
Scaling-Up Behavioral Programming: Steps from Basic
Principles to Application Architectures

Supplementary Material

David Harel
Weizmann Institute of Science

Rehovot, Israel
david.harel@weizmann.ac.il

Guy Katz
Weizmann Institute of Science

Rehovot, Israel
guy.katz@weizmann.ac.il

I. SEMANTICS
Having informally described the extensions we propose for

the traditional BP framework, this section is dedicated to
their rigorous formulation. The definitions are based on,
and are similar to, those described in Section 2 of the paper,
with alterations to accommodate parameterized events, cus-
tomizable event selection and dynamic thread creation. The
more extensive changes are meant to support the notion of
time; in particular, we no longer assume that threads transi-
tions occur instantly, and introduce special “synchronization
transitions” and “timeout transitions”.

I.1 Event Sets
As discussed in Section 6 of the paper, we want our new

semantics to support unbounded parameterized events. For
simplicity, we assume that the domains of these parame-
ters are enumerable (say, integers or strings), and so the set
of all possible parameterized events E is also enumerable.
We assume that this set does not contain the two special
symbols: ⊥, denoting a timeout, and >, denoting thread
synchronization.

I.2 Behavior Threads
Let E be an event set and let BT = {BT 1, BT 2, . . .} de-

note a (possibly infinite) set of threads. These threads can
be thought of as templates, instances of which are spawned
as the program runs. In particular, multiple instances of the
same thread may exist simultaneously. Each thread is for-
malized by the tuple BT i = 〈Qi, qi0, δi, ξi, Ri, Bi, T i〉, where
Qi is the (possibly infinite) set of states, qi0 is an initial
state, and R,B : Qi → 2E are functions that map states to
requested and blocked states (respectively), as before. As
discussed in Section 6 of the paper, the range of Bi may
contain infinite sets, but the range of Ri may only contain
finite sets.
T i : Qi → (0,∞) is a timeout function, assigning each

state a positive timeout value. This value is not an absolute
time, but rather the amount of (say, seconds) the thread is
willing to spend in that state before a timeout should occur.

The transition relation δi ⊆ Qi×(E∪{⊥})×Qi is used to
map states and events to new states. We stipulate that for
every state q for which T i(q) <∞ there is an edge 〈q,⊥, q̃〉 ∈
δi. In other words, if a thread declares a timeout, a timeout
would cause it to transition.

Finally, ξi : δi → BT × N is a function that maps transi-
tions to thread instances that should be spawned when they
are traversed. Each such thread is paired with the number
of instances that should be spawned. We sometimes abuse
notation, and consider ξi as mapping states to multisets.

Observe that the above definition does not support thread
termination; indeed, for simplicity, we assume that when a
thread terminates it goes into a special “shutdown” state, in
which it does not request, wait-for or block any events, and
sets its timeout value to ∞. This is the semantic equivalent
of thread termination, as the thread can no longer affect the
execution; in practice, the thread can safely be discarded.

I.3 Configurations
A thread configuration c is given by the tuple

c = 〈index, sync, state, time〉,

where:

• index is an integer, denoting that the thread in ques-
tion is an instance of thread template BT index.

• sync is a boolean variable, indicating whether the thread
is currently synchronized or not.

• state ∈ Qindex indicates the state the thread is in if
sync = true, or the state the thread is expected to
reach in its next synchronization if sync = false.

• time is a positive real, indicating the instant in time
when the thread last synchronized. This field is only
meaningful if sync = true.

Two thread configurations are equal if and only if all of
their meaningful fields are equal. A system configuration γ
is a finite tuple γ = 〈c1, . . . , ck, t〉, where k ≥ 1 and each
ci = 〈indexi, synci, statei, timei〉 is a thread configuration,
and t is a positive real, indicating the current time. The
system configuration indicates which thread instances are
currently active, and thus indicates the global configuration
of the system.

A system configuration γ is called initial if and only if:

∀1≤i≤k,
(
synci = false ∧ statei = qindex

i

0

) ∧
t = 0



That is, all currently running thread instances are unsyn-
chronized, are expected to arrive at their initial states in
their next synchronization, and the system time is 0. This
is the state of the system at the beginning of the execution.

Given two configurations γ = 〈c1, c2, . . . , ck, t〉 and γ̃ =

〈c̃1, c̃2, . . . , c̃k
′
, t̃〉 and an event e ∈ E ∪ {⊥,>}, we say that

γ̃ is a successor of γ with respect to e, denoted γ
e−→ γ̃, if the

following conditions apply:

1. Existing threads are preserved: k′ ≥ k and

∀1≤i≤k, indexi = ĩndexi.

2. Time moves forward: t̃ ≥ t. We assume event selection
can be resolved in zero time, and allow t̃ = t.

3. If e = >, then γ
e−→ γ̃ is a valid synchronization tran-

sition; if e = ⊥, then it is a timeout transition; and
otherwise, it is an event selection transition. These
terms are defined next.

I.3.1 Synchronization Transitions
These are transitions for which e = >; they correspond

to a single thread synchronizing. A transition is a valid
synchronization transition if the following conditions hold:

• Synchronization transitions cannot spawn new threads,
i.e. k = k′.

• At least one thread is unsynchronized, i.e. ∃1≤i≤k such
that synci = false.

• No synchronized threads have timed-out:

∀1≤j≤k,
(
syncj = true =⇒ T j(statej) + timej < t̃

)
• All threads except the thread that timed-out remain in

the same configuration: ∀1≤j≤k,
(
j 6= i =⇒ cj = c̃j

)
.

• The thread that synchronized is updated to indicate
that it has arrived at its expected state in that instant:

s̃ynci = true ∧ s̃tate
i

= statei ∧ t̃imei = t̃.

I.3.2 Event Selection Transitions
These are transitions with “real” events, i.e. e ∈ E. They

are allowed only when the following conditions hold:

• All threads are synchronized, i.e. ∀1≤i≤k, synci =
true.

• The transition must occur immediately upon the last
synchronization event: t̃ = max1≤i≤k{timei}.

• Event e must be enabled: e ∈
⋃n
i=1R

indexi(statei) −⋃n
i=1B

indexi(statei).

• As a result of the event being triggered, all threads
that have transitions for the event become unsynchro-
nized, and their new expected states (when next they
synchronize) are determined according to their transi-
tion rules:

∀1≤i≤k, (δi(statei, e) 6= ∅ =⇒

s̃ynci = false ∧ s̃tatei ∈ δi(statei, e))

• Threads that did not have a transition to traverse re-
tain their configurations:

∀1≤i≤k,
(
δi(statei, e) = ∅ =⇒ ci = c̃i

)
• New threads may be spawned as a result of the tran-

sition. These threads correspond to thread configura-

tions c̃k+1, . . . , c̃k
′
. These threads must be precisely

those threads that the existing threads spawn, i.e.

{ ˜indexk+1, . . . , ˜indexk′} =⋃
1≤i≤k | δi(statei,e)6=∅

ξindexi(〈statei, e, s̃tatei〉)

where both hands of the equation are interpreted as
multisets.

• New threads are spawned unsynchronized, and are ex-
pected to reach their initial states:

∀k<i≤k′ ,
(
s̃ynci = false ∧ s̃tatei = q

˜indexi
0

)
.

I.3.3 Timeout Transitions
These are transitions with e = ⊥. They occur when a

previously synchronized thread times out. Formally, they
are allowed if and only if the following holds:

• Timeout transitions are only allowed when no event
selection transitions are enabled; that is, if there ex-
ists at least one unsynchronized thread or if all threads
are synchronized but there are no enabled events. For-
mally, denoting by E the set of enabled events

E =

k⋃
i=1

Rindex
i

(statei)−
k⋃
i=1

Bindex
i

(statei),

we stipulate that
(
∃1≤i≤k, synci = false

)
∨ (E = ∅).

• One thread has to have timed out, i.e

∃1≤i≤k,
(
synci = true ∧ T i(statei) + timei = t̃

)
• This thread becomes unsynchronized and traverses a

timeout transition:

s̃ynci = false ∧ s̃tatei ∈ δi(statei,⊥)

• All other threads remain in the same configurations:

∀1≤j≤k
(
j 6= i =⇒ cj = c̃j

)
• The transition may spawn new threads:

{ ˜indexk+1, . . . , ˜indexk′} = ξindex
i

(〈statei,⊥, s̃tatei〉)

• New threads are spawned unsynchronized, and are ex-
pected to reach their initial states:

∀k<j≤k′ ,
(
s̃yncj = false ∧ s̃tatej = q

˜indexj
0

)
.



I.3.4 Thread Termination
For simplicity, the concept of thread termination is not in-

cluded in the semantics. Instead, we assume that terminated
threads enter a dormant state, in which they request, wait-
for and block nothing, and do not specify a timeout. This is
the equivalent of removing the thread from the pool of active
threads. Naturally, in practice it is better to let threads ter-
minate and free the resources they were allocated. Indeed,
this is the case in BPC.

I.3.5 System Vs. Environment
From the ESM’s point of view, synchronization transitions

can be seen as managed by the environment; the ESM has
no control on when threads will synchronize. The other two
kinds — event selection transitions and timeout transitions
— are triggered by the ESM, and it has no flexibility in se-
lecting and scheduling them. As previously mentioned, it
would be interesting to extend this work to allow the ESM
flexibility in, say, purposely delaying event selection transi-
tions, in order to achieve some goal, along the outline of the
smart play-out mechanism of [2, 3].

I.4 Behavioral Programs
A behavioral program P consists of a (possibly infinite)

event set E, a (possible infinite) thread template set BT =
{BT 1, BT 2, . . .} an initial system configuration γ0, and a
event selection strategy fes (as defined in Section 4 of the
paper).

An execution ρ of P is a sequence ρ = γ0 e0−→ γ1 e1−→ . . . of
successive configurations, where ei ∈ E∪{⊥,>} for all i. For
every ei /∈ {>,⊥}, we require that fes(γ0, γ1, . . . , γi) = ei,
that is that the triggering of “real” events is performed ac-
cording to the strategy. The execution may either be in-
finite, or finite if it ends in a terminal configuration — a
configuration with no successors. Specifically, a terminal
configuration is one in which all threads have synchronized,
there are no enabled events, and all threads have set their
timeout values to ∞.

The run that corresponds to execution ρ is a (possibly infi-
nite) sequence of event-and-time pairs 〈〈ei0 , ti0〉, 〈ei1 , ti1〉, . . .〉
that correspond to just the event selection transitions of ρ.
The run indicates the “real” events that were triggered, and
the time of their triggering. Timeout and synchronization
transitions are considered internal, and do not appear in
the run. The language of a behavioral program P , denoted
L(P ), is the set of runs of all valid executions of the system.

Note. The above semantics can be extended to support
sensor threads that do not delay the system as they wait for
input, along the lines of [1]. Intuitively, this is performed by
relaxing the prerequisites of event selection transitions, to
no longer require that the sensor threads be synchronized;
the details are omitted. Extending the formalism to fully
support the eager execution mechanism of [1] in the presence
of timeouts is left for future work.

II. REFERENCES
[1] D. Harel, A. Kantor, and G. Katz. Relaxing

Synchronization Constraints in Behavioral Programs.
In Proc. 19th Int. Conf. on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR), pages
355–372, 2013.

[2] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart
Play-Out of Behavioral Requirements. In Proc. 4th Int.

Conf. on Formal Methods in Computer-Aided Design
(FMCAD), pages 378–398, 2002.

[3] D. Harel, H. Kugler, and A. Pnueli. Smart Play-Out
Extended: Time and Forbidden Elements. In Proc. 4th
Int. Conf. on Quality Software (QSIC), pages 2–10,
2004.


