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Abstract—Deep neural networks (DNNs) are increasingly being
employed in safety-critical systems, and there is an urgent need to
guarantee their correctness. Consequently, the verification com-
munity has devised multiple techniques and tools for verifying
DNNs. When DNN verifiers discover an input that triggers an
error, that is easy to confirm; but when they report that no
error exists, there is no way to ensure that the verification
tool itself is not flawed. As multiple errors have already been
observed in DNN verification tools, this calls the applicability
of DNN verification into question. In this work, we present a
novel mechanism for enhancing Simplex-based DNN verifiers
with proof production capabilities: the generation of an easy-to-
check witness of unsatisfiability, which attests to the absence of
errors. Our proof production is based on an efficient adaptation
of the well-known Farkas’ lemma, combined with mechanisms
for handling piecewise-linear functions and numerical precision
errors. As a proof of concept, we implemented our technique on
top of the Marabou DNN verifier. Qur evaluation on a safety-
critical system for airborne collision avoidance shows that proof
production succeeds in almost all cases and requires only minimal
overhead.

I. INTRODUCTION

Machine learning techniques, and specifically deep neural
networks (DNNs), have been achieving groundbreaking re-
sults in solving computationally difficult problems. Nowadays,
DNNs are state-of-the-art tools for performing many safety-
critical tasks in the domains of healthcare [29], aviation [45]
and autonomous driving [19]. DNN training is performed by
adjusting the parameters of a DNN to mimic a highly complex
function over a large set of input-output examples (the training
set) in an automated way that is mostly opaque to humans.

The Achilles heel of DNNs typically lies in generalizing
their predictions from the finite training set to an infinite input
domain. First, DNNs tend to produce unexpected results on
inputs that are considerably different from those in the training
set; and second, the input to the DNN might be perturbed
by sensorial imperfections, or even by a malicious adversary,
again resulting in unexpected and erroneous results. These
weaknesses have already been observed in many modern
DNNs [37], [64], and have even been demonstrated in the
real world [30] — thus hindering the adoption of DNNSs in
safety-critical settings.

In order to bridge this gap, in recent years, the formal
methods community has started devising techniques for DNN
verification (e.g., [2], [11], [13], [31], [32], [40], [41], [53],
[58], [61], [62], [66], [68], [73], among many others). Typi-
cally, DNN verification tools seek to prove that outputs from a
given set of inputs are contained within a safe subspace of the
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output space, using various methods such as SMT solving [1],
[16], [23], abstract interpretation [32], MILP solving [65], and
combinations thereof. Notably, many modern approaches [50],
[53], [55], [65] involve a search procedure, in which the
verification problem is regarded as a set of constraints. Then,
various input assignments to the DNN are considered in order
to discover a counter-example that satisfies these constraints,
or to prove that no such counter-example exists.

Verification tools are known to be as prone to errors as
any other program [44], [72]. Moreover, the search procedures
applied as part of DNN verification typically involve the
repeated manipulation of a large number of floating-point
equations; this can lead to rounding errors and numerical
stability issues, which in turn could potentially compromise
the verifier’s soundness [12], [44]. When the verifier discovers
a counter-example, this issue is perhaps less crucial, as the
counter-example can be checked by evaluating the DNN; but
when the verifier determines that no counter-example exists,
this conclusion is typically not accompanied by a witness of
its correctness.

In this work, we present a novel proof-production mech-
anism for a broad family of search-based DNN verification
algorithms. Whenever the search procedure returns UNSAT
(indicating that no counter-example exists), our mechanism
produces a proof certificate that can be readily checked using
simple, external checkers. The proof certificate is produced
using a constructive version of Farkas’ lemma, which guaran-
tees the existence of a witness to the unsatisfiability of a set
of linear equations — combined with additional constructs
to support the non-linear components of a DNN, i.e., its
piecewise-linear activation functions. We show how to instru-
ment the verification algorithm in order to keep track of its
search steps, and use that information to construct the proof
with only a small overhead.

For evaluation purposes, we implemented our proof-
production technique on top of the Marabou DNN verifier [50].
We then evaluated our technique on the ACAS Xu set of
benchmarks for airborne collision avoidance [46], [48]. Our
approach was able to produce proof certificates for the safety
of various ACAS Xu properties with reasonable overhead
(5.7% on average). Checking the proof certificates produced
by our approach was usually considerably faster than dispatch-
ing the original verification query.

The main contribution of our paper is in proposing a
proof-production mechanism for search-based DNN verifiers,
which can substantially increase their reliability when de-
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termining unsatisfiability. However, it also lays a foundation
for a conflict-driven clause learning (CDCL) [74] verification
scheme for DNNs, which might significantly improve the
performance of search-based procedures (see discussion in
Sec. IX).

The rest of this paper is organized as follows. In Sec. II
we provide relevant background on DNNs, formal verification,
the Simplex algorithm, and on using Simplex for search-based
DNN verification. In Sec. III, IV and V, we describe the proof-
production mechanism for Simplex and its extension to DNN
verification. Next, in Sec. VI, we briefly discuss complexity-
theoretical aspects of the proof production. Sec. VII details our
implementation of the technique and its evaluation. We then
discuss related work in Sec. VIII and conclude with Sec. IX.

II. BACKGROUND

Deep Neural Networks. Deep neural networks (DNNs) [36]
are directed graphs, whose nodes (neurons) are organized into
layers. Nodes in the first layer, called the input layer, are
assigned values based on the input to the DNN; and then
the values of nodes in each of the subsequent layers are
computed as functions of the values assigned to neurons in
the preceding layer. More specifically, each node value is
computed by first applying an affine transformation to the
values from the preceding layer and then applying a non-linear
activation function to the result. The final (output) layer, which
corresponds to the output of the network, is computed without
applying an activation function.

One of the most common activation functions is the rectified
linear unit (ReLLU), which is defined as:

b b>0
0 otherwise.

f(b) = ReLU(b) = {

When b > 0, we say that the ReLU is in the active phase;
otherwise, we say it is in the inactive phase. For simplicity,
we restrict our attention here to ReLUs, although our approach
could be applied to other piecewise-linear functions (such as
max pooling, absolute value, sign, etc.). Non piecewise-linear
functions, such as as sigmoid or tanh, are left for future work.

Formally, a DNN NV : R™ — RF, is a sequence of n layers
Lo, ..., L,_1 where each layer L; consists of s; € N nodes,
denoted v}, ...,v]". The assignment for the 4" node in the
1 <7 < n—1 layer is computed as

Si—1
vg = ReLU (Zwi»j»l -le +p¥>
=1
and neurons in the output layer are computed as:
Sn—2
vy = an—lu‘,l P
=1
where w; ;; and pg are (respectively) the predetermined
weights and biases of \. We set sg = m and treat vy, ..., v
as the input of V.
A simple DNN with four layers appears in Fig. 1. For
simplicity, the p! parameters are all set to zero and are ignored.
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Fig. 1: A toy DNN.

For input (1,2), the node in the second layer evaluates to
ReLU(1-1 + 2-(—1)) = ReLU(—1) = 0; the node in the
third layer evaluates to ReLU(0 - (—2)) = 0; and the node in
the fourth (output) layer evaluates to 0 -1 = 0.

DNN Verification and Proofs. Given a DNN AV : R™ — R¥
and a property P : R™*% — [T F}, the DNN verification
problem is to decide whether there exist z € R™ and y € RF
such that (N (x) = y)AP(z,y) holds. If such = and y exist, we
say that the verification query (N, P) is satisfiable (SAT); and
otherwise, we say that it is unsatisfiable (UNSAT). For exam-
ple, given the toy DNN from Fig. 1, we can define a property
P: P(z,y) < (xz € [2,3] x [-1,1]) A (y € [0.25,0.5]). Here,
P expresses the existence of an input x € [2, 3] x [—1, 1] that
produces an output y € [0.25,0.5]. Later on, we will prove
that no such x exists, i.e., the verification query (N, P) is
UNSAT.

Typically, P represents the negation of a desired property,
and so an input xz which satisfies the query is a counter-
example — whereas the query’s unsatisfiability indicates that
the property holds. In this work, we follow mainstream DNN
verification research [53], [68] and focus on properties P that
are a conjunction of linear lower- and upper-bound constraints
on the neurons of x and y. It has been shown that even
for such simple properties, and for DNNs that use only the
ReLU activation function, the verification problem is NP-
complete [48].

A proof is a mathematical object that certifies a mathemat-
ical statement. In case a DNN verification query is SAT, the
input x for which P holds constitutes a proof of the query’s
satisfiability. Our goal here is to generate proofs also for the
UNSAT case, which, to the best of our knowledge, is a feature
that no DNN verifier currently supports [12].

Verifying DNNs via Linear Programming. Linear Program-
ming (LP) [22] is the problem of optimizing a linear function
over a given convex polytope. An LP instance over variables
V = [x1,...,2,])7 € R" contains an objective function ¢ -V
to be maximized, subject to the constraints A -V = b for
some A € My,xn(R),b € R™, and [ < V < u for some
l,u € (RU{%o00})™. Throughout the paper, we use I(z;) and
u(x;), to refer to the lower and upper bounds (respectively)
of z;. LP solving can also be used to check the satisfiability
of constraints of the form (A-V =b) A (I <V < ).

The Simplex algorithm [22] is a widely used technique
for solving LP instances. It begins by creating a tableau,
which is equivalent to the original set of equations AV = b.
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Next, Simplex selects a certain subset of the variables, 5 C

{x1,...,2,}, to act as the basic variables; and the tableau

is considered as representing each basic variable x; € B as

a linear combination of non-basic variables, x; > Cj - Tj.
jgB

We use A; ; to denote the coefficient of a variable x; in the
tableau row that corresponds to basic variable x;. Apart from
the tableau, Simplex also maintains a variable assignment that
satisfies the equations of A, but which may temporarily violate
the bound constraints | < V < w. The assignment for a
variable x; is denoted a(z;).

After initialization, Simplex begins searching for an as-
signment that simultaneously satisfies both the tableau and
bound constraints. This is done by manipulating the set B,
each time swapping a basic and a non-basic variable. This
alters the equations of A by adding multiples of equations
to other equations, and allows the algorithm to explore new
assignments. The algorithm can terminate with a SAT answer
when a satisfying assignment is discovered or an UNSAT
answer when: (i) a variable has contradicting bounds, i.e.,
I(xz;) > wu(x;); or (ii) one of the tableau equations z;
> ¢j - x; implies that ; can never satisfy its bounds. The
i¢B
Jsgimplex algorithm is sound, and is also complete if certain
heuristics are used for selecting the manipulations of B [22].
A detailed calculus for the version of Simplex that we use
appears in the extended version of this paper [42].

LP solving is particularly useful in the context of DNN
verification, and is used by almost all modern tools (either na-
tively [48], or by invoking external solvers such as GLPK [54]
or Gurobi [39]). More specifically, a DNN verification query
can be regarded as an LP instance with bounded variables
that represents the property P and the affine transformations
within A/, combined with a set of piecewise-linear constraints
that represent the activation functions. We demonstrate this
with an example, and then explain how this formulation can
be solved.

Recall the toy DNN from Fig. 1, and property P that is
used for checking whether there exists an input z in the range
[2,3] x [—1, 1] for which N produces an output y in the range
[0.25,0.5]. We use by, f1 to denote the input and output to
node v1; bo, fo for the input and output of vo; z1 and x5 to
denote the network’s inputs, and y to denote the network’s
output. The linear constraints of the network yield the linear
equations by = x7 — x9, by = —2f1, and y = fo (which
we name e', e?, and 3, respectively). The restrictions on the
network’s input and output are translated to lower and upper
bounds: 2 < x7 <3, —1 < x5 < 1,0.25 <y <0.5. The third
equation implies that 0.25 < fy < 0.5, which in turn implies
that b, < 0.5. Assume we also restrict: —0.5 < by, —0.5 <
b1 <0.5, 0 < f1 <0.5,. Together, these constraints give rise
to the linear program that appears in Fig. 2. The remaining
ReLU constraints, i.e. f; = ReLU(b;) for i € {1,2}, exist
alongside the LP instance. Together, query ¢ is equivalent to
the DNN verification problem that we are trying to solve.

Using this formulation, the verification problem can be
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Fig. 2: An example of a DNN verification query , comprised
of an LP instance and piecewise-linear constraints.

solved using Simplex, enhanced with a case-splitting approach
for handling the ReLU constraints [17], [48]. Intuitively, we
first invoke the LP solver on the LP portion of the query; and
if it returns UNSAT, the whole query is UNSAT. Otherwise,
if it finds a satisfying assignment, we check whether this
assignment also satisfies the ReLU constraints. If it does,
then the whole query is SAT. Otherwise, case splitting is
applied in order to split the query into two different sub-
queries, according to the two phases of the ReLU function.’
Specifically, in one of the sub-queries, the LP query is adjusted
to enforce the ReLU to be in the active phase: the equation
f = b is added, along with the bound b > 0. In the other sub-
query, the inactive phase is enforced: b < 0,0 < f < 0. This
effectively reduces the ReLU constraint into linear constraints
in each sub-query. This process is then repeated for each of
the two sub-queries.

Case-splitting turns the verification procedure into a search
tree [48], with nodes corresponding to the splits that were ap-
plied. The tree is constructed iteratively, with Simplex invoked
on every node to try and derive UNSAT or find a true satisfying
assignment. If Simplex is able to deduce that all leaves in
the search tree are UNSAT, then so is the original query.
Otherwise, it will eventually find a satisfying assignment that
also satisfies the original query. This process is sound, and
will always terminate if appropriate splitting strategies are
used [22], [48]. Unfortunately, the size of the search tree
can be exponential in the number of ReLLU constraints; and
so in order to keep the search tree small, case splitting is
applied as little as possible, according to various heuristics that
change from tool to tool [55], [62], [68]. In order to reduce
the number of splits even further, verification algorithms apply
clever deduction techniques for discovering tighter variable
bounds, which may in turn rule out some of the splits a-priori.
‘We also discuss this kind of deduction, which we refer to as
dynamic bound tightening, in the following sections.

IT1I. PROOF PRODUCTION OVERVIEW
A Simplex-based verification process of a DNN is tree-
shaped, and so we propose to generate a proof tree to match

I'The approach is easily generalizable to any piecewise-linear constraint, by
splitting the query according to the different linear pieces of the activation
function.



it. Within the proof tree, internal nodes will correspond to
case splits, whereas each leaf node will contain a proof of
unsatisfiability based on all splits performed on the path
between itself and the root. Thus, a proof tree constitutes a
valid proof of unsatisfiability if each of its leaves contains
a proof that demonstrates that all splits so far lead to a
contradiction. The proof tree might also include proofs for
lemmas, which are valid statements for the node in which they
reside and its descendants (lemmas are needed for supporting
bound tightening, as we discuss later).

As a simple, intuitive example, we depict in Fig. 3 a proof
of unsatisfiability for the query ¢ from Fig. 2. The root of
the proof tree represents the initial verification query, which
is comprised of LP constraints and ReLU constraints. The
fact that this node is not a leaf indicates that the Simplex-
based verifier was unable to conclude UNSAT in this state,
and needed to perform a case split on the ReLU node v;. The
left child of the root corresponds to the case where ReLU v is
inactive: the LP is augmented with additional constraints that
represent the case split, i.e., f; = 0 and b; < 0. This new fact
may now be used by the Simplex procedure, which is indeed
able to obtain an UNSAT result. The node then contains a proof
of this unsatisfiability: [~1 0 0]. This vector instructs the
checker how to construct a linear combination of the current
tableau’s rows, in a way that leads to a bound contradiction,
as we later explain in Sec. V.

. . ® .
V1 1nactive vy active

(fl—O A (b £0) @A (f1 =b1) A(bs >0)

-1 0 o0
Vo inactive vy active

@A (fi=b1)A (b1 >0) @A (fi =b1) A (by >0)
A(f2 = 0) A (b2 < 0) A(f2 = b2) A (b2 = 0)

fo [-2 1 0 =2 0]

Fig. 3: A proof tree example.

In the right child of the root, which represents v;’s active
phase, the constraints f; = b; and b; > 0 are added by the
split. This node is not a leaf, because the verifier performed a
second case split, this time on ve. The left child represents
v2’s inactive phase, and has the corresponding constraints
fo = 0 and by < 0. This child is a leaf, and is marked
with fo, indicating that f, is a variable whose bounds led
to a contradiction. Specifically, fo > 0.25 from ¢ and f3 =0
from the case split are contradictory.

The last node (the rightmost leaf) represents wvo’s active
phase, and has the constraints fo by and by > 0. Here,
the node indicates that a contradiction can be reached from
the current tableau, using the vector [—2 1 0 -2 O}T.
In Sec. IV, we explain how this process works.

Because each leaf of the proof tree contains a proof of
unsatisfiability, the tree itself proves that the original query
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is UNSAT. Note that many other proof trees may exist for
the same query. In the following sections, we explain how to
instrument a Simplex-based verifier in order to extract such
proof trees from the solver execution.

IV. SIMPLEX WITH PROOFS
A. Producing proofs for LP

We now describe our approach for creating proof trees,
beginning with leaf nodes. We start with the following lemma:

Lemma 1. If Simplex returns UNSAT, then there exists a
variable with contradicting bounds; that is, there exists a
variable x; € V with lower and upper bounds I(x;) and u(z;),
for which Simplex has discovered that 1(z;) > u(x;).

This lemma justifies our choice of using contradicting
bounds as proofs of unsatisfiability in the leaves of the proof
tree. The lemma follows directly from the derivation rules
of Simplex. Specifically, there are only two ways to reach
UNSAT: when the input problem already contains inconsistent
bounds I(x;) > u(x;), or when Simplex finds a tableau row

x; = Y. c¢;-x; that gives rise to such inconsistent bounds.
J¢B

The complete proof appears in the extended version of this

paper [42].

We demonstrate this with an example, based on the query ¢
from Fig. 2. Suppose that, as part of its Simplex-based solution
process, a DNN verifier performs two case splits, fixing the
two ReLUs to their active states: f; = by Aby > 0 and fo =
baAby > 0. This gives rise to the following (slightly simplified)
system of equations:

bi=z1—x2 bo=-2fi y=fp fi=b fa=b
Which corresponds to the tableau and variables
1T
1 -1 -1 0 0 O O o
o o 0 -1 -2 0 0 b1
A=10 0 O 0 O 1 -1 V= 1|b
0o 0o 1 0 -1 0 O fi
o o 0 1 0 -1 0 fa
LY

such that AV = 0, with the corresponding bound vectors:

=2 -1 0 0 0 025 025
u=[3 1 05 05 05 05 05]

Then, the Simplex solver iteratively alters the set of basic
variables, which corresponds to multiplying various equations
by scalars and summing them to obtain new equations. At
some point, the equation by = —2x; + 2x, is obtained (by
computing [—2 1 0 -2 O]T - A-V), with a current
assignment of (V)T=1[2 1 1 -2 1 -2 -2].

At this point, the Simplex solver halts with an UNSAT
notice. The reason is that by is currently assigned the value
—2, which is below its lower bound of 0, and so its value
needs to be increased. However, the equation, combined with
the fact that x; is pressed against its lower bound, while zs is



pressed against its upper bound, indicates that there is no slack
remaining in order to increase the value of bo (this corresponds
to the Failure; rule in the Simplex calculus described in the
extended version of this paper [42]). The key point is that the
same equation could be used in deducing a tighter bound for
bQZ

and a contradiction could then be obtained based on the
contradictory facts 0 = I(by) < by < —2. In other words, and
as we formally prove in the extended version of this paper [42],
any UNSAT answer returned by Simplex can be regarded as a
case of conflicting lower and upper bounds.

Given Lemma 1, our goal is to instrument the Simplex
procedure so that whenever it returns UNSAT, we are able to
produce a proof which indicates that [(xz;) > u(x;) for some
variable x;. To this end, we introduce the following adaptation
of Farkas’ Lemma [67] to the Simplex setting, which states
that a linear-sized proof of this fact exists.

Lemma 2. Given the constraints A-V =0and | <V < u,
where A € My, xn(R) and 1, V,u € R"™, exactly one of these
two options holds:

1) The SAT case: 3V € R™ such that A-V =0 and | <
V <.

2) The UNSAT case: Jw € R™ such that for all | <V < u,
wT-A-V <0, whereas 0 - w = 0. Thus, w is a proof of
the constraints’ unsatisfiability.

Moreover, these vectors can be constructed during the run of
the Simplex algorithm.

This Lemma is actually a corollary of Theorem 3, which we
introduce later. For a complete proof, see the extended version
of this paper [42].

In our previous, UNSAT example, one possible vector is
w = [—2 1 0 -2 O]T. Indeed, w- A -V = 0 gives us
the equation —2z; + 2z9 — by = 0. Given the lower and upper
bounds for the participating variables, the largest value that
the left-hand side of the equation can obtain is:

—2[(%1) + 2u(x2) — l(bg)

-2-242-1-0=-2<0

Therefore, no variable assignment within the stated bounds can
satisfy the equation, indicating that the constraints are UNSAT.

Given Lemma 2, all that remains is to instrument the
Simplex solver in order to produce the proof vector w on
the fly, whenever a contradiction is detected. In case a trivial
contradiction I(x;) > w(x;) is given as part of the input
query for some variable x;, we simply return “z;” as the
proof (we later discuss also how to handle this case in the
presence of dynamic bound tightenings). Otherwise, a non-
trivial contradiction is detected as a result of an equation
e = x; = Y. cj-x;, which contradicts one of the input

B

i¢
bounds of z;. In this case, no assignment can satisfy the
equivalent equation ) ¢; - x; — x; = 0. Since the Simplex
j¢B
algorithm applies only linear operations to the input tableau,
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e is given by a linear combination of the original tableau rows.
Let coef (€) denote the Farkas vector of the equation e, i.e., the
column vector such that coef(e)T - A = e, and which proves
unsatisfiability in this case. Our framework simply keeps track,
for each row of the tableau, of its coefficient vector; and if that
row leads to a contradiction, the vector is returned.

B. Supporting dynamic bound tightening

So far, we have only considered Simplex executions that do
not perform any bound tightening steps; i.e., derive UNSAT
by finding a contradiction to the original bounds. However, in
practice, modern DNN solvers perform a great deal of dynamic
bound tightening, and so this needs to be reflected in the proof.

We use the term ground bounds to refer to variable bounds
that are part of the LP being solved, whether they were
introduced by the original input, or by successive case splits,
as we will explain in Sec. V. This is opposed to dynamic
bounds, which are bounds introduced on the fly, via bound
tightening. The ground bounds, denoted [,u € R", are used
in explaining dynamic bounds, denoted I’,u’ € R™, via Farkas
vectors.

For simplicity, we consider here a simple and popular
version of bound tightening, called interval propagation [25],

[48]. Given an equation z; > ¢; - «; and current bounds
i¢B
I'(x) and ' (z) for each of the variables (whether these are the

ground bounds or dynamically tightened bounds themselves),
a new upper bound for x; can be derived:

W)= Y o)+ Y e llay) (D)

z;¢€B8, c; >0 z;¢B, c; <0

(provided that the new bound is tighter, i.e., smaller, than the
current upper bound for z;). A symmetrical version exists for
discovering lower bounds.

A naive approach for handling bound tightening is to store,
each time a new bound is discovered, a separate proof that
justifies it; for example, a Farkas vector for deriving the
equation that was used in the bound tightening. However,
a Simplex execution can include many thousands of bound
tightenings — and so doing this would strain resources. Even
worse, many of the intermediate bound tightenings might not
even participate in deriving the final contradiction, and so
storing them would be a waste.

In order to circumvent this issue, we propose a scheme in
which we store, for each variable in the query, a single column
vector that justifies its current lower bound, and another for its
current upper bound. Whenever a tighter bound is dynamically
discovered, the corresponding vector is updated; and even if
other, previously discovered dynamic bounds were used in the
derivation, the vector that we store indicates how the same
bound can be derived using the ground bounds. Thus, the proof
of the tightened bounds remains compact, regardless of the
number of derived bounds; specifically, it requires only O(n -
m) space overall. Formally, we have the following result:

Theorem 3. Let A-V = 0 such that | <V < u be an LP
instance, where A € M« (R) and 1,V,u € R™.



Let v/l € R™ represent dynamically tightened bounds of
V. Then Vi € [n] 3fu (i), fi(z;) € R™ such that f,(x;)T-A
and fi(x;)T- A can be used to efficiently compute v’ (z;),1’ (x;)
from | and u. Moreover, vectors f,(z;) and fi(x;) can be
constructed during the run of the Simplex algorithm.

When a Simplex procedure with bound tightening reaches
an UNSAT answer, it has discovered a variable z; with
U'(z;) > u'(x;). The theorem guarantees that in this case we
have two column vectors, f,(z;) and fi(z;), which explain
how u'(z;) and I’(x;) were discovered. We refer to these
vectors as the Farkas vectors of the upper and lower bounds of
x;, respectively. Because u'(x;)—U'(z;) is negative, the column
vector w = fy(x;) — fi(x;) creates a tableau row which is
always negative, making w € R™ a proof of unsatisfiability.
The formal, constructive proof of the theorem appears in the
extended version of this paper [42].

In order to maintain f,(x;) and f;(x;) during the execution
of Simplex, whenever a tigher upper bound is tightened using
Eq. 1, we update the matching Farkas vector:

ST ful)+ Y e filag) + coef(e),

j#i,c; >0 ji,c5<0

where e is the linear equation used for tightening, and coef (e)
is the column vector such that coef(e)T - A = e. The lower
bound case is symmetrical. To demonstrate the procedure,
consider again the verification query from Fig. 2. Assume
the phases of vi,vs have both been set to active, and that
consequently two new equations have been added: e¢* : f; =
by, €° fo bs. In this example, we have five linear
equations, so we initialize a zero vector of size five for each of
the variable bounds. Now, suppose Simplex tightens the lower
bound of b; using the first equation e':

U'(b) :=1l(z1) —u(re) =2—-1=1

and thus we update

filbr) = fi(x) = fuly) + coef(e')
=[0 0 0 0 0]"+[0 0 0 0 0]
+[1 0 0 0 0]
=[1 0 0 0 0

since all f; and f, vectors have been initialized to 0 and
coef(e) =1 0 0 0 O]T — which indicates that e is
simply the first row of the tableau.
We can now tighten bounds again, using the fourth row
f1 =01, and get I'(f1) :=U'(by) = 1. We update f;(f1):
fi(£1) = fu(br) + coef (')
=[1 00 0 0"+[0 00 1 0]
=[1 00 1 0]
To see that the Farkas vector can indeed explain the dy-
namically tightened bound, observe that the combination

[1 0 0 1 0] of tableau rows gives the equation f;
21 — x2. We can then tighten the lower bound of f;, using the
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ground bounds: I'(f1) := l(x1) — u(ze) = 2 —1 = 1. This
bound matches the one that we had discovered dynamically,
though we derived it using ground bounds only.

V. DNN VERIFICATION WITH PROOFS
A. Producing a proof-tree

We now discuss how to leverage the results of Sec. IV
in order to produce the entire proof tree for an UNSAT
DNN verification query. Recall that the main challenge lies in
accounting for the piecewise-linear constraints, which affect
the solving process by introducing case-splits.

Each case split performed by the solver introduces a branch-
ing in the proof tree — with a new child node for each of the
linear phases of the constraint being split on — and introduces
new equations and bounds. In the case of ReLU, one child
node represents the active branch, through the equation f = b
and bound b > 0; and another represents the inactive branch,
with b < 0 and 0 < f < 0. These new bounds become
the ground bounds for this node: their Farkas vectors are
reset to zero, and all subsequent Farkas vectors refer to these
new bounds (as opposed to the ground bounds of the parent
node). A new node inherits any previously-discovered dynamic
bounds, as well as the Farkas vectors that explain them, from
its parent; these vectors remain valid, as ground bounds only
become tighter as a result of splitting (see the extended version
of this paper [42]).

For example, let us return to the query from Fig. 2 and the
proof tree from Fig. 3. Initially, the solver decides to split on
v1. This adds two new children to the proof tree. In the first
child, representing the inactive case, we update the ground
bounds u(by) := 0, u(f1) := 0, and reset the corresponding
Farkas vectors f,(b;) and f,(f1) to 0. Now, Simplex can
tighten the lower bound of b; using the first equation e':

() :=1l(z1) —u(xe) =2—-1=1

resulting in the the updated f;(b1) = [1 0 0] T, as shown in
Sec. IV, where we use vectors of size three since in this search
state we have three equations. Observe this bound contradicts
the upper ground bound of by, represented by the zero vector.
We can then use the vector

fubr) = filbr)=0—1[1 0 0]T=[-1 0 0]

as a proof for contradiction. Indeed, the matrix A’, which is
obtained using the first three rows and columns of A as defined
in Sec. III, corresponds to the tableau before adding any new
equations. Observe that [-1 0 0]"-A’-V = 0 gives the
equation —x1 +x2+b; = 0. Given the current ground bounds,
the largest value of the left-hand side is:

—l(z1) +u(ze) +ulby) =-2+1+0=-1

which is negative, meaning that no variable assignment within
these bounds can satisfy the equation. This indicates that the
proof node representing v;’s inactive phase is UNSAT.

In the second child, representing v;’s active case, we update
the ground bound /(b;) := 0 and the Farkas vector f;(b1) := 0.



We also add the equation e* © fi = by. Next, the solver
performs another split on vy, adding two new children to the
tree. In the first one (representing the inactive case) we update
the ground bounds wu(b2) := 0, u(fz) := 0, and reset the
corresponding Farkas vectors f,(b2) and f,,(f2) to 0. In this
node, we have a contradiction already in the ground bounds,
since u(f2) := 0 but I(f2) := 0.25. The contradiction in this
case is comprised of a symbol for fs.

We are left with proving UNSAT for the last child, repre-
senting the case where both ReLU nodes vy, vs are active.
For this node of the proof tree, we update the ground bound
I(b2) := 0 and Farkas vector f;(bz) := 0, and add the equation
e® : fy = bo. Recall that previously, we learned the tighter
bound !'(f;) = 1. With the same procedure as described in
Sec. IV, we can update f;(f1) = [1 0 0 1 O]T. Now, we
can use €2 : by = —2f) to tighten u/(bg) := —2U'(f1) = -2,
and consequently update the Farkas vector:

Fulba) = =2+ fi(fr) + coef (¢?)
=-2-[1 00 1 0ff+[0 1 0 0 0
=[-2 10 -2 0

The bound w/(bo) = —2, explained by [-2 1 0 -2 0]
contradicts the ground bound /(bs) = 0 explained by the zero

vector. Therefore, we get the vector

-2 10 -2 0]"-0=[-2 1 0 -2 0]
as the proof of contradiction for this node.

B. Bound tightenings from piecewise-linear constraints

Modern solvers often use sophisticated methods [25], [50],
[62] to tighten variable bounds using the piecewise-linear
constraints. For example, if f = ReLU(b), then in particular
b < f, and so u(b) < u(f). Thus, if initially u(b) = u(f) =7
and it is later discovered that u'(f) = 5, we can deduce that
also u/(b) = 5. We show here how such tightening can be
supported by our proof framework, focusing on some ReLU
tightening rules as specified in the extended version of this
paper [42]. Supporting additional rules should be similar.

We distinguish between two kinds of ReLU bound tight-
enings. The first are tightenings that can be explained via
a Farkas vector; these are handled the same way as bounds
discovered using interval propagation. The second, more com-
plex tightenings are those that cannot be explained using an
equation (and thus a Farkas vector). Instead, we treat these
bound tightenings as lemmas, which are added to the proof
node along with their respective proofs; and the bounds that
they tighten are introduced as ground bounds, to be used in
constructing future Farkas vectors. The proof for a lemma
consists of Farkas vectors explaining any current bounds that
were used in deducing it; as well as an indication of the
tightening rule that was used. The list of allowed tightening
rules must be agreed upon beforehand and provided to the
checker; in the extended version of this paper [42], we present
the tightening rules for ReLLUs that we currently support.
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For example, if f = ReLU(b) and u'(f) = 5 causes a
bound tightening u'(b) = 5, then this new bound u/(b) = 5
is stored as a lemma. Its proof consists of the Farkas vector
fu(f) which explains why «'(f) = 5, and an indication of the
deduction rule that was used (in this case, u'(b) < u/(f)).

VI. PROOF CHECKING AND NUMERICAL STABILITY

Checking the validity of a proof tree is straightforward.
First, the checker must read the initial query and confirm that
it is consistent with the LP and piecewise-linear constraints
stored at the root of the tree. Next, the checker begins a
depth-first traversal of the proof tree. Whenever it reaches
a new inner node, it must confirm that that node’s children
correspond to the linear phases of a piecewise-linear constraint
present in the query. Further, the checker must maintain a
list of current equations and lower and upper bounds, and
whenever a new node is visited — update these lists (i.e., add
equations and tighten bounds as needed), to reflect the LP
stored in that node. Additionally, the checker must confirm
the validity of lemmas that appear in the node — specifically,
to confirm that they adhere to one of the permitted derivation
rules. Finally, when a leaf node is visited, the checker must
confirm that the Farkas vector stored therein does indeed lead
to a contradiction when applied to the current LP — by
ensuring that the linear combination of rows created by the
Farkas vector leads to a matrix row » ¢j - x; = 0, such that
for any assignment of the variables, the left-hand side will
have a negative value.

The process of checking a proof certificate is thus much
simpler than verifying a DNN using modern approaches,
as it consists primarily of traversing a tree and computing
linear combinations of the tableau’s columns. Furthermore, the
proof checking process does not require using division for its
arithmetic computations, thus making the checking program
more stable arithmetically [44]. Consequently, we propose
to treat the checker as a trusted code-base, as is commonly
done [15], [49].

Complexity and Proof Size. Proving that a DNN verifi-
cation query is SAT (by providing a satisfying assignment)
is significantly easier than discovering an UNSAT witness
using our technique. Indeed, this is not surprising; recall that
the DNN verification problem is NP-complete, and that yes-
instances of NP problems have polynomial-size witnesses (i.e.,
polynomial-size proofs). Discovering a way to similarly pro-
duce polynomial proofs for no-instances of DNN verification
is equivalent to proving that NP = coNP, which is a major
open problem [8] and might, of course, be impossible.

Numerical Stability. Recall that enhancing DNN verifiers
with proof production is needed in part because they might
produce incorrect UNSAT results due to numerical instability.
When this happens, the proof checking will fail when checking
a proof leaf, and the user will receive warning. There are,
however, cases where the query is UNSAT, but only the proof
produced by the verifier is flawed. To recover from these cases



and correct the proof, we propose to use an external SMT
solver to re-solve the query stored in the leaf in question.

SMT solvers typically use sound arithmetic (as opposed to
DNN verifiers), and so their conclusions are generally more
reliable. Further, if a proof-producing SMT solver is used,
the proof that it produces could be plugged into the larger
proof tree, instead of the incorrect proof previously discovered.
Although using SMT solvers to directly verify DNNs has been
shown to be highly ineffective [48], [59], in our evaluation
we observed that leaves typically represented problems that
were significantly simpler than the original query, and could
be solved efficiently by the SMT solver.

VII. IMPLEMENTATION AND EVALUATION

Implementation. For evaluation purposes, we instrumented
the Marabou DNN verifier [50], [69] with proof production
capabilities. Marabou is a state-of-the-art DNN verifier, which
uses a native Simplex solver, and combines it with other
modern techniques — such as abstraction and abstract inter-
pretation [26], [27], [57], [62], [68], [71], advanced splitting
heuristics [70], DNN optimization [63], and support for varied
activation functions [6]. Additionally, Marabou has been ap-
plied to a variety of verification-based tasks, such as verifying
recurrent networks [43] and DRL-based systems [3], [5], [28],
[51], network repair [34], [60], network simplification [33],
[52], and ensemble selection [4].

As part of our enhancements to Marabou’s Simplex core,
we added a mechanism that stores, for each variable, the
current Farkas vectors that explain its bounds. These vectors
are updated with each Simplex iteration in which the tableau
is altered. Additionally, we instrumented some of Marabou’s
Simplex bound propagation mechanisms — specifically, those
that perform interval-based bound tightening on individual
rows [25], to record for each tighter bound the Farkas vector
that justifies it. Thus, whenever the Simplex core declares
UNSAT as a result of conflicting bounds, the proof infrastruc-
ture is able to collect all relevant components for creating the
certificate for that particular leaf in the proof tree. Due to time
restrictions, we were not able to instrument all of Marabou’s
many bound propagation components; this is ongoing work,
and our experiments described below were run with yet-
unsupported components turned off. The only exception is
Marabou’s preprocessing component, which is not supported,
but is run before proof production starts.

In order to keep track of Marabou’s tree-like search, we
instrumented Marabou’s SmtCore class, which is in charge of
case splitting and backtracking [50]. Whenever a case-split
was performed, the corresponding equations and bounds were
added to the proof tree as ground truths; and whenever a
previous split was popped, our data structures would backtrack
as well, returning to the previous ground bounds.

In addition to the instrumentation of Marabou, we also
wrote a simple proof checker that receives a query and a proof
artifact — and then checks, based on this artifact, that the
query is indeed UNSAT. That checker also interfaces with the
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cveS SMT solver [14] for attempting recovery from numerical
instability errors.

Evaluation. We used our proof-producing version of Marabou
to solve queries on the ACAS-Xu family of benchmarks for
airborne collision avoidance [45]. We argue that the safety-
critical nature of this system makes it a prime candidate for
proof production. Our set of benchmarks was thus comprised
of 45 networks and 4 properties to test on each, producing a
total of 180 verification queries. Marabou returned an UNSAT
result on 113 of these queries, and so we focus on them. In the
future, we intend to evaluate our proof-production mechanism
on other benchmarks as well.

We set out to evaluate our proof production mechanism
along 3 axes: (i) correctness: how often was the checker able
to verify the proof artifact, and how often did Marabou (prob-
ably due to numerical instability issues) produce incorrect
proofs?; (ii) overhead: by how much did Marabou’s runtime
increase due to the added overhead of proof production?; and
(iii) checking time: how long did it take to check the produced
proofs? Below we address each of these questions.

Correctness. Over 1.46 million proof-tree leaves were cre-
ated and checked as part of our experiments. Of these,
proof checking failed for only 77 leaves, meaning that the
Farkas vector written in the proof-tree leaf did not allow
the proof checker to deduce a contradiction. Out of the 113
queries checked, 97 had all their proof-tree leaves checked
successfully. As for the rest, typically only a tiny number
of leaves would fail per query, but we did identify a single
query where a significant number of proofs failed to check
(see Fig. 4). We speculate that this query had some intrinsic
numerical issues encoded into it (e.g., equations with very
small coefficients [20]).

120
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40
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Number of leaves with incorrect proof
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Fig. 4: Number of queries per number of leaves with incorrect
proofs.

Next, when we encoded each of the 77 leaves as a query
to the cveS5 SMT solver [14], it was able to show that all
queries were indeed UNSAT, in under 20 seconds per query.
From this we learn that although some of the proof certificates
produced by Marabou were incorrect, the ultimate UNSAT
result was correct. Further, it is interesting to note how quickly
each of the queries could be solved. This gives rise to an
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interesting verification strategy: use modern DNN verifiers to
do the “heavy-lifting”, and then use more precise SMT solvers
specifically on small components of the query that proved
difficult to solve accurately.

Overhead and Checking Time. In Fig. 5, we compare the
running time of vanilla Marabou, the overhead incurred by
our proof-production extension to Marabou, and the checking
time of the resulting proof certificates. We can see that the
overhead of proof production time is relatively small for all
queries (an average overhead of 5.7%), while the certification
time is non-negligible, but shorter than the time it takes to
solve the queries by a factor of 66.5% on average.

VIII. RELATED WORK

The importance of proof production in verifiers has been
repeatedly recognized, for example by the SAT, SMT, and
model-checking communities (e.g., [15], [21], [38]). Although
the risks posed by numerical imprecision within DNN verifiers
have been raised repeatedly [12], [44], [48], [47], we are
unaware of any existing proof-producing DNN verifiers.

Proof production for various Simplex variants has been
studied previously [56]. In [24], Dutertre and de Moura study a
Simplex variant similar to ours, but without explicit support for
dynamic bound tightening. Techniques for producing Farkas
vectors have also been studied [10], but again without support
for dynamic bound tightening, which is crucial in DNN
verification. Other uses of Farkas vectors, specifically in the
context of interpolants, have also been explored [9], [18].

Other frameworks for proof production for machine learning
have also been proposed [7], [35]; but these frameworks are
interactive, unlike the automated mechanism we present here.

IX. CONCLUSION AND FUTURE WORK

We presented a novel framework for producing proofs of un-
satisfiability for Simplex-based DNN verifiers. Our framework
constructs a proof tree that contains lemma proofs in internal
nodes and unsatisfiability proofs in each leaf. The certificates
of unsatisfiability that we provide can increase the reliability of
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DNN verification, particularly when floating-point arithmetic
(which is susceptible to numerical instability) is used.

We plan to continue this work along two orthogonal paths:
(i) extend our mechanism to support additional steps per-
formed in modern verifiers, such as preprocessing and addi-
tional abstract interpretation steps [53], [62]; and (ii) use our
infrastructure to allow learning succinct conflict clauses. Dur-
ing search, the Farkas vectors produced by our approach could
be used to generate conflict clauses on-the-fly. Intuitively,
conflict clauses guide the verification algorithm to avoid any
future search for a satisfying assignment within subspaces of
the search space already proven to be UNSAT. Such clauses
are a key component in modern SAT and SMT solvers, and
are the main component of CDCL algorithms [74] — and
could significantly curtail the search space traversed by DNN
verifiers and improve their scalability.
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