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Autonomous vehicles are highly complex systems, required to function reliably in a wide variety of

situations. Manually crafting software controllers for these vehicles is difficult, but there has been

some success in using deep neural networks generated using machine-learning. However, deep neural

networks are opaque to human engineers, rendering their correctness very difficult to prove manually;

and existing automated techniques, which were not designed to operate on neural networks, fail to

scale to large systems. This paper focuses on proving the adversarial robustness of deep neural

networks, i.e. proving that small perturbations to a correctly-classified input to the network cannot

cause it to be misclassified. We describe some of our recent and ongoing work on verifying the

adversarial robustness of networks, and discuss some of the open questions we have encountered and

how they might be addressed.

1 Introduction

Designing software controllers for autonomous vehicles is a difficult and error-prone task. A main cause

of this difficulty is that, when deployed, autonomous vehicles may encounter a wide variety of situations

and are required to perform reliably in each of them. The enormous space of possible situations makes

it nearly impossible for a human engineer to anticipate every corner-case.

Recently, deep neural networks (DNNs) have emerged as a way to effectively create complex soft-

ware. Like other machine-learning generated systems, DNNs are created by observing a finite set of

input/output examples of the correct behavior of the system in question, and extrapolating from them a

software artifact capable of handling previously unseen situations. DNNs have proven remarkably useful

in many applications, including including speech recognition [8], image classification [14], and game

playing [20]. There has also been a surge of interest in using them as controllers in autonomous vehicles

such as automobiles [3] and aircraft [12].

The intended use of DNNs in autonomous vehicles raises many questions regarding the certification

of such systems. Many of the common practices aimed at increasing software reliability — such as code

reviews, refactoring, modular designs and manual proofs of correctness — simply cannot be applied

to DNN-based software. Further, existing automated verification tools are typically ill-suited to reason

about DNNs, and they fail to scale to anything larger than toy examples [18, 19]. Other approaches use

various forms of approximation [2, 9] to achieve scalability, but using approximations may not meet the

certification bar for safety-critical systems. Thus, it is clear that new methodologies and tools for scalable

verification of DNNs are sorely needed.

We focus here on a specific kind of desirable property of DNNs, called adversarial robustness.

Adversarial robustness measures a network’s resilience against adversarial inputs [21]: inputs that are

produced by taking inputs that are correctly classified by the DNN and perturbing them slightly, in a

way that causes them to be misclassified by the network. For example, for a DNN for image recognition

http://dx.doi.org/10.4204/EPTCS.257.3
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such examples can correspond to slight distortions in the input image that are invisible to the human eye,

but cause the network to assign the image a completely different classification. It has been observed

that many state-of-the-art DNNs are highly vulnerable to adversarial inputs, and several highly effective

techniques have been devised for finding such inputs [4, 7]. Adversarial attacks can be carried out in the

real world [15], and thus constitute a source of concern for autonomous vehicles using DNNs — making

it desirable to verify that these DNNs are robust.

In a recent paper [13], we proposed a new decision procedure, called Reluplex, designed to solve

systems of linear equations with certain additional, non-linear constraints. In particular, neural networks

and various interesting properties thereof can be encoded as input to Reluplex, and the properties can

then be proved (or disproved, in which case a counter example is provided). We used Reluplex to verify

various properties of a prototype DNN implementation of the next-generation Airborne Collision Avoid-

ance Systems (ACAS Xu), which is currently being developed by the Federal Aviation Administration

(FAA) [12].

This paper presents some of our ongoing efforts along this line of work, focusing on adversarial

robustness properties. We study different kinds of robustness properties and practical considerations for

proving them on real-world networks. We also present some initial results on proving these properties

for the ACAS Xu networks. Finally, we discuss some of the open questions we have encountered and

our plans for addressing them in the future.

The rest of this paper is organized as follows. We briefly provide some needed background on

DNNs and on Reluplex in Section 2, followed by a discussion of adversarial robustness in Section 3.

We continue with a discussion of our ongoing research and present some initial experimental results in

Section 4, and conclude with Section 5.

2 Background

2.1 Deep Neural Networks

Deep neural networks (DNNs) consist of a set of nodes (“neurons”), organized in a layered structure.

Nodes in the first layer are called input nodes, nodes in the last layer are called output nodes, and nodes

in the intermediate layers are called hidden nodes. An example appears in Fig. 1 (borrowed from [13]).

Input #1

Input #2

Input #3

Input #4

Input #5

Output #1

Output #2

Output #3

Output #4

Output #5

Figure 1: A DNN with 5 input nodes (in green), 5 output nodes (in red), and 36 hidden nodes (in blue).

The network has 6 layers.

Nodes are connected to nodes from the preceding layer by weighted edges, and are each assigned

a bias value. An evaluation of the DNN is performed as follows. First, the input nodes are assigned

values (these can correspond, e.g., to user inputs or sensor readings). Then, the network is evaluated
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layer-by-layer: in each layer the values of the nodes are calculated by (i) computing a weighted sum

of values from the previous layer, according to the weighted edges; (ii) adding each node’s bias value

to the weighted sum; and (iii) applying a predetermined activation function to the result of (ii). The

value returned by the activation function becomes the value of the node, and this process is propagated

layer-by-layer until the network’s output values are computed.

This work focuses on DNNs using a particular kind of activation function, called a rectified linear

unit (ReLU). The ReLU function is given by the piecewise linear formula ReLU(x) = max(0,x), i.e.,

positive values are unchanged and negative values are changed to 0. When applied to a positive value,

we say that the ReLU is in the active state; and when applied to a non-positive value, we say that it is

in the inactive state. ReLUs are very widely used in practice [14, 16], and it has been suggested that the

piecewise linearity that they introduce allows DNNs to generalize well to new inputs [5, 6, 10, 17].

A DNN N is referred to as a classifier if it is associated with a set of labels L, such that each output

node of N corresponds to a specific output label. For a given input~x and label ℓ ∈ L, we refer to the value

of ℓ’s output node as the confidence of N that~x is labeled ℓ, and denote this value by C(N,~x, ℓ). An input

~x is said to be classified to label ℓ ∈ L, denoted N(~x) = ℓ, if C(N,~x, ℓ)>C(N,~x, ℓ′) for all ℓ′ 6= ℓ.

2.2 Verifying Properties of Neural Networks

A DNN can be regarded as a collection of linear equations, with the additional ReLU constraints. Ex-

isting verification tools capable of handling these kinds of constraints include linear programming (LP)

solvers and satisfiability modulo theories (SMT) solvers, and indeed past research has focused on using

these tools [2, 9, 18, 19]. As for the properties being verified, we restrict our attention to properties

that can be expressed as linear constraints over the DNN’s input and output nodes. Many properties of

interest seem to fall into this category, including adversarial robustness [13].

Unfortunately, this verification problem is NP-complete [13], making it theoretically difficult. It is

also difficult in practice, with modern solvers scaling only to very small examples [18, 19]. Because prob-

lems involving only linear constraints are fairly easy to solve, many solvers handle the ReLU constraints

by transforming the input query into a sequence of pure linear sub-problems, such that the original query

is satisfiable if and only if at least one of the sub-problems is satisfiable. This transformation is performed

by case-splitting: given a query involving n ReLU constraints, the linear sub-problems are obtained by

fixing each of the ReLU constraints in either the active or inactive state (recall that ReLU constraints

are piecewise linear). Unfortunately, this entails exploring every possible combination of active/inactive

ReLU states, meaning that the solver needs to check 2n linear sub-problems in the worst case. This

quickly becomes a crucial bottleneck when n increases.

In a recent paper, we proposed a new algorithm, called Reluplex, capable of verifying DNNs that are

an order-of-magnitude larger than was previously possible [13]. The key insight that led to this improved

scalability was a lazy treatment of the ReLU constraints: instead of exploring all possible combinations

of ReLU activity or inactivity, Reluplex temporarily ignores the ReLU constraints and attempts to solve

just the linear portion of the problem. Then, by deriving variable bounds from the linear equations that

it explores, Reluplex is often able to deduce that some of the ReLU constraints are fixed in either the

active or inactive case, which greatly reduces the amount of case-splitting that it later needs to perform.

This has allowed us to use Reluplex to verify various properties of the DNN-based implementation of

the ACAS Xu system: a family of 45 DNNs, each with 300 ReLU nodes.



22 Towards Proving Adversarial Robustness of Deep Neural Networks

3 Adversarial Robustness

A key challenge in software verification, and in particular in DNN verification, is obtaining a specifi-

cation against which the software can be verified. One solution is to manually develop such properties

on a per-system basis, but we can also focus on properties that are desirable for every network. Adver-

sarial robustness properties fall into this category: they express the requirement that the network behave

smoothly, i.e. that small input perturbations should not cause major spikes in the network’s output. Be-

cause DNNs are trained over a finite set of inputs/outputs, this captures our desire to ensure that the

network behaves “well” on inputs that were neither tested nor trained on. If adversarial robustness is

determined to be too low in certain parts of the input space, the DNN may be retrained to increase its

robustness [7].

We begin with a common definition for local adversarial robustness [2, 9, 13]:

Definition 1 A DNN N is δ -locally-robust at point ~x0 iff

∀~x. ‖~x−~x0‖ ≤ δ ⇒ N(~x) = N(~x0)

Intuitively, Definition 1 states that for input ~x that is very close to ~x0, the network assigns to~x the same

label that it assigns to ~x0; “local” thus refers to a local neighborhood around ~x0. Larger values of δ imply

larger neighborhoods, and hence better robustness. Consider, for instance, a DNN for image recognition:

δ -local-robustness can then capture the fact that slight perturbations of the input image, i.e. perturbations

so small that a human observer would fail to detect them, should not result in a change of label.

There appear to be two main drawbacks to using Definition 1: (i) The property is checked for in-

dividual input points in an infinite input space, and it does not necessarily carry over to other points

that are not checked. This issue may be partially mitigated by testing points drawn from some random

distribution thought to represent the input space. (ii) For each point ~x0 we need to specify the minimal

acceptable value of δ . Clearly, these values can vary between different input points: for example, a point

deep within a region that is expected to be labeled ℓ1 should have high robustness, whereas for a point

closer to the boundary between two labels ℓ1 and ℓ2 even a tiny δ may be acceptable. We note that given

a point ~x0 and a solver such as Reluplex, one can perform a binary search and find the largest δ for which

N is δ -locally-robust at ~x0 (up to a desired precision).

In order to overcome the need to specify each individual δ separately, in [13] we proposed an alter-

native approach, using the notion of global robustness:

Definition 2 A DNN N is (δ ,ε)-globally-robust in input region D iff

∀~x1,~x2 ∈ D. ‖~x1 −~x2‖ ≤ δ ⇒ ∀ℓ ∈ L. |C(N,~x1, ℓ)−C(N,~x2, ℓ)|< ε

Definition 2 addresses the two shortcomings of Definition 1. First, it considers an input domain D instead

of a specific point ~x0, allowing it to cover infinitely many points (or even the entire input space) in a single

query, with δ and ε defined once for the entire domain. Also, it is better suited for handling input points

that lay on the boundary between two labels: this definition now only requires that two δ -adjacent points

are classified in a similar (instead of identical) way, in the sense that there are no spikes greater than ε

in the levels of confidence that the network assigns to each label for these points. Here it is desirable to

have a large δ (for large neighborhoods) and a small ε (for small spikes), although it is expected that the

two parameters will be mutually dependent.

Unfortunately, global robustness appears to be significantly harder to check, as we discuss next.
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3.1 Verifying Robustness using Reluplex

Provided that the distance metrics in use can be expressed as a combination of linear constraints and

ReLU operators (L1 and L∞ fall into this category), δ -local-robustness and (δ ,ε)-global-robustness prop-

erties can be encoded as Reluplex inputs. For the local robustness case, the input constraint ‖~x−~x0‖ ≤ δ

is encoded directly as a set of linear equations and variable bounds, and the robustness property is negated

and encoded as ∨

ℓ 6=N(~x0)

N(~x) = ℓ

Thus, if Reluplex finds a variable assignment that satisfies the query, this assignment constitutes a

counter-example ~x that violates the property, i.e., ~x is δ -close to ~x0 but has a label different from that

of ~x0. If Reluplex discovers that the query is unsatisfiable, then the network is guaranteed to be δ -local-

robust at ~x0.

Encoding (δ ,ε)-global-robustness is more difficult because neither ~x1 nor ~x2 is fixed. It is performed

by encoding two copies of the network, denoted N1 and N2, such that ~x1 is the input to N1 and ~x2 is the

input to N2. We again encode the constraint ‖~x1 −~x2‖ ≤ δ as a set of linear equations, and the robustness

property is negated and encoded as

∨

ℓ∈L

|C(N1,~x1, ℓ)−C(N2, ~x2, ℓ)| ≥ ε

As before, if the query is unsatisfiable then the property holds, whereas a satisfying assignment consti-

tutes a counter-example.

While both kinds of queries can be encoded in Reluplex, global robustness is significantly harder

to prove than its local counterpart. The main reason is the technique mentioned in Section 3.1, which

allows Reluplex to achieve scalability by determining that certain ReLU constraints are fixed at either

the active or inactive state. When checking local robustness, the network’s input nodes are restricted

to a small neighborhood around ~x0, and this allows Reluplex to discover that many ReLU constraints

are fixed; whereas the larger domain D used for global robustness queries tends to allow fewer ReLUs

to be eliminated, which entails additional case-splitting and slows Reluplex down. Also, as previously

explained, encoding a global-robustness property entails encoding two identical copies of the DNN in

question. This doubles the number of variables and ReLUs that Reluplex needs to handle, leading to

slower performance. Consequently, our implementation of Reluplex can currently verify the local ad-

versarial robustness of DNNs with several hundred nodes, whereas global robustness is limited to DNNs

with a few dozen nodes.

4 Moving Forward

A significant question in moving forward is on which definition of adversarial robustness to focus. The

advantages of using (δ ,ε)-global-robustness are clear, but the present state-of-the-art seems insufficient

for verifying it; whereas δ -local-robust is more feasible but requires a high degree of manual fine tuning.

We suggest to focus for now on the following hybrid definition, which is an enhanced version of local

robustness:

Definition 3 A DNN N is (δ ,ε)-locally-robust at point ~x0 iff

∀~x. ‖~x−~x0‖ ≤ δ ⇒ ∀ℓ ∈ L. |C(N,~x, ℓ)−C(N,~x0, ℓ)|< ε
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The encoding of (δ ,ε)-local-robustness properties as inputs to Reluplex is similar to the previous cases:

the constraint ‖~x−~x0‖ ≤ δ is encoded as a set of linear equations and variable bounds, and the robustness

property is negated and encoded as

∨

ℓ∈L

|C(N,~x, ℓ)−C(N,~x0, ℓ)| ≥ ε

Definition 3 is still local in nature, which means that testing it using Reluplex does not require encoding

two copies of the network. It also allows ReLU elimination, which affords some scalability (see Table 1

for some initial results). Finally, this definition’s notion of robustness is based on the difference in

confidence levels, as opposed to a different labeling, making it more easily applicable to any input point,

even if it is close to a boundary between two labels. Thus, we believe it is superior to Definition 1. An

open problem is how to determine the finite set of points to be tested, and the δ and ε values to test.

(Note that it may be possible to use the same δ and ε values for all points tested, reducing the amount of

manual work required.)

Another important challenge in moving forward is scalability. Currently, Reluplex is able to handle

DNNs with several hundred nodes, but many real-world DNNs are much larger than that. Apart from

improving the Reluplex heuristics and implementation, we believe that parallelization will play a key

role here. Verification of robustness properties, both local and global, naturally lends itself to paral-

lelization. In the local case, testing the robustness of n input points can be performed simultaneously

using n machines; and even in the global case, an input domain D can be partitioned into n sub domains

D1, . . . ,Dn, each of which can be tested separately. The experiment described in Table 1 demonstrates

the benefits of parallelizing (δ ,ε)-local-robustness testing even further: apart from testing each point on

a separate machine, for each point the disjuncts in the encoding of Definition 3 can also be checked in

parallel. The improvement in performance is evident, emphasizing the potential benefits of pursuing this

direction further.

We believe parallelization can be made even more efficient in this context by means of two comple-

mentary directions:

1. Prioritization. When testing the (local or global) robustness of a DNN, we can stop immediately

once a violation has been found. Thus, prioritizing the points or input domains and starting from

those in which a violation is most likely to occur could serve to reduce execution time. Such

prioritization could be made possible by numerically analyzing the network prior to verification,

identifying input regions in which there are steeper fluctuations in the output values, and focusing

on these regions first.

2. Information sharing across nodes. As previously mentioned, a key aspect of the scalability of

Reluplex is its ability to determine that certain ReLU constraints are fixed in either the active or

inactive case. When running multiple experiments, these conclusions could potentially be shared

between executions, improving performance. Of course, great care will need to be taken, as a

ReLU that is fixed in one input domain may not be fixed (or may even be fixed in the other state)

in another domain.

Finally, we believe it would be important to come up with automatic techniques for choosing the

input points (in the local case) or domains (in the global case) to be tested, and the corresponding δ

and ε parameters. These techniques would likely take into account the distribution of the inputs in the

network’s training set. In the global case, domain selection could be performed in a way that would

optimize the verification process, by selecting domains in which ReLU constraints are fixed in the active

or inactive state.
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Table 1: Checking the (δ ,ε)-local-robustness of one of the ACAS Xu DNNs [13] at 5 arbitrary input

points, for different values of ε (we fixed δ = 0.018 for all experiments). The Seq. columns indicate

execution time (in seconds) for a sequential execution, and the Par. columns indicate execution time (in

seconds) for a parallelized execution using 5 machines.

Point ε = 0.01 ε = 0.02 ε = 0.03

Robust? Par. Seq. Robust? Par. Seq. Robust? Par. Seq.

1 No 5 5 No 785 7548 Yes 9145 38161

2 Yes 277 1272 Yes 248 989 Yes 191 747

3 Yes 103 460 Yes 134 480 Yes 93 400

4 No 17 17 Yes 249 774 Yes 132 512

5 Yes 333 1479 Yes 259 1115 Yes 230 934

5 Conclusion

The planned inclusion of DNNs within autonomous vehicle controllers poses a significant challenge for

their certification. In particular, it is becoming increasingly important to show that these DNNs are robust

to adversarial inputs. This challenge can be addressed through verification, but the scalability of state-of-

the-art techniques is a limiting factor and dedicated techniques and methodologies need to be developed

for this purpose.

In [13] we presented the Reluplex algorithm which is capable of proving DNN robustness in some

cases. Still, additional work is required to improve scalability. We believe that by carefully phrasing the

properties being proved, and by intelligently applying parallelization, a significant improvement can be

achieved.

As a long-term goal, we speculate that this line of work could assist researchers in verifying the

dynamics of autonomous vehicle systems that include a DNN-based controller. In particular, it may be

possible to first formally prove that a DNN-based controller satisfies certain properties, and then use

these properties in analyzing the dynamics of the system as a whole. Specifically, we plan to explore

the integration of Reluplex with reachability analysis techniques, for both the offline [11] and online [1]

variants.
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