← []
2 Construct the adjacency matrix M
3 foreach Ip in IntArr do
4 if not flag[Ip] then
5 Initialize queue ← [Ip]
6 flag[Ip] ← True
7 while queue is not empty do
8 I ← queue.pop()
9 Iadjs ← getAdjacent(I, M)

10 foreach item in Iadjs do
11 Ip ← aggInterval(Ip, item)
12 if not flag[item] then
13 queue.put(item)
14 flag[item] ← True

15 Arr.add(Ip)

16 return Arr

Adjacent Interval Aggre-
gation. Interval segmentation
may lead to the exponential
blowup in the number of inter-
vals as the number of time
steps increases. As exempli-
fied in Fig. 6(iii), four succes-
sor intervals are obtained after
applying corresponding actions
and environment dynamics to
the states in I1, . . . , I4.

To cope with the explosion
of successor intervals, we pro-
vide a dual operation of seg-
mentation called adjacent inter-
val aggregation, which aggre-
gates multiple intervals together
at the price of introducing a lit-
tle overestimation. This opera-
tion is based on the interval hull

Taming Reachability Analysis of DNN-Controlled Systems 85

operation [43] except that we establish a criterion for determining which inter-
vals can be aggregated into their interval hull. For instance, the green and brown
intervals in Fig. 6(iii) can be aggregated, while the other small ones can be aggre-
gated too. However, large overestimation would be introduced if the four interval
boxes were aggregated to be one.

To balance the number of intervals and the overestimation introduced by
aggregation, we define three cases for the adjacency relation between interval
boxes, i.e., inclusion, intersection, and separation. Only the intervals in the three
cases are aggregated. Given two interval boxes A = (l1, u1, . . . , ln, un) and B =
(l′1, u

′
1, . . . , l

′
n, u′

n), as well as a preset distance threshold h = (h1, . . . , hn), the
three cases are defined as follows:

1. Inclusion: An interval box is completely included in the other, i.e., ∀i : (li ≤
l′i ∧ ui ≥ u′

i) ∨ (li ≥ l′i ∧ ui ≤ u′
i).

2. Intersection: A and B have a partial overlap, i.e., ∃!d : l′d ≤ ld ≤ u′
d ≤

ud ∨ ld ≤ l′d ≤ ud ≤ u′
d and ∀i, i �= d : |li − l′i| ≤ hi ∧ |ui − u′

i| ≤ hi.
3. Separation: A is isolated from B, i.e., ∃!d : ld − u′

d ≤ hd ∨ l′d − ud ≤ hd; and
∀i, i �= d : |li − l′i| ≤ hi ∧ |ui − u′

i| ≤ hi.

To accelerate interval aggregation, we devise an efficient algorithm to aggre-
gate three or more interval boxes each time if they constitute a sequence of
adjacent intervals. Algorithm 2 shows the pseudo code. We first pre-construct
an adjacency matrix (Line 2) to store the adjacent relations between the interval
boxes in IntArr firstly. Then, we implement this adjacent interval aggregation
procedure using breadth-first search (Lines 5-14). Specifically, we consider each
interval box in IntArr as a node and each adjacent relation as an undirected
edge. For each interval box Ip that is not traversed, all the interval boxes con-
nected to Ip will be aggregated into their minimum bounding rectangle.

In Algorithm 2, the time complexity of building the adjacency matrix is
O(n2). In the aggregation procedure, each interval box is traversed at most
once, and the complexity of searching for the adjacent interval boxes for each
interval box is O(n). Therefore, Algorithm 2 is in O(n2).

Example 3. Let us revisit the system in Example 1 and suppose that IntArr con-
sists of 4 interval boxes, i.e., Î1 = (0.08, 0.16, 0.3, 0.4), Î2 = (0.17, 0.25, 0.32, 0.42),
Î3 = (0.19, 0.27, 0.07, 0.2), Î4 = (0.2, 0.28, 0.1, 0.21), and the distance thresh-
old is h = (0.02, 0.02). According to the definition of adjacent relations, Î1
is adjacent to Î2 (Separation) and Î3 is adjacent to Î4 (Intersection). Hence,
Î1 is aggregated with Î2, and Î3 is aggregated with Î4. Finally, we obtain
Arr = {I1,2 = (0.08, 0.25, 0.3, 0.42), I3,4 = (0.19, 0.28, 0.07, 0.21)}.

5.3 The Soundness

We show a proof sketch for the soundness of Algorithm 1. The soundness means
that any state that is reachable at time tc from some initial state of an ANN-
controlled system must be in the over-approximation set at tc.

86 J. Tian et al.

Theorem 1. (Soundness of Algorithm 1). Given an ANN-controlled system
with a set S0 of initial states and an environment dynamic f , if a state s′ is
reached at time tc = kδ + t′c, k ∈ N, t′c ∈ [0, δ) from some initial state s0 ∈ S0,
then we must have s′ = Reachtc

f (s0) ∈ Reach
t′
c

f (Xk).

To prove Theorem 1, we first show the soundness of the post operation and
interval aggregation. The soundness of the two operations is formulated by the
following two lemmas, respectively.

Lemma 1. (Soundness of post Operation). For each interval box I ∈ BI ,
there is st+1 ∈ post(I, π(st), f) for all st ∈ I where st+1 = ϕf (st, π(st), δ).

Proof. After the segmentation process, we have ∀s ∈ I : π(s) = π(st) = a where
a is a constant. With a constant action and the Lipschitz continuity of f , we
can guarantee that there exists a unique solution of the ODE for a single initial
state [40]. Then the solution of the ODE namely ϕf (s, a, tc) could be enclosed
by a Taylor model [39] over s(0) ∈ I and tc ∈ [0, δ]. Thus, we could obtain the
conservative result st+1 = ϕf (st, a, δ) ∈ Reachδ

f (I) ⊂ post(I, a, f). ��
Lemma 2. (Soundness of Interval Aggregation). Suppose A is the aggre-
gated set of successor intervals for a set X of interval boxes. For all I ∈ X, there
exists Î ∈ A such that I ⊆ Î.

Proof. In Algorithm 2, every interval box in X needs to be traversed. For each
interval box I ∈ X, there exist two cases: (i) I is not involved in the adjacent
interval aggregation process. In this case, I will be directly added to A, thus
∃Î = I : I ⊆ Î. (ii) I is aggregated into another interval box I ′. Since the
aggregate operation produces the minimum bounding rectangle which encloses
all interval boxes involved, we have ∃Î = I ′ : I ⊆ Î. Consequently, we conclude
that ∀I ∈ X, ∃Î : I ⊆ Î ∧ Î ∈ A. ��

According to Algorithm 1, Theorem 1 can be proved by induction on the steps
tc based on Lemmas 1 and 2. The base case is straightforward when tc = 0. In
the induction case, we can prove that Theorem 1 holds on [tδ, (t+1)δ] according
to the two lemmas and the hypothesis that it holds on an arbitrary tc = tδ.

Proof. (Theorem 1). Starting from s0, we can obtain the trajectory as s0, a0, s1,
a1, ... in which at = π(st) and st+1 = ϕ(st, at, δ). Then by induction on the time
step t, the induction schema is as follows:

Base Case: tc = 0. Since s0 ∈ S0 ∧ S0 ⊆ X0, we have s0 ∈ X0 = Reach0
f (X0).

Induction Step: tc = tδ. Assume s′ = st ∈ Xt = Reach0
f (Xt) holds. Since

Xt consists of a set of interval boxes, there exists an interval box In1
Xt

satisfying
st ∈ In1

Xt
∧ In1

Xt
∈ Xt. Then, let us consider the segmentation process for In1

Xt
,

we divide In1
Xt

into a set of interval boxes BI
n1
Xt

= {I1
Xt

, I2
Xt

, . . . , Imax
Xt

} with

In1
Xt

=
max⋃

n=1
In

Xt
. Thus, there exists some n2 ∈ Z

+ such that st ∈ In2
Xt

.

Taming Reachability Analysis of DNN-Controlled Systems 87

For tc ∈ [tδ, (t + 1)δ), we have s′ = Reach
t′
c

f (st). Since st ∈ In2
Xt

, we have

s′ = Reach
t′
c

f (st) ∈ Reach
t′
c

f (In2
Xt

) ⊆ Reach
t′
c

f (Xt).
For tc = (t + 1)δ, we have s′ = st+1, Based on Lemma 1, we have

st+1 ∈ post(In2
Xt

, π(st), f). After the adjacent interval aggregation process,
Xt+1 consists of the aggregation result. According to Lemma 2, we have
∃Î : post(In2

Xt
, π(st), f) ⊆ Î ∧ Î ∈ Xt+1. Therefore, we have st+1 ∈ Î ∧ Î ∈ Xt+1

and we can conclude that s′ = st+1 ∈ Xt+1 = Reach0
f (Xt+1).

Theorem 1 is proved. ��

6 Implementation and Experiments

We conduct a comprehensive assessment of our approach and compare it with
the state-of-the-art white-box tools. Our goal is to demonstrate the advances
of the proposed abstraction-based training and black-box reachability analysis
approaches. These include (i) comparable performance of trained systems and
negligible time overhead in the training (Sect. 6.2), (ii) tighter over-approximated
sets of reachable states, as well as higher scalability and efficiency (Sect. 6.3), and
(iii) the effectiveness of the adjacent interval aggregation algorithm in reducing
state explosion (Sect. 6.4). We also explore how our approach performs under
different abstraction granularity levels (Sect. 6.4).

6.1 Implementation and Benchmarks

Implementation. We implement our approach in a tool called BBReach in
Python. We use Ariadne [16] to solve the reachability problems defined on seg-
mented interval boxes (i.e., post(I, a, f), I ∈ BI). Additionally, we employ the
parallelized computing by initial-set partition [13], a standard approach used in
the reachability analysis of hybrid systems to obtain tighter bounds of reachable
states. With the initial set partitioned into k subsets, the k sub-problems can be
solved in parallel, which accelerates our approach with multiple cores.

Fig. 7. Trend of cumulative rewards (y-axis) of the systems controlled by ANNs
(orange) and DNNs (blue) trained by DDPG. (Color figure online)

88 J. Tian et al.

Benchmarks. The benchmarks, as commonly adopted by most of the existing
reachability analysis approaches such as Verisig 2.0 [32] and Polar [30], consist
of seven reinforcement learning tasks with the dimensions ranging from 2 to 6.
A reach-avoid property is defined for each task by specifying the goal region and
unsafe region of the agent in the task. A trained DNN must guarantee that the
reach-avoid property is satisfied when the agent is driven by the DNN.

For each task, we train four neural networks (two smaller networks chosen
from [32] and two larger networks), thus 28 instances in total, with different
activation functions and sizes of neurons. We also train the networks with differ-
ent abstraction granularity levels to evaluate how abstraction granularity affects
the efficiency. We use the well-known DDPG algorithm to train neural networks.
Note that our approach makes no assumption on training algorithms and thus is
applicable to other DRL algorithms. The detailed settings are provided in [56].

Experimental Setup. All experiments are conducted on a workstation
equipped with a 32-core AMD Ryzen Threadripper CPU @ 3.6GHz and 256GB
RAM, running Ubuntu 22.04.

6.2 Performance of Trained Neural Networks

Table 1. Training time (s).
Task ANN DNN

B1 13.7 11.0

B2 7.4 6.6

B3 6.4 5.1

B4 5.8 3.2

B5 57.4 49.8

Tora 47.2 44.3

ACC 23.4 21.6

We show that the extended abstract neu-
ral networks can be trained to achieve com-
parable performance against those conven-
tional ones that have the same architectures
and activation functions and are trained in
the same approach. For each case, we train
5 times and record the cumulative reward
during the training process with and with-
out the abstraction layer. Figure 7 unfolds a
comparison of the trend of cumulative rewards during training between these
two training approaches in B1-B4 (the other three are given in [56].) The solid
lines and the shadows indicate the average reward and 95% confidence inter-
val, respectively. The results show that an extended abstract neural network
can make near-optimal decisions even under the constraint that it must yield
the same action on each partitioned interval box. Importantly, the abstraction-
based training incurs little and negligible time overhead only in several seconds,
as shown in Table 1.

Taming Reachability Analysis of DNN-Controlled Systems 89

Fig. 8. Over-approximated reachable states (red box: over-approximated set; green
lines: simulation trajectories; blue box: goal region; purple box: unsafe region). (Color
figure online)

6.3 Tightness and Efficiency

We compare the tightness of the over-approximated reachable states by plotting
the over-approximation sets computed by our approach and the state-of-the-art
white-box tools including Polar [30] and Verisig 2.0 [32]. Because BBReach is
designed for ANNs-controlled systems, while the white-box tools are for DNNs-
controlled ones, the policy models for each task are different. To make the com-
parison as fair as possible, we use the same network architecture to train the
ANN and DNN for the same task except that the ANN includes an additional
abstraction layer. We also guarantee that all the trained systems can achieve
the best cumulative reward for the same task. For instance, we initialize the
neural networks with smaller weights as otherwise Verisig 2.0 would introduce
larger over-approximation error (see Appendix B in [56]). In particular, we also
simulated the trained systems and recorded trajectories as the baseline.

Figure 8 shows three representative cases. Verification succeeds if the system
never enters the unsafe region (purple box) before reaching the goal region (blue
box) which is also known as satisfying the reach-avoid property. All the four
tools successfully verify the reach-avoid property in case B1, yet Verisig 2.0 is less
tight than the other two. In case B2, BBReach outperforms the other two tools
and succeeds in verifying the reach-avoid property. Both Verisig 2.0 and Polar
terminate before reaching the goal region due to too large overestimation, and
Polar outputs the over-approximation sets that intersect with the unsafe region.

90 J. Tian et al.

Table 2. The verification results of reach-avoid properties and the time cost (s).

Task Dim Network
BBReach Verisig 2.0 Polar

1C 20Cs VR 1C Impr. 20Cs Impr. VR 1C Impr. Impr.∗ VR

B1 2

Tanh2×20 45.7 6.88 � 45 0.98× 38 5.52× � 17 0.37× 2.47× �
Tanh3×100 42.8 5.53 � 413 9.65× 123 22.24× � 125 2.92× 22.60× �
ReLU2×20 42.9 6.44 � — — — —

✗c 3 0.07× 0.47× �
ReLU3×100 52.5 8.65 � — — — — — — — ✗b

B2 2

Tanh2×20 10.0 1.19 � 5.2 0.52× 4.1 3.45× ✗a 5 0.50× 4.20× �
Tanh3×100 10.8 1.36 � — — — — ✗b — — — ✗b

ReLU2×20 8.6 1.30 � — — — —
✗c 3 0.35× 2.31× �

ReLU3×100 12.4 1.42 � — — — — — — — ✗b

B3 2

Tanh2×20 4.2 0.47 � 36 8.57× 28 59.57× � 18 4.29× 39.29× �
Tanh3×100 4.3 0.50 � 357 83.02× 88 176.00× � 91 91.16× 182.00× �
ReLU2×20 4.1 0.47 � — — — —

✗c 8 1.95× 17.02× �
ReLU3×100 4.2 0.47 � — — — — 14 3.33× 29.79× �

B4 3

Tanh2×20 1.3 0.32 � 7 5.38× 5.1 15.94× � 5 3.85× 15.63× �
Tanh3×100 1.0 0.24 � 114 114.00× 31 129.17× � 27 27.00× 112.50× �
ReLU2×20 1.9 0.48 � — — — —

✗c 2 1.05× 4.17× �
ReLU3×100 1.8 0.43 � — — — — 5 2.78× 11.63× �

B5 3

Tanh3×100 13.3 2.48 � 157 11.80× 44 17.74× � 38 2.86× 15.32× �
Tanh4×200 8.2 1.63 � 1443 175.98× 191 117.18× � 157 19.15× 96.32× �
ReLU3×100 5.8 1.08 � — — — —

✗c 7 1.21× 6.48× �
ReLU4×200 13.5 2.50 � — — — — 49 3.63× 19.60× �

Tora 4

Tanh3×20 133.2 8.61 � 69 0.52× 46 5.34× � 45 0.34× 5.23× �
Tanh4×100 112.3 9.78 � — — — — — ✗b — — ✗b

ReLU3×20 124.7 9.97 � — — — —
✗c 30 0.24× 3.01× �

ReLU4×100 128.1 7.54 � — — — — 53 0.41× 7.03× �

ACC 6

Tanh3×20 15.4 4.53 � 113 7.34× 50 11.04× � 84 5.45× 18.54× �
Tanh4×100 15.2 4.51 � 2617 172.17× 375 83.15× � 677 44.54× 150.11× �
ReLU3×20 15.2 4.45 � — — — —

✗c 26 1.71× 5.84× �
ReLU4×100 18.4 5.49 � — — — — 58 3.15× 10.56× �

Remarks. Improvement: time speedup of BBReach compared to Verisig or Polar
(Verisig or Polar/BBReach). * denotes the comparison between BBReach with 20
cores (Cs) and Polar. Tanh/ReLUn×k: a neural network with the activation function
Tanh/ReLU, n hidden layers, and k neurons per hidden layer. VR: verification result.
�: the reach-avoid problem is successfully verified. ✗type: the reach-avoid problem can-
not be verified due to type: (a) large over-approximation error, (b) the calculation did
not finish, (c) not applicable. —: no data available due to ✗b or ✗c

Nevertheless, the simulation results show the trained DNN-controlled system
should satisfy the reach-avoid requirements. For Tora, BBReach significantly
surpasses other tools. None of the two white-box tools finishes before reaching
the goal region because of the huge over-approximation error. For instance, the
resulting bound of action, upon Verisig 2.0’s termination, reaches 107 which is
too large to proceed, although the increase of reachable states by simulation is
approximately in linear. The comparison results for B3, B4, B5, and ACC are
similar as for B1. We refer to our technical report [56] for more detailed results.

Table 2 shows the verification results of all the 28 instances in column VR.
BBReach successfully verifies all the instances, while Verisig 2.0 succeeds in 11

Taming Reachability Analysis of DNN-Controlled Systems 91

Fig. 9. Differential (Row 1) and decomposing (Row 2) analysis results. Y-axis in (a–d)
indicates the number of interval boxes while in (e–h) the time overhead in seconds. Due
to the space limitation, we use a scalar value g1 to denote the n-dimensional abstraction
granularity vector γ = (g1, ..., g1).

instances and Polar in 24 instances. Verisig 2.0 reports 1 unknown case (marked
by ✗a, indicating that over-approximated sets get outside of the goal region).
Additionally, Verisig 2.0 and Polar report 1 case and 4 cases of terminating
before reaching the goal region, respectively, denoted by ✗b. These also reflect
that BBReach is tighter and introduces less overestimation than other tools.

Table 2 also shows the time cost. Note that Verisig 2.0 is not applicable
to ReLU neural networks (marked by ✗c). BBReach costs much less time than
Verisig 2.0 (up to 176× speedup) with parallelization enabled. Even with a single
core, BBReach incurs less overhead than Verisig 2.0 in most cases. Compared to
Polar, BBReach consumes more time in dealing with small-sized neural networks
in B1, B2, and Tora because the finer-grained abstraction granularity is chosen
in the three cases, which affects the performance (see Sect. 6.4). Nevertheless,
BBReach consumes less time in all the remaining cases than Polar. In addition,
BBReach outperforms Polar with up to 182× speedup (the latest release of Polar
does not support parallelization), thanks to the parallel acceleration.

The efficiency advantage of BBReach becomes more notable with larger net-
works such as Tanh4×200, thanks to the black-box feature of our approach.
BBReach consumes almost the same time even for larger neural networks as
for small neural networks (e.g., Tanh2×20). In contrast, the time cost of both
the white-box approach almost always increases significantly with larger neural
networks. Moreover, Polar incurs more overhead to process the neural networks
with the Tanh activation function compared to ReLU, while BBReach consumes
similar times for both activation functions. Consequently, it is fair to conclude
that BBReach is more efficient and scalable to large-sized neural networks with
any activation functions. It is also evident that, via a decent design of neu-
ral networks, the reachability analysis for DNN-controlled systems is achievable
while the planted decision-making neural networks are treated as black-box ora-

92 J. Tian et al.

cles, with significant rightness and efficiency outperformance over the white-box
approaches.

6.4 Differential and Decomposing Analysis

Differential Analysis. To demonstrate the significance of the adjacent interval
aggregation in Algorithm 2, we measure the growth rate of the number of interval
boxes with adjacent aggregation, as well as with no aggregation. Figure 9(a-d)
shows the comparison results on B1-B4 (the results for the other six benchmarks
are similar and given in [56]. We observe that the number of interval boxes grows
rapidly with no aggregation, which implies a dramatically increased verification
overhead. With the adjacent interval aggregation, the number of interval boxes
is extremely small and stable.

Decomposing Analysis. We evaluate how different abstraction granularity
levels affect the performance of BBReach and its components. Abstraction gran-
ularity is a crucial hyper-parameter used in both training and calculation of
over-approximation sets. To better understand the impact of abstraction gran-
ularity, for each benchmark, in addition to the default abstraction granularity
levels (details can be found in [56]), we choose two finer and two coarser levels,
respectively, to evaluate the verification efficiency on both Tanh and ReLU neu-
ral networks. We also measure the time consumed by each of the three steps,
i.e., interval segmentation, post operation, and adjacent interval aggregation.

We present in Fig. 9(e-h) the results with the Tanh neural network in B1-B4
(the remaining results are similar and given in [56]). With a single core, as the
abstraction granularity becomes coarse-grained, the verification time decreases;
however, a fairly fine-grained abstraction granularity, e.g., (0.01, 0.01), could
result in much higher verification overhead. We also observe that the post oper-
ation takes most of the verification time, while the overhead of the other two
steps is negligible. Finally, as expected, the parallelization (with 20 cores) can
significantly accelerate BBReach.

7 Related Work

Our work is a sequel of recently emerged approaches for the reachability analysis
of DNN-controlled systems such as Verisig 2.0 [32], Polar [30], ReachNN* [31].
Besides these states of the art, NNV [58] introduces the star set analysis tech-
nique [57] to deal with the neural network and combines with the tool called
CORA [5] for the reachability analysis of non-linear systems. JuliaReach [47]
integrates the over-approximation of environment dynamics and DNNs together
using Taylor models and zonotope. All these approaches treat DNNs as white
boxes by over-approximating them with efficiently computable models such as
Taylor models [13]. Due to the intrinsic complexity of DNNs, these white-box
approaches are applicable to only a limited type of DNNs on small scales.

Our abstraction-based training method follows those machine learning
methodologies which advocate a similar idea of pre-processing training data

Taming Reachability Analysis of DNN-Controlled Systems 93

using either abstraction [2,34], fuzzing [12] or granulation [52] for various pur-
poses of reducing the size of models, capturing uncertainties in input data and
extracting abstract knowledge. Recent studies show that, rather than training on
concrete datasets, training on symbolic datasets is helpful to build verification-
friendly neural networks [20] and network-controlled systems [34]. The approach
in [2] is focused on the training of finite-state systems, while the one in [34]
needs to extend existing training methods to admit abstract states. Our design
of abstract neural networks is more decent than the approach in [34] because we
only need to insert abstraction layers into neural networks and do not impose
any other changes to training algorithms.

There are several black-box but unsound verification approaches for DNN-
controlled systems. For instance, Fan et al. proposed a hybrid approach of com-
bining black-box simulation and white-box transition graph for a probabilistic
verification result [22]. Xue et al. proposed a black-box model-checking app-
roach for continuous-time dynamical systems based on Probably Approximate
Correctness (PAC) learning [60]. Dong et al. built a discrete-time Markov chain
from extracted trajectories of a DRL system and verified safety properties by
probabilistic model checking [18]. However, these approaches are not sound and
can only compute error probability and confidence with probably approximate
correctness guarantees. The fundamental reason for the unsoundness is that only
partial behaviors of systems can be modeled when conventional neural networks
are treated as black-box oracles, i.e., fixing concrete system states and feeding
them into the networks to determine the state transitions.

8 Conclusion and Future Work

We have presented an efficient and tight approach for the reachability analy-
sis of DNN-controlled systems by bypassing the time-consuming and imprecise
over-approximation of the DNNs in systems via abstraction-based training. Our
method demonstrates the possibility of achieving sound but black-box reacha-
bility analysis through a decent abstraction-based training approach, breaking
conventional intuitions that black-box methods only offer approximate correct-
ness guarantees [22,60] and that over-approximating DNNs is inevitable for
sound verification [30–32]. Compared to white-box approaches, our black-box
approach offers several benefits, including significant efficiency improvements,
improved tightness of computed overestimation sets, applicability and scalabil-
ity to a wider range of extended abstract DNNs, regardless of their architectures,
activation functions, and neuron size. Nevertheless, the reachability analysis part
may suffer from state explosion in the worst case when the number of reachable
states increases exponentially, as faced by all the related white-box approaches
[30–32]. One possible solution is to coarsen the abstraction to reduce the size
of abstract states, and learn an easy-to-verify linear policy for each coarsened
abstract state. Such an approach has been successfully applied to reinforcement
learning [4] and requires further investigation in the DNN-based setting.

Our work sheds light on a promising direction for studying efficient and
sound formal verification approaches for DNN-controlled systems by treating

94 J. Tian et al.

black-box-featured DNNs as black boxes. We believe that this first black-box
reachability analysis approach for DNN-controlled systems would stimulate more
future work, such as new abstraction methods, runtime verification and model-
checking of more complex safety and liveness properties.

Acknowledgment. The work has been supported by the National Key Project
(2020AAA0107800), NSFC Programs (62161146001, 62372176), Huawei Technologies
Co., Ltd., the Shanghai International Joint Lab (22510750100), the Shanghai Trusted
Industry Internet Software Collaborative Innovation Center, the Engineering and Phys-
ical Sciences Research Council (EP/T006579/1), the National Research Foundation
(NRF-RSS2022-009), Singapore, and the Shanghai Jiao Tong University Postdoc Schol-
arship.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI,
vol. 16, pp. 265–283. Savannah, GA, USA (2016)

2. Abel, D.: A theory of state abstraction for reinforcement learning. In: AAAI, vol.
33, pp. 9876–9877 (2019)

3. Afzal, M., et al.: Veriabs: verification by abstraction and test generation. In: ASE,
pp. 1138–1141. IEEE (2019)

4. Akrour, R., Veiga, F., Peters, J., Neumann, G.: Regularizing reinforcement learning
with state abstraction. In: IROS, pp. 534–539. IEEE (2018)

5. Althoff, M.: An introduction to CORA 2015. In: Cyber-Physical Systems Virtual
Organization (CPS-VO 2015), pp. 120–151 (2015)

6. Althoff, M., Magdici, S.: Set-based prediction of traffic participants on arbitrary
road networks. IEEE Trans. Intell. Veh. 1(2), 187–202 (2016)

7. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci.
138(1), 3–34 (1995)

8. Bacci, E., Parker, D.: Probabilistic guarantees for safe deep reinforcement learning.
In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 231–
248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8 14

9. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

10. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification
for deep neural networks. In: ICSE, pp. 312–323. IEEE (2021)

11. Bertsekas, D.P., Rhodes, I.B.: On the minimax reachability of target sets and target
tubes. Automatica 7(2), 233–247 (1971)

12. Campos Souza, P.V.: Fuzzy neural networks and neuro-fuzzy networks: a review
the main techniques and applications used in the literature. Appl. Soft Comput.
92, 106275 (2020)

13. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: RTSS, pp. 183–192. IEEE (2012)

14. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

15. Christakis, M., et al.: Automated safety verification of programs invoking neural
networks. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp.
201–224. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 9

https://doi.org/10.1007/978-3-030-57628-8_14
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-030-81685-8_9

Taming Reachability Analysis of DNN-Controlled Systems 95

16. Collins, P., Bresolin, D., et al.: Computing the evolution of hybrid systems using
rigorous function calculus. IFAC Proc. Vol. 45(9), 284–290 (2012)

17. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

18. Dong, Y., Zhao, X., Huang, X.: Dependability analysis of deep reinforcement learn-
ing based robotics and autonomous systems through probabilistic model checking.
In: IROS, pp. 5171–5178. IEEE (2022)

19. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

20. Drews, S., Albarghouthi, A., D’Antoni, L.: Proving data-poisoning robustness in
decision trees. In: PLDI, pp. 1083–1097 (2020)

21. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: HSCC, pp. 157–168
(2019)

22. Fan, C., Qi, B., Mitra, S., Viswanathan, M.: DryVR: data-driven verification and
compositional reasoning for automotive systems. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10426, pp. 441–461. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 22

23. Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: ReachNN*: a tool for reachability
analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O. (eds.)
ATVA 2020. LNCS, vol. 12302, pp. 537–542. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-59152-6 30

24. Fang, X., Calinescu, R., Gerasimou, S., Alhwikem, F.: Fast parametric model check-
ing through model fragmentation. In: ICSE, pp. 835–846. IEEE (2021)

25. Frehse, G.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 30

26. Gallestey, E., Hokayem, P.: Lecture notes in nonlinear systems and control (2019)
27. Gomes, L.: When will Google’s self-driving car really be ready? It depends on

where you live and what you mean by “ready” [news]. IEEE Spectr. 53(5), 13–14
(2016)

28. Heo, K., Oh, H., Yang, H.: Resource-aware program analysis via online abstraction
coarsening. In: ICSE, pp. 94–104. IEEE (2019)

29. Hildebrandt, C., Elbaum, S., Bezzo, N.: Blending kinematic and software models
for tighter reachability analysis. In: ICSE(NIER), pp. 33–36 (2020)

30. Huang, C., Fan, J., Chen, X., Li, W., Zhu, Q.: POLAR: a polynomial arith-
metic framework for verifying neural-network controlled systems. In: Bouajjani,
A., Hoĺık, L., Wu, Z. (eds.) Automated Technology for Verification and Analysis.
ATVA 2022. LNCS, vol. 13505, pp. 414–430. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-19992-9 27

31. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: ReachNN: reachability analysis
of neural-network controlled systems. ACM Trans. Embed. Comput. Syst. 18(5s),
1–22 (2019)

32. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0:
verification of neural network controllers using Taylor model preconditioning. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 249–262. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 11

https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-319-63387-9_22
https://doi.org/10.1007/978-3-319-63387-9_22
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-031-19992-9_27
https://doi.org/10.1007/978-3-031-19992-9_27
https://doi.org/10.1007/978-3-030-81685-8_11

96 J. Tian et al.

33. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embed. Comput. Syst. 20(1), 1–26 (2020)

34. Jin, P., Tian, J., Zhi, D., Wen, X., Zhang, M.: TRAINIFY: A CEGAR-driven train-
ing and verification framework for safe deep reinforcement learning. In: Shoham,
S., Vizel, Y. (eds) Computer Aided Verification. CAV 2022. Lecture Notes in Com-
puter Science, vol. 13371, pp. 193–218. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-13185-1 10

35. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

36. Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al.: Continuous control with deep rein-
forcement learning. In: ICLR, OpenReview.net (2016)

37. Limon, D., Bravo, J., Alamo, T., Camacho, E.: Robust MPC of constrained nonlin-
ear systems based on interval arithmetic. IEE Proc. Control Theory App. 152(3),
325–332 (2005)

38. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for
hybrid systems. Automatica 35(3), 349–370 (1999)

39. Makino, K., Berz, M.: Taylor models and other validated functional inclusion meth-
ods. Int. J. Pure Appl. Math. 6, 239–316 (2003)

40. Meiss, J.D.: Differential dynamical systems, Mathematical modeling and compu-
tation, vol. 14. SIAM (2007)

41. Minsky, M.L.: Computation. Prentice-Hall Englewood Cliffs, Hoboken (1967)
42. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep

reinforcement learning. Nature 518(7540), 529–533 (2015)
43. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM

(2009)
44. Park, S., Kim, J., Kim, G.: Time discretization-invariant safe action repetition for

policy gradient methods. In: NeurIPS 2021, vol. 34, pp. 267–279 (2021)
45. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning

library. In: NeurIPS, vol. 32 (2019)
46. Pereira, A., Althoff, M.: Over approximative human arm occupancy prediction for

collision avoidance. IEEE Trans. Autom. Sci. Eng. 15(2), 818–831 (2017)
47. Schilling, C., Forets, M., Guadalupe, S.: Verification of neural-network control

systems by integrating Taylor models and zonotopes. In: AAAI, vol. 36, pp. 8169–
8177 (2022)

48. Schmidt, L., Kontes, G., Plinge, A., Mutschler, C.: Can you trust your autonomous
car? Interpretable and verifiably safe reinforcement learning. In: IV, pp. 171–178.
IEEE (2021)

49. Schürmann, B., Kochdumper, N., Althoff, M.: Reached model predictive control
for disturbed nonlinear systems. In: CDC, pp. 3463–3470. IEEE (2018)

50. Scott, J., Raimondo, D., Marseglia, G., Braatz, R.: Constrained zonotopes: a new
tool for set-based estimation and fault detection. Automatica 69, 126–136 (2016)

51. Singh, S.P., Jaakkola, T., Jordan, M.I.: Reinforcement learning with soft state
aggregation. NeurIPS 7, 361–368 (1995)

52. Song, M., Jing, Y., Pedrycz, W.: Granular neural networks: a study of optimizing
allocation of information granularity in input space. Appl. Soft Comput. 77, 67–75
(2019)

53. Su, J., Chen, W.H.: Model-based fault diagnosis system verification using reacha-
bility analysis. IEEE Trans. Syst. Man Cybern. Syst. 49(4), 742–751 (2017)

54. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: HSCC, pp. 147–156 (2019)

https://doi.org/10.1007/978-3-031-13185-1_10
https://doi.org/10.1007/978-3-031-13185-1_10

Taming Reachability Analysis of DNN-Controlled Systems 97

55. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
56. Tian, J., Zhi, D., Liu, S., Wang, P., Katz, G., Zhang, M.: Taming reachability

analysis of DNN-controlled systems via abstraction-based training (2023)
57. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional

neural networks using imagestars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 2

58. Tran, H.-D., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V., Xiang, W.,
Bak, S., Johnson, T.T.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 1

59. Wang, Z., Albarghouthi, A., Prakriya, G., Jha, S.: Interval universal approximation
for neural networks. In: POPL, vol. 6, pp. 1–29. ACM (2022)

60. Xue, B., Zhang, M., Easwaran, A., Li, Q.: Pac model checking of black-box
continuous-time dynamical systems. IEEE Trans. Comput. Aided Des. Integr. Cir-
cuits Syst. 39(11), 3944–3955 (2020)

61. Zhang, Y., et al.: QVIP: an ILP-based formal verification approach for quantized
neural networks. In: ASE, pp. 1–13. No. 80 (2022)

https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1

	Taming Reachability Analysis of DNN-Controlled Systems via Abstraction-Based Training
	1 Introduction
	2 Preliminaries
	2.1 DNN-Controlled Systems
	2.2 Reachability Problem of DNN-Controlled Systems

	3 Motivation
	4 Abstraction-Based Training
	4.1 Approach Overview
	4.2 Interval-Based State Abstraction

	5 Abstraction-Based Reachability Analysis
	5.1 Approach Overview
	5.2 Key Operations in Algorithm 1
	5.3 The Soundness

	6 Implementation and Experiments
	6.1 Implementation and Benchmarks
	6.2 Performance of Trained Neural Networks
	6.3 Tightness and Efficiency
	6.4 Differential and Decomposing Analysis

	7 Related Work
	8 Conclusion and Future Work
	References

