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Abstract
As neural networks are increasingly being integrated into mission-critical systems, it is becoming crucial to ensure that they
meet various safety and liveness requirements. Toward, that end, numerous complete and sound verification techniques have
been proposed in recent years, but these often suffer from severe scalability issues. One recently proposed approach for
improving the scalability of verification techniques is to enhance them with abstraction/refinement capabilities: instead of
verifying a complex and large network, abstraction allows the verifier to construct and then verify amuch smaller network, and
the correctness of the smaller network immediately implies the correctness of the original, larger network. One shortcoming
of this scheme is that whenever the smaller network cannot be verified, the verifier must perform a refinement step, in which
the size of the network being verified is increased. The verifier then starts verifying the new network from scratch—effectively
“forgetting” its earlier work, in which the smaller network was verified. Here, we present an enhancement to abstraction-based
neural network verification, which uses residual reasoning: a process where information acquired when verifying an abstract
network is utilized in order to facilitate the verification of refined networks. At its core, the method enables the verifier to retain
information about parts of the search space in which it was determined that the refined network behaves correctly, allowing
the verifier to focus on areas of the search space where bugs might yet be discovered. For evaluation, we implemented our
approach as an extension to the Marabou verifier and obtained highly promising results.

Keywords Neural networks · Verification · Abstraction refinement · Residual reasoning · Incremental reasoning

1 Introduction

In thepast decade, the useof deepneural networks (DNNs) [26]
within diverse and critical systems has been on the rise.
A few notable examples include, e.g., the fields of image
recognition [27], speech recognition [17], and autonomous
driving [11]. This unprecedented success is due in part to the
ability of DNNs to generalize well from a small set of train-
ing examples and later correctly handle previously unseen
inputs.

Still, despite their undeniable success, DNNs suffer from
several reliability issues. First, they completely depend on the
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training process, whichmay include partial, anecdotal, noisy,
or biased data [37, 46]; second, the training process suffers
from inherent over-fitting limitations [53]; and third, trained
DNNs are susceptible to adversarial attacks and suffer from
obscurity and lack of explainability [5]. Unless addressed,
these limitations, and others,will likely limit the applicability
of DNNs in many domains of interest.

One promising approach aimed at improving the reli-
ability of DNNs is to use formal verification techniques:
rigorous and automated techniques for ensuring that a DNN
model abides by a given specification, in all possible cor-
ner cases [23, 28, 33, 49]. Although sound and complete
formal verification approaches can certify thatDNNs are reli-
able, they can typically only scale to small- or medium-sized
DNNs. Although DNN verification has progressed rapidly in
recent years, scalability remains a major issue [8].

In order to render DNN verifiers more scalable, recent
work has demonstrated the great potential of enhancing them
with abstraction/refinement principles [6, 14, 21, 43]. The
core idea is to leverage a DNN verifier as a black box and
to use it to dispatch a series of verification queries over
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abstract networks—i.e., networks whose correctness imme-
diately implies the correctness of the original DNN. Further,
the abstract DNNs are constructed in such a way that they
are much smaller than the original network. Due to the fact
that DNN verification complexity increases exponentially
with the size of the DNN being verified [33, 34], the result-
ing queries can be solved fairly quickly. The downside of
applying abstraction is that oftentimes, verifying the smaller
DNNswill return an inconclusive result—andwhen this hap-
pens, the abstract network must be refined, making it slightly
larger; the process is then repeated. It is widely accepted
that the heuristics used for selecting which abstraction and
refinement steps to perform have a significant impact on the
performance of the overall procedure [14, 21]. Thus, poor
heuristicsmight cause the sequenceof abstraction/refinement
queries to take longer to solve than simply solving the origi-
nal query.

Here, we introduce an extension to the abstraction/refine
ment verification scheme, aimed at improving the perfor-
mance of DNN verifiers. The core of the extension is to use
residual reasoning [7]: an approach for re-using the informa-
tion gatheredwhen verifying an abstract verification query, in
order to expedite the later verification of subsequent, refined
queries. Using existing schemes, when a verifier verifies an
abstract network N1 and obtains an inconclusive answer, it
will proceed to verify a refined network, N2, from scratch—
as if it had not previously verified N1. Through residual
reasoning, one attempts to leverage the similarities between
N1 and N2 in identifying large portions of the underlying ver-
ification search space where it is a-priori guaranteed that no
violations of the property being verified can exist. These por-
tions of the search space then need not be explored, resulting
in a much speedier verification process.

In order to realize this concept, we leverage the fact that
modern verifiers can typically be regarded as traversing a
large search tree. Each activation function within the neu-
ral network causes the search tree to branch out, and each
new branch represents a single linear phase of the activation
function. Here, we show that whenever a verifier traverses
one of these branches and discovers that no property viola-
tions occur within the branch, that information can be stored;
and later, when the verifier traverses a search tree corre-
sponding to a refined neural network, the stored information
can be used to deduce that no violations exist within spe-
cific branches of that search tree. This approach affords clear
advantages: by pruning the search space, the verification pro-
cedure is expedited significantly. However, the disadvantage
is that, unlike in common abstraction/refinement-based tech-
niques, the verifier must be instrumented and can no longer
be used as a black box.

In this paper, we make the following contributions: (i)
we rigorously define a general residual reasoning scheme
for DNNs, which preserves the soundness and complete-
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Fig. 1 (From [20]) A DNN with an input layer (green), two hidden
layers (blue), and an output layer (red)

ness of an underlying verifier; (ii) we specify in detail
how our approach can extend the state-of-the-art Marabou
DNN verifier [35]; and (iii) we present an implementation
of our approach and evaluate it using the ACAS Xu set of
benchmarks [32]. We view this work as another step toward
leveraging abstraction/refinement principleswithin the broad
context of DNN verification.

The remainder of the paper is organized as follows: In
Sect. 2, we present the necessary background on DNNs and
DNN verification. This is followed by Sect. 3, where we
describe our general residual reasoning method. Next, we
discuss how our technique can enhance specific abstrac-
tion/refinement methods in Sect. 4. Section 5 is then ded-
icated to exploring how our method can be integrated with
the Marabou DNN verifier backend, followed by an evalu-
ation of the approach in Sect. 6. We cover related work in
Sect. 7 and conclude in Sect. 8.

2 Background

Deep Neural Networks (DNNs). A deep neural network
N : Rn → R

m is a layered, directed graph [26]. This graph
contains an input layer, multiple hidden layers, and finally
an output layer. Each layer is comprised of a set of nodes
(neurons) of the layer, which take on real values. The network
is evaluated by assigning values to its input layer’s neurons
and then iteratively computing the values of neurons in each
successive layer, until the values of the output neurons are
computed—and these constitute the network’s output.

Each neuron within the DNN is typically evaluated by
(a) computing a weighted sum of values assigned to neu-
rons in the preceding layer, and (b) applying an activation
function to the weighted sum’s result. For simplicity, in this
work we restrict our attention to ReLU activations [26],
which are defined using the popular, piecewise-linear func-
tion ReLU(x) = max(x, 0). When a neuron’s input is x ≥ 0,
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we say that the ReLU is active; whereas for input x < 0, we
say that it is inactive. The simple example in Fig. 1 depicts a
DNN evaluated on the input 〈0, 1〉. Listed above each neuron
is the weighted sum computed, before the ReLU activa-
tion function is applied to it. The network’s final output is
9. Although we focus strictly on ReLUs, our approach can
be directly applied to any other piecewise-linear activation
function and can even support additional, non-piecewise-
linear activation functions, through the common approach
of piecewise-linear approximations [50, 55].

More formally, we follow common notation in [21] and
use L to denote the number of layers of a given DNN N .
We let Ni denote the i’th layer of the DNN, and |Ni | the
number of nodes of Ni . Layers 1 and L are the input and
output layers, respectively. Layers 2, . . . , L − 1 are the hid-
den layers. We denote the value of the j’th node of layer
i by vi, j and denote the column vector [vi,1, . . . , vi,|Ni |]T
as Vi . Evaluating N is performed by calculating VL for a
given input assignment V1. This is done by sequentially com-
puting Vi for i = 2, 3, . . . L , each time using the values of
Vi−1 to computeweighted sums, and then applying theReLU
activation functions. Specifically, layer i (for i > 1) is asso-
ciated with a weight matrix Wi of size Ni × Ni−1 and a
bias vector Bi of size Ni . If i is a hidden layer, its values
are given by Vi = ReLU(WiVi−1 + Bi ), where the ReLUs
are applied element-wise, and the output layer is given by
VL = WLVL−1 + BL (ReLUs are not applied).
Neural Network Verification. The purpose of neural net-
work verification [39] is to determine the validity of a given
specification over the neural network’s inputs and outputs.
A verification query is a couple 〈N , ϕ〉, where N is a DNN
and ϕ is a specification of the form �x ∈ DI ∧ �y ∈ DO .
DI and DO represent the input and output domains, respec-
tively, implying that the input �x is in DI and that the output �y
is in DO . Typically, ϕ is used to represent some undesirable
behavior. Thus, verification amounts to finding an input �x and
a matching output �y that satisfy ϕ and consequently consti-
tute a counter-example to ϕ (the SAT case); or, alternatively,
to proving that no such �x exists (the UNSAT case). Without
loss of generality, we assume here that verification queries
consists strictly of a DNN N with a single-output neuron
y and that the property ϕ has the form �x ∈ DI ∧ y > c.
Other, more complex queries can be reduced to this form, in
a straightforward manner [21, 30].

As a toy example, observe theDNNdepicted in Fig. 1, and
the corresponding property ϕ : x1, x2 ∈ [0, 1] ∧ y > 14. We
observe that input x1 = 0, x2 = 1 does not satisfy ϕ, because
y = 9 ≤ 14. Thus, when presented with this query, a sound
verifier would not return 〈0, 1〉 as a satisfying assignment.

2.1 Linear programming and case splitting.

One technique that nowadays plays a significant role within
many verification tools is called case splitting [35, 48, 50].
In case splitting, the DNN verification problem is typically
regarded as a satisfiability problem, in which a collection of
ReLU constraints and linear constraints and must be simul-
taneously satisfied. While the linear constraints are fairly
easy to solve [16], it is the ReLUs that render the problem
NP-Complete [33]. Through case splitting, the verifier will
occasionally replace a ReLU constraint with an equivalent
disjunction of the following linear constraints:

(y = ReLU(x)) ≡ ((x ≤ 0 ∧ y = 0) ∨ (x ≥ 0 ∧ y = x))

Then, the verifier will each time guess that one of the dis-
juncts must hold and will proceed to attempt to satisfy the
resulting constraints. This process results in a search tree,
where the internal nodes correspond to the various ReLU
constraints, and their outgoing edges correspond to the two
linear phases that each ReLU can take. Leaves of this tree are
problems that no longer contain any ReLUs and can conse-
quently be solved directly and easily—often, by using linear
programming engines.

The disadvantage of case splitting is that it might result in
a number of sub-problems that is exponential in the number
of ReLU constraints. To mitigate this, solvers apply a variety
of heuristics to avoid case splits, or prioritize between them.
Solvers often also use deduction steps in order to determine,
a priori, that certain case splits cannot lead to a satisfying
assignment and consequently need not be considered. Such
techniques are beyond the scope of this paper [39].
Abstraction/Refinement (AR). Abstraction/refinement is a
method for improving the scalability of verifiers, which has
been applied in various domains [14]—such as DNN ver-
ification [6, 21, 43]. The basic flow of the AR scheme is
depicted in Fig. 2. The process begins with an initial DNN
N and some property ϕ to be verified and then proceeds
to abstract network N into a different, significantly smaller
network N ′. A key trait of this procedure is that N ′ always
over-approximates N : that is, if 〈N ′, ϕ〉 is UNSAT, then by
construction, 〈N , ϕ〉 is also UNSAT. Consequently, it is usu-
allymore efficient to try and verify the smaller N ′, as opposed
to directly verifying N .

Whenever the verifier concludes that 〈N ′, ϕ〉 is SAT, it
produces a counter-example �x0. This counter-example can
then be checked in order to determine whether it constitutes
a correct counterexample also for 〈N , ϕ〉. If that is the case,
we can determine that the original query is SAT.
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Fig. 2 DNN verification with
abstraction/refinement. ce
stands for counter-example
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Otherwise, we say that �x0 is a spurious counter-example,
which indicates that N ′ is inadequate for the purpose of deter-
mining the satisfiability of 〈N , ϕ〉. When this happens, we
apply refinement:we use N ′ and �x0 in order to construct a new
network N ′′, which is an over-approximation of N , although
it is larger than N ′. This process can then be repeated, using
N ′′. Typically, the sequence of refinement steps is bound to
converge: either we can successfully use one of the abstract
networks in order to determine the satisfiability of the origi-
nal query, or we eventually refine N ′ all the way back to the
original N and then solve the original query. By definition,
solving the original query cannot return a spurious result, and
the process will then terminate.

Here, we target a particular mechanism of abstrac-
tion/refinement, used in DNN verification [21]. There,
abstraction and refinement steps are carried out by merg-
ing, or, respectively, by splitting, neurons in the network.
When neurons are merged, the weights of their incoming
and outgoing edges are aggregated in a specific way. These
manipulation ofweights ensure thatwhenever N is abstracted
into N ′, it will hold that N ′(�x) ≥ N (�x) for all input �x . Con-
sequently, if N ′(�x) ≥ c is UNSAT, it follows that N (�x) ≥ c
is also UNSAT, as is required of an over-approximate verifi-
cation query.

A simple example is depicted in Fig. 3. On the left, we
see network N from Fig. 1. Next, the network on the middle
(denoted N ′) is obtained through the merging of two neu-
rons, v2,1 and v2,2, into neuron v2,1+2, and by the merging
of neurons v2,4 and v2,5 into neuron v2,4+5. The weights
of the edges outgoing from these neurons are calculated as
the sums of the weights listed on the outgoing edges of the
original neurons, and the weights of the edges incoming
into these neurons are either the max or min of the origi-
nal weights, as determined according to various criteria [21].

It has been shown [21] that N ′ is an over-approximation of
N , e.g., N (〈3, 1〉) = −6 < N ′(〈3, 1〉) = 6. Last but not
least, the network on the right (denoted N ′′) is obtained
from N by refinement—specifically, by splitting a previ-
ously merged neuron. We note that N ′′ is larger than N ′,
but that it still over-approximates the original network N ,
e.g., N ′′(〈3, 1〉) = 1 > N (〈3, 1〉) = −6.

3 Residual reasoning (RR)

Let us return again to our running example. We observe
that when we consider the most abstract network, N ′, prop-
erty ϕ is satisfiable, e.g., for �x0 = 〈0, 1〉 we get that
N ′( �x0) = 16. Nonetheless, �x0 is a spurious counterexample,
because N ( �x0) = 9. Thus, the verifier performs a refine-
ment step and begins verifying 〈N ′′, ϕ〉. This new query is
solved from scratch, and without considering the previous
query that had already been solved. However, we notice that
the queries 〈N ′, ϕ〉 and 〈N ′′, ϕ〉 are, in fact, quite similar:
the two networks are nearly identical, and the property is the
same. We thus wish to re-use parts of the information dis-
covered when 〈N ′, ϕ〉 was solved in expediting the solving
process of 〈N ′′, ϕ〉. The intuition is that when verifying the
abstract network, the verifier explores the search space at a
coarse level, whereas verifying the refined network allows
it to explore the search space at a finer granularity. Conse-
quently, parts of that space that were previously determined
safe (for the abstract network) need not be re-explored (for
the refined network).

In order to allow the verifier to retain information between
consecutive calls, we introduce here a context variable, Γ .
This variable is passed to the verifier as part of each verifica-
tion query, and it is used in twoways: (i) the verifier can store
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Fig. 3 (From [20]) Abstracting and refining a neural network, through neuron merging and splitting [21]

relevant information into Γ , to be used later, when refined
versions of the current network are encountered, and (ii) the
verifier may also use the information already in Γ in order
to prune the search space of the current query. A high-level
scheme of this mechanism appears in Fig. 4. Of course, in
order to maintain soundness, the use of Γ must be designed
carefully.

3.1 Avoiding case-splits with 0

Toward thegoal of expediting subsequent verificationqueries,
we propose here to use Γ to store information that will allow
the DNN verifier to prune case splits. Because case splits
are a highly significant bottleneck in neural network veri-
fication [33, 48], using Γ in this way seems like a natural
strategy.

Let N ′ denote an abstract network, and let N ′′ denote a
refinement of N ′. Let us observe the queries 〈N ′, ϕ〉 and
〈N ′′, ϕ〉, and let R1, . . . , Rn denote the ReLU constraints in
N ′. For each ReLU constraint Ri , we introduce a Boolean
variable ri that indicates whether Ri is active or inactive (ri is
true or¬ri is true, respectively). Next, we define Γ as a CNF
formula over the Boolean variables we have introduced:

Γ :
∧

⎛

⎝
∨

l j∈⋃n
i=1{ri ,¬ri }

l j

⎞

⎠

In order for our approach to remain sound, we ensure that
Γ is a valid formula for 〈N ′′, ϕ〉; that is, if there exists an
assignment that satisfies 〈N ′′, ϕ〉, then it must also satisfy Γ .
Relying on this assumption, a verifier can use Γ in order to
avoid case-splitting while verifying the refined network, by
applying unit-propagation [10]. For instance, suppose that Γ
contains the clause (r1 ∨ ¬r2 ∨ ¬r3) and that as part of veri-
fying the refined network, the verifier has already performed
two case splits, setting r1 to false (R1 is set to inactive) and r2

to true (R2 is set to active). Now, the verifier can immediately
assign r3 to false, because it is guaranteed that a satisfying
assignment where r3 is true cannot exist—as this would vio-
late the clause above. This process ensures that no future
splitting will be performed on R3.

Put formally, we have the following Lemma:

Lemma 1 (Soundness of Residual Reasoning) Let 〈N ′, ϕ〉
and 〈N ′′, ϕ〉 denote verification queries involving an abstract
network N ′ and its refined network N ′′, which are being
solved by a sound verifier; and let Γ denote a valid for-
mula, as discussed above. If the verifier deduces the phases
of ReLU constraints by applying unit propagation on clauses
from Γ as it verifies 〈N ′′, ϕ〉, then soundness is maintained.

The proof of this lemma is straightforward and is omit-
ted. We observe that when multiple refinement steps are
performed in sequence, variables within Γ may need to be
renamed; we discuss this in later sections.

4 Residual reasoning and neuron-merging
abstraction

The approach for residual reasoning that we propose here
is quite general; indeed, our definitions do not specify pre-
cisely how to populate Γ . When constructing in Γ a lemma
that is intended to remain valid after future refinements of
the network, we must take into account the specifics of
the abstraction/refinement scheme in use. In this section,
we propose a method for populating Γ designed to work
within a recently proposed abstraction/refinement scheme,
where abstraction and refinement are performed by merging
and splitting neurons [21] (the same abstraction/refinement
approach that is discussed in Sect. 2).

Let us consider again our example from Fig. 3. Suppose
that, as part of solving the query 〈N , ϕ〉, we generate an
abstract network N ′ and begin verifying 〈N ′, ϕ〉. As the
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Fig. 4 DNN verification with
residual reasoning. ce stands for
counter-example
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verification progresses, case splits are performed, and we
then discover that setting neuron v2,1+2’s ReLU to active
implies that no satisfying assignments can be found.At a later
time, we discover a satisfying assignment, for which v2,1+2’s
ReLU is inactive: �x = 〈0, 1〉 ⇒ N ′(�x) = 16 > 14. This
counterexample is unfortunately discovered to be spurious
(because N (〈0, 1〉) = 9 ≤ 14), and so we apply refinement:
we split node v2,1+2 into two new nodes, (v2,1, v2,2), which
gives rise to a refined network N ′′. We then begin solving the
verification query 〈N ′′, ϕ〉.

We claim that the following holds: because (1) no satisfy-
ing assignment exists for 〈N ′, ϕ〉 when v2,1+2 is active, and
(2) v2,1+2 was refined into (v2,1, v2,2), it follows that when
v2,1 and v2,2 are active, no satisfying assignment can exist
for 〈N ′′, ϕ〉. Differently put, soundness is maintained by ver-
ifying 〈N ′′, ϕ〉while setting Γ = (¬r2,1∨¬r2,2), where r2,1
and r2,2 correspond to the respective activation phases of v2,1
and v2,2. Consequently, if the verifier applies a case split that
fixes v2,1 to active, it can immediately (and soundly) set v2,2
to inactive, without exploring the case where v2,2 is active.

In order to better justify why this claim holds, we turn to
formally proving it, i.e., we now show that any input �x that
satisfies 〈N ′′, ϕ〉 with v2,1 and v2,2 both active, must also
satisfy 〈N ′

1, ϕ〉when v2,1+2 is active. We begin by observing
that because N ′′ is a refinement of N ′, it holds that N ′′(�x) ≤
N ′(�x), and because ϕ has the form y > c, the satisfiability of
〈N ′′, ϕ〉 implies the satisfiability of 〈N ′, ϕ〉. We also observe
that N ′′ and N ′ are identical in all layers up to the layers
containing v2,1, v2,2 and v2,1+2, and consequently, when the
two networks are evaluated on the same input values, all
neurons feedings into these three neurons are assigned the
exact same values.Now,we assume toward contradiction that
v2,1+2 is inactive, i.e., that 3·ReLU(v1,1)−ReLU(v1,3) < 0.
However, because it holds that v2,1 = 3 · ReLU(v1,1) −
ReLU(v1,3), this contradicts our assumption that v2,1 and
v2,2 are both active. Thus, our proof is concluded, implying
the validity of Γ = (¬r2,1 ∨ ¬r2,2).

v1,1

v1,2

v2,1

max(a, b)

max(c, d)

(a) abstract network

v1,1

v1,2

v2,1

v2,2
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b

c
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(b) refined network

Fig. 5 (From [20]) Abstraction/refinement of two inc neurons

The remainder of this section is devoted to formalizing
the principle that the previous example demonstrates. This
formalization is complex, and it relies significantly on details
relating to the underlying abstraction mechanism [21]. We
break the proof into theorems: the first theorem deals with
applying unit propagation based on valid formulas, whereas
the second theorem deals with various guard conditions that
are required in order to guarantee the sound application of
unit propagation.

Following the terminology used by Elboher et al. [21],
two neurons can be merged as part of an abstraction step if
they share a type: that is, if they are both marked as inc
neurons, or if they are both marked as dec neurons. We say
that a neuron is inc if it has the property that increasing its
value always results in an increase to the network’s single
output neuron. Symmetrically, we say that a neuron is dec
if decreasing its value results in an increase to the network’s
single output. In our running example,weobserve that neuron
v2,1+2 is an inc neuron, while neuron v2,3 is dec.

We say that a neuron is an abstract neuron if it is generated
as a result of the merging two neurons that share a category;
we say that a neuron is a refined neuron if it is generated
(restored) as part of a refinement step. A simple example of
the merging of two inc neurons is depicted in Fig. 5.

Next, we state our main theorem, which serves as the jus-
tification for our method for populating Γ .
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Theorem 1 Let N : �x → y denote a DNN with a single
output node y, let ϕ denote a specification of the form ϕ =
(�l ≤ �x ≤ �u) ∧ (y > c), and let 〈N , ϕ〉 be a verification
query. Suppose that N ′ is an abstract DNN, obtained from
N through neuron merging, and suppose that N ′′ is another
DNN, obtained from N ′ through a single refinement step, in
reverse order of abstraction. Let v denote the single neuron
in N ′ that was split into two neurons v1, v2 in N ′′ as a result
of the refinement step. Then, assuming that a certain guard
condition G holds, the following also holds:

1. If v is inc neuron, and if while verifying 〈N ′, ϕ〉 the
verifier concludes that fixing v to its active phase leads
to an UNSAT branch of the search tree, it follows that
Γ = (¬r1 ∨ ¬r2) is a valid formula for 〈N ′′, ϕ〉 (where
r1 and r2 correspond to v1 and v2, respectively).

2. Symmetrically, if fixing a dec neuron v to its inactive
phase leads to an UNSAT branch of the tree, it follows
that Γ = (r1 ∨ r2) is a valid formula for 〈N ′′, ϕ〉.

The goal of G is to ensure that the branches in both search
trees (those corresponding to 〈N ′, ϕ〉 and 〈N ′′, ϕ〉) are suffi-
ciently similar. More concretely, G is set to be a conjunction
of these stipulations:

1. During the verification of N ′ and N ′′, the exact same case
splits have been applied to all neurons in layers preceding
the layer of the abstract neuron, and also to all neurons
that share a layer with the abstract neuron.

2. During the verification of N ′ and N ′′, the exact same
case splits have been applied to the abstract neuron and
the refined neurons that were generated from it.

3. In any layer following the layer of neurons v, v1 and v2,
every inc neuron has been split on and was set to active;
and every dec neuron has been split on and was set to
inactive.

We note that the G condition does not alter the way Γ is
populated. However, the verifier must ensure that G is satis-
fied before it performs any unit-propagation based on Γ .

In order to formalize the intuitive explanation above, we
define the following sets of constraints. Supposewe are given
a property of the form ϕ = (�l ≤ �x ≤ �u) ∧ (y > c) for some
vectors �l, �u and a constant c, a network N with L layers, and
a couple of networks N ′ and N ′′ such that N ′′ is refined from
N ′ through a single refinement step on node u in the r ’th
layer (3 ≤ r ≤ L − 1). For M ∈ {N , N ′, N ′′}, we denote:

1. MCpre := ⋃
p∈P

{p = active/inactive} where P ⊆
{M1 ∪ · · · ∪ Mr\u}, i.e a subset of the preceding lay-
ers where abstraction did not occur. MCpre includes
case splits of neurons in preceding layers (including the

abstraction layer, except for the abstract neuron). Each
neuron p ∈ P can be active/inactive.

2. MCinc
abs

:= {u = active} if u is an increasing node; else it
is ∅.

3. MCdec
abs

:= {u = inactive} if u is a decreasing node; else
it is ∅.

4. MCinc
re f

:= {u1 = active, u2 = active} if u is an increas-

ing node; else it is ∅.
5. MCdec

re f
:= {u1 = inactive, u2 = inactive} if u is a

decreasing node; else it is ∅.
6. MCinc

post
:= ⋃

q∈Qinc {q = active}where Qinc ⊆ {Mr+1∪
· · · ∪ ML} is a set of all increasing nodes in layers
Mr+1, . . . , ML . MCinc

post
requires that every inc neuron

in the consecutive layers after the abstract node is active.
7. MCdec

post
:= ⋃

q∈Qdec {q = inactive} where Qdec ⊆
{Mr+1 ∪ · · · ∪ ML} is a set of all decreasing nodes in
layers Mr+1, . . . , ML . MCdec

post
requires that every dec

neuron in the consecutive layers after the abstract node
is inactive.

where MC (for C ∈ {Cpre,Cinc
abs,C

dec
abs ,C

inc
re f ,C

dec
re f ,C

inc
post ,

Cdec
post }) is a partial set C of the case splits that were applied

during the verification of the property in M .
Using these definitions, the three guard stipulations above

are defined as follows:

– N ′
Cpre

= N ′′
Cpre

realizes the first stipulation.

– (N ′
Cinc
abs

= ∅ ⇔ N ′′
Cinc
re f

= ∅)∧ (N ′
Cdec
abs

= ∅ ⇔ N ′′
Cdec
re f

= ∅)

realizes the second stipulation.
– (|N ′

Cinc
post

∪ N ′
Cdec
post

| = |N ′
r+1 ∪ · · · ∪ N ′

L |) ∧ (|N ′′
Cinc
post

∪
N ′′
Cdec
post

| = |N ′′
r+1∪· · ·∪N ′′

L |) realizes the third stipulation.

Next, we need to prove that the three conditions above
imply the correctness of the implication of unsatisfiability,
when a refinement step is performed.Weprove this byfinding
the violated case split in the refinement.

Observe that a possible solution from the verifier is
an input �x that, when propagated in the abstract network,
induces a set of case splits {si }ni=1. Hence, the solution can
be treated as a couple (�x, {si }ni=1).

Theorem 2 If all three guard conditions hold, then for any
solution (�x, {si }ni=1), if any constraint s ∈ {si }ni=1 is violated
in N ′, then there is a corresponding constraint which is vio-
lated in N ′′.

Proof The violation can occur in any neuron in the abstract
network, and we handle all options by considering the cases
of input layer neurons, preceding layer neurons, abstract neu-
rons, consecutive layer neurons, or output layer neurons.
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1. If there was a violation in the input layer: the violated
constraint s is an input constraint (denoted as N ′

Cin
). s is

also violated in N ′′, since N ′
Cin

= N ′′
Cin

and N ′′ receives
the same input.

2. If the violation is in the output layer: s is an output
constraint (denoted as N ′

Cout
), and s is also violated

in N ′′, because N ′′
Cout

= N ′
Cout

and the output of a
refined network is smaller than that of the original (and
y′′ < y′ < c).

3. If there is a violation in the preceding layers: s ∈ N ′
Cpre

,

then from thefirst conditionweget that s ∈ N ′′
Cpre

.Hence,

there is a violation also in N ′′, because the values in its
preceding layers are equal.

4. If there is a violation in the abstract neuron: the violated
constraint is s ∈ N ′

Cinc
abs

∪ N ′
Cdec
abs

. There are 2 cases for the

neuron where the violation occurs, denoted as u (with
refined neurons u1, u2):

– if the type of neuron u is inc, then by definition
N ′
Cdec
abs

= ∅. In this case, s ∈ N ′
Cinc
abs

and N ′
Cinc
abs

�= ∅,
so from the second condition we get N ′′

Cinc
abs

�= ∅, and
by definition N ′′

Cinc
re f

= {u1 = active, u2 = active}.
The violation of s means that u < 0, so from Lemma
2 we get that u1 < 0 ∨ u2 < 0, and at least one of
s1, s2 is violated in N ′′.

– if the type of neuron u is dec, then by definition
N ′
Cinc
abs

= ∅. In this case s ∈ N ′
Cdec
abs

and N ′
Cdec
abs

�= ∅,
so from the second condition we get N ′′

Cdec
abs

�= ∅,
and by definition N ′′

Cdec
re f

= {u1 = inactive, u2 =
inactive}. The violation of s means that u > 0, so
from Lemma 3 we get that u1 > 0 ∨ u2 > 0, and at
least one of s1, s2 is violated in N ′′.

5. If the violation occurs in a consecutive layer: s ∈
N ′
Cinc
post

⋃
N ′
Cdec
post

, then from the third condition we get

that s ∈ N ′′
Cinc
post

⋃
N ′′
Cdec
post

(the condition implies that

N ′
Cinc
post

⋃
NCdec

post
= N ′′

Cinc
post

⋃
N ′′
Cdec
post

because the 2 sets

of neurons are equal and the constraints for each neuron
are equal).

– if any constraint in N ′
Cin

, N ′
Cout

, N ′
Cpre

, N ′
Cabs

is vio-
lated, we have already shown above that a corre-
sponding constraint in N ′′

Cin
, N ′′

Cout
, N ′′

Cpre
, N ′′

Cabs
is

violated.
– otherwise, denote the violated constraint’s neuron
with p

– if p is aninc neuron, then the violation is that p < 0.
After refinement, p decreases, so still p < 0 and s is
violated again.

– if p is a dec neuron, then the violation is that p > 0.
After refinement, p increases, so still p > 0 and s is
violated again.

��
When all the conditions are met and Theorem 1 is appli-

cable, it implies that the existence of a satisfying assignment
within the specific branch of the search tree corresponding
to the refined network must entail the existence of a satis-
fying assigning within the matching branch of the abstract
network’s search tree. However, we already know that this is
impossible; and so it follows that that branch can soundly be
skipped. In order to prove the theorem, we first require the
two following lemmas—each of which corresponds to one
of the two cases handled by the theorem.

Lemma 2 Let v be an abstract inc node, let v1 and v2 be
refined nodes that correspond to v, and let �x be an input to
the DNN. If v takes a negative value when the network is
evaluated on �x, then v1 or v2 (or both) must also be assigned
a negative value when the refined network is evaluated on �x.
Proof Outline We give an overview of the proof for this
lemma, using the network snippet from Fig. 5. Generaliz-
ing the proof for an arbitrary network can be achieved in a
straightforward way.

Let us observe nodes v2,1 and v2,2 in Fig. 5b. These nodes
are refined nodes, corresponding to node v2,1 in Fig 5a. We
need to show that the following implication holds:

x1 · max(a, b) + x2 · max(c, d) < 0 ⇒
(x1 · a + x2 · c < 0 ∨ x1 · b + x2 · d < 0)

Because the values x1, x2 are the results of ReLUs, they are
nonnegative by definition. Thus, we can consider 4 cases:

1. If x1 = 0, x2 = 0, the implication trivially holds.
2. If x1 = 0, x2 > 0, then x2 · max(c, d) < 0, and so

c, d < 0. It follows that x1 · a + x2 · c = x2 · c < 0 and
x1 · b+ x2 · d = x2 · d < 0, and so again the implication
holds.

3. The case where x1 > 0, x2 = 0 is symmetrical to the
previous case.

4. If x1 > 0, x2 > 0, the implication becomes

max(x1 · a, x1 · b) + max(x2 · c, x2 · d) < 0

⇒ (x1 · a + x2 · c < 0 ∨ x1 · b + x2 · d < 0)

We denote a′ = x1 · a, b′ = x1 · b and c′ = x2 · c, d ′ =
x2 · d. The lemma transforms into:

max(a′, b′) + max(c′, d ′) < 0 ⇒ a′ + c′ < 0 ∨ b′ + d ′ < 0
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– If a′ ≥ b′, then a′ = max(a′, b′) and a′ +
max(c′, d ′) < 0. It follows that

b′ + d ′ ≤ a′ + d ′ ≤ a′ + max(c′, d ′) < 0

as needed.
– If a′ < b′, then b′ = max(a′, b′) and b′ +
max(c′, d ′) < 0. It follows that

a′ + c′ ≤ b′ + c′ ≤ b′ + max(c′, d ′) < 0

again as needed.

��
For inc neurons, the correctness of Theorem 1 follows

from Lemma 2. For the dec case, we require also the fol-
lowing, symmetrical lemma:

Lemma 3 Let v be an abstract dec node, let v1 and v2 be
refined nodes that correspond to v, and let �x be an input
to the DNN. If v takes a positive value when the network is
evaluated on �x, then v1 or v2 (or both) must also be assigned
a positive value when the refined network is evaluated on �x.
Proof Again, we explain how to prove the lemma using the
network snippet from Fig. 5; this proof can be generalized
to any network in a straightforward way. Observe nodes v2,1
and v2,2 in Fig. 5b, which are nodes refined from node v2,1
in Fig. 5a. We need to prove that the following implication
holds:

x1 · min(a, b) + x2 · min(c, d) > 0

⇒ (x1 · a + x2 · c > 0 ∨ x1 · b + x2 · d > 0)

The values of x1, x2 are the outputs of ReLUs, and so are
nonnegative. We can thus split into 4 cases:

1. If x1 = 0, x2 = 0, the implication holds trivially.
2. If x1 = 0, x2 > 0, then x2 · min(c, d) > 0, and so

c, d > 0. We get that x1 · a + x2 · c = x2 · c > 0 and
x1 · b+ x2 · d = x2 · d > 0, and so the implication holds.

3. The case where x1 > 0, x2 = 0 is symmetrical to the
previous case.

4. If x1 > 0, x2 > 0, the implication becomes

min(x1 · a, x1 · b) + min(x2 · c, x2 · d) > 0

⇒ (x1 · a + x2 · c > 0 ∨ x1 · b + x2 · d > 0)

Let us denote a′ = x1 ·a, b′ = x1 ·b and c′ = x2 ·c, d ′ =
x2 · d. The lemma then becomes:

min(a′, b′) + min(c′, d ′) > 0 ⇒ a′ + c′ > 0 ∨ b′ + d ′ > 0

– If a′ ≤ b′, then a′ = min(a′, b′) and a′ +
min(c′, d ′) > 0. We then get that

b′ + d ′ ≥ a′ + d ′ ≥ a′ + min(c′, d ′) > 0

as needed.
– If a′ > b′, then b′ = min(a′, b′) and b′ +
min(c′, d ′) > 0. We then get that

a′ + c′ ≥ b′ + c′ ≥ b′ + min(c′, d ′) > 0

again as needed.

��
Figure 3 illustrates the results of applying Theorem 1,

as part of verifying of our running example (Fig. 6). Each
rectangle in the figure represents a single verification query,
whereas blue lines indicate abstraction steps. The interior
of each rectangle depicts the verifier’s search tree. Triangles
represent sub-trees—and red triangles represent sub-trees in
which the verifier is able to deduce that a satisfying assign-
ment does not exist. As the figure shows, when the verifier
solves the query in the bottom rectangle it discovers an
UNSAT sub-tree, and this sub-tree meets the conditions of
the Theorem. This fact allows the verifier to conclude that
another sub-tree, which is part of another rectangle/query, is
also UNSAT. This is indicated by a green arrow. Specifically,
the verifier discovers that setting v2,1+2 to activewould result
in UNSAT, and then, it deduces that setting both v2,1 and v2,2
to active is bound to also produce an UNSAT result.
Multiple Refinement Steps. So far, we have focused solely
on populating Γ when performing a single refinement step.
However, a need often arises to adjust Γ across multiple
refinement steps.When this happens, each invocation of The-
orem 1 adds yet another CNF clause to the formula being
constructed in Γ . In addition, some renaming and book-
keeping are required, because neuron identifiers change as
refinement is performed: intuitively, whenever abstract neu-
ron v is split into neurons v1 and v2, the literal representing v

must be replaced with the clause v1 ∨v2. We formalize these
notions in Sect. 5; the procedure’s soundness can be proven
by repeatedly invoking Theorem 1.

5 Adding residual reasoning to reluplex

In contrast to previous attempts at applying abstraction/refi
nement within DNN verification [6, 21, 43], residual reason-
ing requires that theDNNverifier be instrumented, in order to
populate, and later use, Γ . Next, we describe such an instru-
mentation for Reluplex [33], which is the core verification
algorithm used in the state-of-the-art Marabou verifier [35].
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Fig. 6 (From [20]) Applying
Theorem 1 while solving the
query from Fig. 3

N

Reluplex is a sound and complete verification algorithm,
which employs case-splitting—as discussed in Sect. 2. It
also employs various heuristics for pruning the search space
and reducing the number of splits performed [51, 52], and
it has also been used within abstraction/refinement based-
schemes [21], rendering it a natural candidate for using
residual reasoning.We termed our enhanced version of Relu-
plex AR4, for abstraction/refinement with residual reasoning
for Reluplex.

For our ends, it is convenient to consider Reluplex as a
collection of derivation rules, which are applied according
to some implementation-specific strategy. The most relevant
parts of this calculus of derivation rules, borrowed fromKatz
et al. [33], appear (in simplified form) in Fig. 7. Other rules,
most notably those that pertain to the technical aspects of
solving linear programs, were omitted for brevity.

Internally, theReluplex algorithm represents a verification
query as a collection of linear equalities, as well as lower and
upper bounds, over a set of variables. Separately, it main-
tains a set of ReLU constraints. A Reluplex configuration
over variable set X is either the distinguished symbols SAT
or UNSAT, or a tuple 〈T , l, u, α, R〉, where T , the tableau,
contains the collection of linear equations; l, u are mappings
from each variable x ∈ X to its lower and upper bound,
respectively; α, the assignment, maps each variable x ∈ X to
some real value; and R is the collection of ReLU constraints,
i.e., 〈x, y〉 ∈ R implies that y = ReLU(x). As it solves a
query, Reluplex often derives tighter bounds, by discovering
smaller upper bounds or greater lower bounds for some of
the variables.

Through these definitions, the rules depicted in Fig. 7 are
interpreted as follows: the Failure rule is applicable when-
ever Reluplex discovers inconsistent bounds for a variable,

which indicates that the query is UNSAT. The ReluSplit rule
is applicable for any ReLU constraint with a yet unknown
linear phase; and using it allows Reluplex to “guess” a lin-
ear phase for that ReLU constraint, by setting its input x’s
upper bound to 0 (inactive), or x’s lower bound to 0 (active).
The Success rule, which returnsSAT, is applicable whenever
Reluplex’s current configuration simultaneously satisfies all
constraints.

In order to allow support for AR4, we propose to extend
the Reluplex calculus with new rules, as depicted in Fig. 8.
We introduce the context variableΓ and use it to store a valid
CNF formula in order to assist the verifier. We also introduce
ΓA and ΓB , which are two additional context variables, used
for book-keeping. Specifically, we use ΓA to store a map-
ping between abstract neurons and their matching refined
neurons, i.e., ΓA is comprised of triples 〈v, v1, v2〉, each of
which indicates that an abstract neuron v has been refined
into neurons v1 and v2.We useΓB for storing past case splits,
already performed by the verifier, which can be used in pop-
ulating Γ when the verifier encounters an UNSAT branch.
Given variable x of neuron v, we use Ginc(ΓA, ΓB, x) and
Gdec(ΓA, ΓB, x) to denote the Boolean function that returns
true if and only if the guard conditions needed for applying
Theorem 1 hold (either the inc or dec conditions, depend-
ing on neuron v’s type).

The rules depicted in Fig. 8 are to be interpreted as fol-
lows. The AbstractionStep rule is used for merging pairs
of neurons, and for creating the initial, abstract network.
The RefinementStep rule is applicable when dealing with
an already abstract network (as indicated by ΓA �= ∅), and
initiates a refinement step by undoing the previous abstrac-
tion step. The ApplyAbstraction rule is applicable anytime;
it generates an abstract network, in accordancewith the infor-
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Fig. 7 The derivation rules of
Reluplex calculus (partial,
simplified)

Fig. 8 Derivation rules for the
AR4 calculus

mation inΓA, and updates the relevant contexts to reflect this.
The Success rule, taken from the original Reluplex calculus,
is included also in the AR4 calculus; however, we note that
the distinguished SAT state that it reaches is applicable only
to the current network, which can be an abstract network,
and could thus signify that a spurious satisfying assignment
has been reached. To circumvent this issue, we add a new
rule, RealSuccess, used for checking whether a SAT result
actually holds also for the original network. Consequently,
in addition to SAT or UNSAT, the distinguished RealSAT
state is also defined to be a terminal state for our calculus.

The Failure rule is new, and replaces theReluplex rulewith
the same name. This rule is applicable whenever contradic-
tory variable bounds are discovered. Apart from declaring
that the UNSAT state has been reached, this rule also pop-
ulates the Γ context variable with the current case-split
history (stored in ΓB), to be used in future pruning of the
search space. The ReluSplit rule, which is similar to the
Reluplex version, guesses a linear phase for one the ReLU
constraints and also records that guess in theΓB context vari-
able. Finally, the Prune1/2 rules become applicable when
the conditions required for applying Theorem 1 hold (distin-
guishing between the inc and dec cases). These rules trim
the search tree and update theΓ context variable accordingly.
Side Procedures. We proceed to describe possible imple-
mentations for the side condition functions CanAbstract ,
Abstract , UpdateContext and isRealSat that appeared
in the aforementioned calculus. Apart from the symbols
X , T , l, u, α and R, which were introduced earlier, we intro-

duce one additional symbol, B, which signifies the set of
basic variables [33]. Intuitively, basic variables are variables
expressed as linear combinations of other, non-basic vari-
ables, used in solving linear programs [16]. We also use the
symbolspos(v),neg(v),inc(v) and dec(v) to indicate that
a neuron v has a particular type, as part of the abstraction pro-
cess [21].

– CanAbstract (Algorithm 1) checks whether a pair of neu-
rons can be merged, according to their assigned types. It
also ensures that these variables’ assignment has not yet
changed as part of the verification process.

Algorithm 1 CanAbstract(v1, v2)
1: if layer(v1) = layer(v2)

and pos(v1) ↔ pos(v2)
and inc(v1) ↔ inc(v2)
and {vb1 , v f

1 , vb2 , v
f
2 } ⊆ B

and ∃ΓA, ΓB : X , T , α, l, u, B = ApplyAbstraction
(X0, T0, α0, l0, u0, B0, ΓA, ΓB) then

2: return True
3: end if
4: return False

– Abstract (Algorithm 2) performs a sequence of abstrac-
tion steps. Each single abstraction step (Algorithm 3)
is comprised of the merging of a pair neurons that are
known to be part of the basis and share a layer and a
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type, provided that the current state is reproducible from
the initial state by neuron merging only. For the merging
operation, we use Algorithm 4, which unifies two vari-
ables in the basis, by replacing their corresponding rows
in the tableau by a single row, representing the unified
neuron variable. More specifically, the new row includes
0’s in the cells of any existing slack variable (line 5), 1
in the cell of the new variable (line 7) and the cell of the
new slack variable (line 23), and a relevant aggregated
value (max /min according to inc/dec type, replaced
for bias variables) for every non-basic variable (lines 8-
19).

Algorithm 2 Abstract(X0, T0, α0, l0, u0, B0, ΓA)
1: X , T , α, l, u, B = X0, T0, α0, l0, u0, B0
2: for v1,2, v1, v2 ∈ ΓA do
3: X := X ∪ {vb1,2, v f

1,2} \ {vb1 , v f
1 , vb2 , v

f
2 }

4: B := B ∪ {vb1,2, v f
1,2} \ {vb1 , v f

1 , vb2 , v
f
2 }

5: α := α∪{vb1,2 = 0, v f
1,2 = 0}\{vb1 = 0, v f

1 = 0, vb2 = 0, v f
2 = 0}

6: l := l ∪ {v1,2 > −∞} \ {v1 > −∞, v2 > −∞}
7: u := u ∪ {v1,2 < ∞} \ {v1 < ∞, v2 < ∞}
8: T := Uni f yBasic(v1,2, (v1, v2), T )

9: end for
10: return X , T , α, l, u, B

Algorithm 3 AbstractStep(X , T , α, l, u, B, v1, v2)

1: X := X ∪ {vb1,2, v f
1,2} \ {vb1 , v f

1 , vb2 , v
f
2 }

2: B := B ∪ {vb1,2, v f
1,2} \ {vb1 , v f

1 , vb2 , v
f
2 }

3: α := α ∪ {vb1,2 = 0, v f
1,2 = 0} \ {vb1 = 0, v f

1 = 0, vb2 = 0, v f
2 = 0}

4: l := l ∪ {v1,2 > −∞} \ {v1 > −∞, v2 > −∞}
5: u := u ∪ {v1,2 < ∞} \ {v1 < ∞, v2 < ∞}
6: T := Uni f yBasic(v1,2, (v1, v2), T )

7: return X , T , α, l, u, B

– The UpdateContext procedure sets (ΓB = ∅) in order
to clear the case-splitting context. It also updates the
clauses within Γ to use new variables: any variable that
represents an inc node, ¬r , is replaced with the clause
¬r1 ∨ ¬r2; and any variable that represents a dec node,
r , is replaced with r1 ∨ r2.

– The isRealSat procedure (Algorithm 5) checks whether
a counterexample, represented by an assignment α, is a
true counterexample in the original network.

Implementation Strategy. The derivation rules that appear
in Fig. 8 specify a set of “legal moves” that the AR4 can
perform. It is guaranteed that by applying these moves, the

Algorithm 4 UnifyBasic(v1,2, (v1, v2), T )
1: rowv1 , rowv2 = the rows of T where v1, v2 are basic variables
2: rowv1,2 = [0, . . . , 0]
3: for i ∈ 0, . . . , len(X) do
4: if the i’th variable is a slack variable then
5: f unc = 0
6: else if the i’th variable corresponds to v1,2 then
7: f unc = 1
8: else if i is a bias variable then
9: if the i’th variable corresponds to an increasing neuron then
10: f unc = min
11: else
12: f unc = max
13: end if
14: else
15: if the i’th variable corresponds to an increasing neuron then
16: f unc = max
17: else
18: f unc = min
19: end if
20: end if
21: rowv1,2 [i] = f unc(rowv1 [i], rowv2 [i])
22: end for
23: add cells for v1,2 and its slack variable (1 in rowv1,2 , 0 in other

rows)
24: remove cells of v1, v2 and their slack variables from all rows
25: remove rowv1 , rowv2 from T , append rowv1,2 to T

Algorithm 5 IsRealSAT(α)
1: extract input layer values from α

2: evaluate the original network on these input values
3: compute the original network’s outputs
4: return whether the computed output values satisfy the property

verification process will be sound. Still, when implementing
this framework, the derivation rules much be applied accord-
ing to some strategy. We next describe the strategy used in
our proof-of-concept implementation.

At first, we apply the AbstractionStep rule to saturation,
with the goal of reaching as small an abstract network as
possible. Next, we apply the ApplyAbstraction rule once, in
order to initialize the context variables. Next, we enter the
main loop of abstraction-based verification: we repeatedly
apply the Reluplex core rules, according to existing strate-
gies [35], with the modification that whenever the ReluSplit
rule is applied, it is immediately followed by an application of
Prune1 andPrune2, if possible. TheSuccess andFailure rules
are applied as in the original Reluplex, with RealSuccess
being applied immediately after Success, if this is possible;
if not, we apply the RefinementStep rule, and repeat the pro-
cess. Finally, we also attempt to apply Prune1 and Prune2
after each application of Failure, in order to update Γ .

6 Experiments and evaluation

In order to evaluate our approach,we used a proof-of-concept
implementation of AR4. As a baseline for comparison, we
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Table 1 Comparing AR4 and
AR

Adversarial Safety Total (Weighted)

AR4 AR AR4 AR AR4 AR

Timeouts 95/900 116/900 7/180 9/180 102/1080 125/1080

Instances solved more quickly 160 95 28 24 188 119

Uniquely solved 26 5 2 0 28 5

Visited tree states 6.078 7.65 3.569 4.98 5.634 7.178

Avg. instrumentation time 91.54 – 36.5 – 82.367 –

used the only framework currently available that supports
CEGAR-based verification of neural networks—namely, the
implementation of [21], which extends Marabou. We then
applied both tools to verify a set of benchmarks over the
family of 45 ACAS Xu DNNs for airborne collision avoid-
ance [32] (each of which contained 310 neurons, spread
across 8 layers). In our experiments, we verified a set of
4 safety properties, and also 20 adversarial robustness prop-
erties over the ACAS Xu networks, yielding a total of 1080
benchmarks. From these experiments we recorded, for each
tool, the runtime (including instrumentation time), the num-
ber of properties verified successfully within the allowed
two-hour timeout, and also the number of case splits per-
formed by each tool. We conducted our experiments on
x86-64 Gnu/Linux-based machines, using a single Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz core. The code that
we used is publicly available online.1

The results of our experiments appear in Table 1, with
Fig. 9 used for visualizing the advantages afforded by AR4

when compared to AR. The AR4 tool timed out on 18.4%
fewer benchmarks and successfully solved 188 benchmarks
more quickly than its AR counterpart, whereas AR proved
faster than AR4 in only 119 instances. We observe that in
these comparisons, we considered experiments inwhich both
tools completed their execution within 5 s of each other as
ties. We also observe that the residual reasoning mechanism
was able to curtail the search space significantly. On average,
AR4 had to traverse 5.634 search-tree states per experiment,
whereas AR traversed 7.178 states on average—a 21.5%
decrease.

In spite of the advantages that AR4 affords, it does not
always outperform AR—due to the cost of instrumenting
the verifier, which is sometimes significant. In our evalua-
tion, the verifier spent 82 s on average in order to execute
the instrumentation code, out of an average total runtime of
885s—nearly a 10% portion, which is significant. In order to
reduce instrumentation costs, moving forward we intend to
improve the engineering of our tool, e.g., by improving the
implementation of its internal unit-propagation mechanism,
through the use of watch literals [10].

1 https://zenodo.org/record/8224307.

7 Related work

Manymodern DNN verification engines leverage key princi-
ples from SMT and SAT solving [19, 28, 33, 35, 41], abstract
interpretation [23, 40, 45, 50], mixed integer linear program-
ming [12, 18, 19, 48], and other domains. Many of these
approaches make use of case-splitting and could potentially
benefit from residual reasoning.

In our evaluation, we used theMarabou DNN verifier [35,
51]. Marabou is a state-of-the-art DNN verifier, which uses
a native Simplex solver, combined with abstraction and
abstract interpretation techniques [15, 21, 42, 45, 49, 54],
proof-production capabilities [29], advanced splitting heuris-
tics [52], DNN optimization [47], and support for varied
activation functions [3]. Additionally, Marabou has been
applied to a variety of verification-based tasks, such as veri-
fying recurrent networks [31] and DRL-based systems [1, 2,
22, 36], network repair [25, 44], network simplification [24,
38], ensemble selection [4], and explainable AI [9]. Integrat-
ing our approach with additional DNN verifiers is left for
future work.

Abstraction/refinement schemes are known to be highly
successful in verifying various hand-crafted systems [14].
More recently, they have also been promising attempts to
apply them within the context of DNN verification by merg-
ing neurons [21], deleting neurons [6] and generating interval
neural networks [43]. Of these, the framework of Ashok et
al. [6] is potentially unsound, whereas the work of Prabhakar
et al. [43] generates abstract artifacts that are not standard
neural networks, and thus, the work closest to ours is that
of Elboher et al. [21]. To the best of our knowledge, our
approach is the first that applies residual reasoning to verify
DNNs.

There are various optimizations that can enhanceCEGAR-
based approaches. These include “tightening” the examined
property while abstracting the network [15]; more sophisti-
cated neuron deletion schemes that leverage linear program-
ming [13]; and incorporating testing-based methods into the
CEGAR-based verification process [56]. Combining these
enhancements with our scheme is left for future work.
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Fig. 9 (From [20]) Comparing
AR4 and AR

8 Conclusion

With the increasing integration of DNNs into safety-critical
software systems, it is becoming crucial to improve the scal-
ability of DNN verification. Abstraction/refinement schemes
could potentially play a significant role in this endeavor, but
in some cases they result in a significant amount of redundant
work for the underlying verifier. The residual-reasoning-
based approach that we propose advocate here can eliminate
some of this redundancy, resulting in speedier verification.
We consider our work here as a step toward tapping the sig-
nificant potential of abstraction/refinement schemes within
the broad context of DNN verification.

Moving forward, our plan is to improve the engineering of
our AR4 tool; and also to integrate it with additional abstrac-
tion/refinement approaches for DNN verification [6].
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