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Abstract. With the rapid growth of machine learning, deep neural net-
works (DNNs) are now being used in numerous domains. Unfortunately,
DNNs are “black-boxes”, and cannot be interpreted by humans, which is
a substantial concern in safety-critical systems. To mitigate this issue, re-
searchers have begun working on explainable AI (XAI) methods, which
can identify a subset of input features that are the cause of a DNN’s
decision for a given input. Most existing techniques are heuristic, and
cannot guarantee the correctness of the explanation provided. In con-
trast, recent and exciting attempts have shown that formal methods can
be used to generate provably correct explanations. Although these meth-
ods are sound, the computational complexity of the underlying verifica-
tion problem limits their scalability; and the explanations they produce
might sometimes be overly complex. Here, we propose a novel approach
to tackle these limitations. We (i) suggest an efficient, verification-based
method for finding minimal explanations, which constitute a provable
approximation of the global, minimum explanation; (ii) show how DNN
verification can assist in calculating lower and upper bounds on the op-
timal explanation; (iii) propose heuristics that significantly improve the
scalability of the verification process; and (iv) suggest the use of bundles,
which allows us to arrive at more succinct and interpretable explanations.
Our evaluation shows that our approach significantly outperforms state-
of-the-art techniques, and produces explanations that are more useful to
humans. We thus regard this work as a step toward leveraging verification
technology in producing DNNs that are more reliable and comprehensi-
ble.

1 Introduction

Machine learning (ML) is a rapidly growing field with a wide range of applica-
tions, including safety-critical, high-risk systems in the fields of health care [18],
aviation [38] and autonomous driving [12]. Despite their success, ML models,
and especially deep neural networks (DNNs), remain “black-boxes” — they are
incomprehensible to humans and are prone to unexpected behaviour and errors.
This issue can result in major catastrophes [13, 73], and also in poor decision-
making due to brittleness or bias [7, 24].

In order to render DNNs more comprehensible to humans, researchers have
been working on explainable AI (XAI ), where we seek to construct models for
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explaining and interpreting the decisions of DNNs [50,55–57]. Work to date has
focused on heuristic approaches, which provide explanations, but do not provide
guarantees about the correctness or succinctness of these explanations [14,32,44].
Although these approaches are an important step, their limitations might result
in skewed results, possibly failing to meet the regulatory guidelines of institu-
tions and organizations such as the European Union, the US government, and
the OECD [51]. Thus, producing DNN explanations that are provably accurate
remains of utmost importance.

More recently, the formal verification community has proposed approaches
for providing formal and rigorous explanations for DNN decision making [27,31,
51, 59]. Many of these approaches rely on the recent and rapid developments in
DNN verification [1, 8, 9, 39]. These approaches typically produce an abductive
explanation (also known as a prime implicant, or PI-explanation) [31, 58, 59]:
a minimum subset of input features, which by themselves already determine
the classification produced by the DNN, regardless of any other input features.
These explanations afford formal guarantees, and can be computed via DNN
verification [31].

Abductive explanations are highly useful, but there are two major difficulties
in computing them. First, there is the issue of scalability: computing locally
minimal explanations might require a polynomial number of costly invocations
of the underlying DNN verifier, and computing a globally minimal explanation
is even more challenging [10, 31, 48]. The second difficulty is that users may
sometimes prefer “high-level” explanations, not based solely on input features,
as these may be easier to grasp and interpret compared to “low-level”, complex,
feature-based explanations.

To tackle the first difficulty, we propose here new approaches for more effi-
ciently producing verification-based abductive explanations. More concretely, we
propose a method for provably approximating minimum explanations, allowing
stakeholders to use slightly larger explanations that can be discovered much more
quickly. To accomplish this, we leverage the recently discovered dual relationship
between explanations and contrastive examples [30]; and also take advantage of
the sensitivity of DNNs to small adversarial perturbations [64], to compute both
lower and upper bounds for the minimum explanation. In addition, we propose
novel heuristics for significantly expediting the underlying verification process.

In addressing the second difficulty, i.e. the interpretability limitations of “low-
level” explanations, we propose to construct explanations in terms of bundles,
which are sets of related features. We empirically show that using our method
to produce bundle explanations can significantly improve the interpretability of
the results, and even the scalability of the approach, while still maintaining the
soundness of the resulting explanations.

To summarize, our contributions include the following: (i) We are the first
to suggest a method that formally produces sound and minimal abductive ex-
planations that provably approximate the global-minimum explanation. (ii) Our
three suggested novel heuristics expedite the search for minimal abductive ex-
planations, significantly outperforming the state of the art. (iii) We suggest a
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novel approach for using bundles to efficiently produce sound and provable ex-
planations that are more interpretable and succinct.

For evaluation purposes, we implemented our approach as a proof-of-concept
tool. Although our method can be applied to any ML model, we focused here
on DNNs, where the verification process is known to be NP-complete [39], and
the scalable generation of explanations is known to be challenging [31, 58]. We
used our tool to test the approach on DNNs trained for digit and clothing classi-
fication, and also compared it to state-of-the-art approaches [31,32]. Our results
indicate that our approach was successful in quickly producing meaningful ex-
planations, often running 40% faster than existing tools. We believe that these
promising results showcase the potential of this line of work.

The rest of the paper is organized as follows. Sec. 2 contains background on
DNNs and their verification, as well as on formal, minimal explanations. Sec. 3
covers the main method for calculating approximations of minimum explana-
tions, and Sec. 4 covers methods for improving the efficiency of calculating these
approximations. Sec. 5 covers the use of bundles in constructing “high-level”,
provable explanations. Next, we present our evaluation in Sec. 6. Related work
is covered in Sec. 7, and we conclude in Sec. 8.

2 Background

DNNs. A deep neural network (DNN) [46] is a directed graph composed of
layers of nodes, commonly called neurons. In feed-forward NNs the data flows
from the first (input) layer, through intermediate (hidden) layers, and onto an
output layer. A DNN’s output is calculated by assigning values to its input
neurons, and then iteratively calculating the values of neurons in subsequent
layers. In the case of classification, which is the focus of this paper, each output
neuron corresponds to a specific class, and the output neuron with the highest
value corresponds to the class the input is classified to.
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Fig. 1: A simple DNN.

Fig. 1 depicts a simple, feed-forward
DNN. The input layer includes three neu-
rons, followed by a weighted sum layer,
which calculates an affine transformation
of values from the input layer. Given the
input V1 = [1,1,1]T , the second layers
computes the values V2 = [6,9,11]T . Next
comes a ReLU layer, which computes the
function ReLU(x) = max(0, x) for each
neuron in the preceding layer, resulting in
V3 = [6,9,11]T . The final (output) layer then computes an affine transformation,
resulting in V4 = [15,−4]T . This indicates that input V1 = [1,1,1]T is classified
as the category corresponding to the first output neuron, which is assigned the
greater value.

DNN Verification. A DNN verification query is a tuple ⟨P,N,Q⟩, where N is a
DNN that maps an input vector x to an output vector y = N(x), P is a predicate
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on x, and Q is a predicate on y. A DNN verifier needs to decide whether there
exists an input x0 that satisfies P (x0) ∧Q(N(x0)) (the SAT case) or not (the
UNSAT case). Typically, P and Q are expressed in the logic of real arithmetic [49].
The DNN verification problem is known to be NP-Complete [39].

Formal Explanations. We focus here on explanations for classification prob-
lems, where a model is trained to predict a label for each given input. A clas-
sification problem is a tuple ⟨F,D,K,N⟩ where (i) F = {1, ...,m} denotes the
features; (ii) D = {D1,D2...,Dm} denotes the domains of each of the features,
i.e. the possible values that each feature can take. The entire feature (input)
space is hence F = D1 ×D2 × ... ×Dm; (iii) K = {c1, c2, ..., cn} is a set of classes,
i.e. the possible labels; and (iv) N ∶ F → K is a (non-constant) classification
function (in our case, a neural network). A classification instance is the pair
(v, c), where v ∈ F, c ∈ K, and c = N(v). In other words, v is mapped by the
neural network N to class c.

Looking at (v, c), we often wish to know why v was classified as c. Informally,
an explanation is a subset of features E ⊆ F , such that assigning these features
to the values assigned to them in v already determines that the input will be
classified as c, regardless of the remaining features F ∖E. In other words, even
if the values that are not in the explanation are changed arbitrarily, the classifi-
cation remains the same. More formally, given input v = (v1, ...vm) ∈ F with the
classification N(v) = c, an explanation (sometimes referred to as an abductive
explanation, or an AXP) is a subset of the features E ⊆ F , such that:

∀(x ∈ F). [⋀
i∈E

(xi = vi)→ (N(x) = c)] (1)

We continue with the running example from Fig. 1. For simplicity, we assume
that each input neuron can only be assigned the values 0 or 1. It can be observed
that for input V1 = [1,1,1]T , the set {v11 , v21} is an explanation; indeed, once the
first two entries in V1 are set to 1, the classification remains the same for any
value of the third entry (see Fig. 2). We can prove this by encoding a verification
query ⟨P,N,Q⟩ = ⟨E = v,N,Q¬c⟩, where E is the candidate explanation, and
E = v means that we restrict the features in E to their values in v; and Q¬c

implies that the classification is not c. An UNSAT result for this query indicates
that E is an explanation for instance (v, c).

Clearly, the set of all features constitutes a trivial explanation. However,
we are interested in smaller explanation subsets, which can provide useful in-
formation regarding the decision of the classifier. More precisely, we search for
minimal explanations and minimum explanations. A subset E ⊆ F is a minimal
explanation (also referred to as a local-minimal explanation, or a subset-minimal
explanation) of instance (v, c) if it is an explanation that ceases to be an expla-
nation if even a single feature is removed from it:

(∀(x ∈ F).[∧i∈E(xi = vi)→ (N(x) = c)])∧
(∀(j ∈ E).[∃(y ∈ F).[∧i∈E∖j(yi = vi) ∧ (N(y) ≠ c)])

(2)

Fig. 3 demonstrates that {v11 , v21} is a minimal explanation in our running ex-
ample: removing any of its features allows mis-classification.



Towards Formal XAI 191

2

-3

-4

0

2

3

2
2

3
33
3

555
7
6

0

0

0

1
-1

1

-1

0

1

ReLU

ReLU

ReLU

2

-3

-4

0

2

3

2
2

3
33
3

555
7
6

0

0

0

1
-1

1

-1

0

1

ReLU

ReLU

ReLU

Fig. 2: {v11 , v21} is an explanation for input V1 = [1,1,1]T .
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Fig. 3: {v11 , v21} is a minimal explanation for input V1 = [1,1,1]T .

A minimum explanation (sometimes referred to as a cardinal minimal ex-
planation or a PI-explanation) is defined as a minimal explanation of minimum
size; i.e., if E is a minimum explanation, then there does not exist a minimal
explanation E′ ≠ E such that ∣E′∣ < ∣E∣. Fig. 4 demonstrates that {v31} is a
minimum explanation for our running example.
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Fig. 4: {v31} is a minimum explanation for input V1 = [1,1,1]T .

Contrastive Example. A subset of features C ⊆ F is called a contrastive exam-
ple or a contrastive explanation (CXP) if altering the features in C is sufficient
to cause the misclassification of a given classification instance (v, c):

∃(x ∈ F).[∧i∈F∖C(xi = vi) ∧ (N(x) ≠ c)] (3)
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Fig. 5: {v21 , v31} is a contrastive ex-
ample for V1 = [1,1,1]T .

A contrastive example for our running ex-
ample is shown in Fig. 5. Notice that the
question of whether a set is a contrastive
example can be encoded into a verification
query ⟨P,N,Q⟩ = ⟨(F ∖ C) = v,N,Q¬c⟩,
where a SAT result indicates that C is
a contrastive example. As with explana-
tions, smaller contrastive examples are
more valuable than large ones. One useful
notion is that of a contrastive singleton: a
contrastive example of size one. A contrastive singleton could represent a specific
pixel in an image, the alteration of which could result in misclassification. Such
singletons are leveraged in “one-pixel attacks” [64] (see Fig. 16 in the appendix
of the full version of this paper [11]). Contrastive singletons have the following
important property:

Lemma 1. Every contrastive singleton is contained in all explanations.

The proof appears in Sec. A of the appendix of the full version of this pa-
per [11]. Lemma 1 implies that each contrastive singleton is contained in all
minimal/minimum explanations.

We consider also the notion of a contrastive pair, which is a contrastive ex-
ample of size 2. Clearly, for any pair of features (u, v) where u or v are con-
trastive singletons, (u, v) is a contrastive pair; however, when we next refer to
contrastive pairs, we consider only pairs that do not contain any contrastive
singletons. Likewise, for every k > 2, we can consider contrastive examples of
size k, and we exclude from these any contrastive examples of sizes 1, . . . , k − 1
as subsets.

We state the following theorem, whose proof also appears in Sec. A of the
appendix of the full version of this paper [11]:

Lemma 2. All explanations contain at least one element of every contrastive
pair.

The theorem can be generalized to any k > 2; and can be used in showing that
the minimum hitting set (MHS) of all contrastive examples is exactly the mini-
mum explanation [29, 54] (see Sec. B of the appendix of the full version of this
paper [11]). Further, the theorem implies a duality between contrastive exam-
ples and explanations [30, 34]: a minimal hitting set of all contrastive examples
constitutes a minimal explanation, and a minimal hitting set of all explanations
constitutes a minimal contrastive example.

3 Provable Approximations for Minimal Explanations

State-of-the-art approaches for finding minimum explanations exploit the MHS
duality between explanations and contrastive examples [31]. The idea is to it-
eratively compute contrastive examples, and then use their MHS as an under-
approximation for the minimum explanation. Finding this MHS is an NP-
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complete problem, and is difficult in practice as the number of contrastive ex-
amples increases [20]; and although the MHS can be approximated using max-
imum satisfiability (MaxSAT) or mixed integer linear programming (MILP)
solvers [26, 47], existing approaches tackle simpler ML models, such as decision
trees [33,36], but face scalability limitations when applied to DNNs [31,58]. Fur-
ther, enumerating all contrastive examples may in itself take exponential time.
Finally, recall that DNN verification is an NP-Complete problem [39]; and so dis-
patching a verification query to identify each explanation or contrastive example
is also very slow, when the feature space is large. Finding minimal explanations
may be easier [31], but may converge to larger and less meaningful explana-
tions, while still requiring a linear number of calls to the underlying verifier. Our
approach, described next, seeks to mitigate these difficulties.

Our overall approach is described in Algorithm 1. It is comprised of two sep-
arate threads, intended to be run in parallel. The upper bounding thread (TUB) is
responsible for computing a minimal explanation. It starts with the entire feature
space, and then gradually reduces it, until converging to a minimal explanation.
The size of the presently smallest explanation is regarded as an upper bound
(UB) for the size of the minimum explanation. Symmetrically, the lower bounding
thread (TLB) attempts to construct small contrastive sets, used for computing a
lower bound (LB) on the size of the minimum explanation. Together, these two
bounds allow us to compute the approximation ratio between the minimal ex-
planation that we have discovered and the minimum explanation. For instance,
given a minimal explanation of size 7 and a lower bound of size 5, we can deduce
that our explanation is at most UB

LB
= 7

5
times larger than the minimum. The

two threads share global variables that indicate the set of contrastive singletons
(Singletons), the set of contrastive pairs (Pairs), the upper and lower bounds
(UB, LB), and the set of features that were determined not to participate in
the explanation and are “free” to be set to any value (Free). The output of our
algorithm is a minimal explanation (F∖Free), and the approximation ratio (UB

LB
).

We next discuss each of the two threads in detail.

Algorithm 1 Minimal Explanation Search

Input N (Neural network), F (features), v (input values), c (class prediction)

1: Singletons, Pairs, Free ← ∅, UB ← ∣F ∣, LB ← 0 ▷ Global variables
2: Launch thread TUB

3: Launch thread TLB

4: return F∖Free, UB
LB

The Upper Bounding Thread (TUB). This thread, whose pseudocode ap-
pears in Algorithm 2, follows the framework proposed by Ignatiev et al. [31]: it
seeks a minimal explanation by starting with the entire feature space, and then
iteratively attempting to remove individual features. If removing a feature allows
misclassification, we keep it as part of the explanation; otherwise, we remove it
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and continue. This process issues a single verification query for each feature, un-
til converging to a minimal explanation (lines 2–8). Although this näıve search
is guaranteed to converge to a minimal explanation, it needs not to converge to
a minimum explanation; and so we apply a more sophisticated ordering scheme,
similar to the one proposed by [32], where we use some heuristic model as a
way for assigning weights of importance to each input feature. We then check
the “least important” input features first, since freeing them has a lower chance
of causing a misclassification, and they are consequently more likely to be suc-
cessfully removed. We then continue iterating over features in ascending order
of importance, hopefully producing small explanations.

Algorithm 2 TUB: Upper Bounding Thread

1: Use a heuristic model to sort F ’s features by ascending relevance
2: for each f ∈ F do
3: Explanation ← F∖Free
4: if Verify((Explanation∖{f})=v,N,Q¬c) is UNSAT then
5: Free ← Free ∪ {f}
6: UB← UB − 1
7: end if
8: end for

The Lower Bounding Thread (TLB). The pseudocode for the lower bound-
ing thread (TLB) appears in Algorithm 3. In lines 1–6, the thread searches for
contrastive singletons. Neural networks were shown to be very sensitive to ad-
versarial attacks [25] — slight input perturbations that cause misclassification
(e.g., the aforementioned one-pixel attack [64]) — and this suggests that con-
trastive sets, and in particular contrastive singletons, exist in many cases. We
observe that identifying contrastive singletons is computationally cheap: by en-
coding Eq. 3 as a verification query, once for each feature, we can discover all
singletons; and in these queries all features but one are fixed, which empirically
allows verifiers to dispatch them quickly.

The rest of TLB (lines 9–13) performs a similar process, but with contrastive
pairs (which do not contain contrastive singletons as one of their features). We
use verification queries to identify all such pairs, and then attempt to find their
MHS. We observe that finding the MHS of all contrastive pairs is the 2-MHS
problem, which is a reformalization of the minimum vertex cover problem (see
Sec. B of the appendix of the full version of this paper [11]). Since this is an
easier problem than the general MHS problem, solving it with MAX-SAT or
MILP often converges quickly. In addition, the minimum vertex cover algorithm
has a linear 2-approximating greedy algorithm, which can be used for finding a
lower bound in cases of large feature spaces.

More formally, TLB performs an efficient computation of the following bound:

LB = ∣Singletons∣ + ∣MVC(Pairs)∣ ≤MHS(Cxps) = EM (4)
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Algorithm 3 TLB : Lower Bounding Thread

1: for each f ∈ F do ▷ Find all singletons
2: if Verify((F∖{f}=v,N,Q¬c) is SAT then
3: Singletons ← Singletons ∪ {f}
4: LB ← LB +1
5: end if
6: end for
7:
8: AllPairs ← Distinct pairs of F∖Singletons
9: for each (a,b) ∈ AllPairs do ▷ Find all pairs
10: if Verify((F∖{a,b}=v,N,Q¬c) is SAT then
11: Pairs ←Pairs ∪ {(a, b)}
12: end if
13: end for
14: LB ← LB + MVC(Pairs)

where MVC is the minimum vertex cover, Cxps denotes the set of all contrastive
examples, and EM is the size of the minimum explanation.

It is worth mentioning that this approach can be extended to use contrastive
examples of larger sizes (k = 3,4, . . .), as specified in Sec. C of the appendix of
the full version of this paper. The fact that small contrastive examples, such
as singletons, exist in large, state-of-the-art DNNs with large inputs [21, 64]
suggests that useful approximations exist in large DNNs. In our experiments,
we observed that using only singletons and pairs affords good approximations,
without incurring overly expensive computations by the underlying verifier.

4 Finding Minimal Explanations Efficiently

Algorithm 1 is the backbone of our approach, but it suffers from limited scalabil-
ity — particularly, in TUB. As the execution of TUB progresses, and as additional
features are “freed”, the quickly growing search space slows down the underlying
verifier. Here we propose three different methods for expediting this process, by
reducing the number of verification queries required.

Method 1: Using Information from TLB. We suggest to leverage the con-
trastive examples found by TLB to expedite TUB. The process is described in
Algorithm 4. In line 3, TLB is queried for the current set of contrastive sin-
gletons, which we know must be part of any minimal explanation. These are
subtracted from the RemainingFeatures set (features left for TUB to query), and
consequently will not be added to the Free set — i.e., they are marked as part
of the current explanation. In addition, for any contrastive pair (a, b) found by
TLB, either a or b must appear in any minimal explanation; and so, our algorithm
skips checking the case where both a and b are removed from F (Line 8). (the
method could also be extended to contrastive sets of greater cardinality.)



196 S. Bassan and G. Katz

Algorithm 4 TUB using information from TLB

1: Use a heuristic model to sort F by ascending relevance
2: RemainingFeatures ← F∖Singletons
3: for each f ∈ RemainingFeatures do
4: Explanation ← F∖Free
5: if Verify((Explanation∖{f})=v,N,Q¬c) is UNSAT then
6: Free ← Free ∪ {f}
7: UB← UB − 1
8: Delete all features in a pair with f from RemainingFeatures
9: end if
10: end for

Method 2: Binary Search. Sorting the features being considered in ascending
order of importance can have a significant effect on the size of the explanation
found by Algorithm 2. Intuitively, a “perfect” heuristic model would assign the
greatest weights to all features in the minimum explanation, and so traversing
features in ascending order would first discover all the features that can be
removed (UNSAT verification queries), followed by all the features that belong in
the explanation (SAT queries). In this case, a sequential traversal of the features
in ascending order is quite wasteful, and it is much better to perform a binary
search to find the point where the answer flips from UNSAT to SAT.

Of course, in practice, the heuristic models are not perfect, leading to poten-
tial cases with multiple “flips” from SAT to UNSAT, and vice versa. Still, if the
heuristic is good in practice (which is often the case; see Sec. 6), these flips are
scarce. Thus, we propose to perform multiple binary searches, each time identi-
fying one SAT query (i.e., a feature added to the explanation). Observe that each
time we hit an UNSAT query, this indicates that all the queries for features with
lower priorities would also yield UNSAT — because if “freeing” multiple features
cannot change the classification, changing fewer features certainly cannot. Thus,
we are guaranteed to find the first SAT query in each iteration, and soundness
is maintained. This process is described in Algorithm. 6 and in Fig. 14 in the
appendix of the full version of this paper [11].

Method 3: Local-Singleton Search. Let N be a DNN, and let x be an input
point whose classification we seek to explain. As part of Algorithm 2, TUB iter-
atively “frees” certain input features, allowing them to take arbitrary values, as
it continues to search for features that must be included in the explanation. The
increasing number of free features enlarges the search space that the underlying
verifier must traverse, thus slowing down verification. We propose to leverage
the hypothesis that input points nearby x that are misclassified tend to be clus-
tered; and so, it is beneficial to fix the free features to “bad” values, as opposed
to letting them take on arbitrary values. We speculate that this will allow the
verifier to discover satisfying assignments much more quickly.

This enhancement is shown in Algorithm 5. Given a set Free of features that
were previously freed, we fix their values according to some satisfying assign-
ment previously discovered. Thus, the verification of any new feature that we
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consider is similar to the case of searching for contrastive singletons, which, as
we already know, is fairly fast. See Fig. 15 in the appendix of the full version of
this paper [11] for an illustration. The process can be improved further by fixing
the freed features to small neighborhoods of the previously discovered satisfy-
ing assignment (instead of its exact values), to allow some flexibility while still
keeping the query’s search space small.

Algorithm 5 TUB using local-singleton search

1: Use a heuristic model to sort F by ascending relevance
2: RemainingFeatures ← F∖Singletons
3: for each f ∈ RemainingFeatures do
4: Explanation ← F∖Free
5: if Verify((Explanation∖{f})=v,N,Q¬c) is UNSAT then
6: Free ← Free ∪ {f}
7: UB← UB − 1
8: else
9: Extract counter example C
10: LocalSingletons ← ∅
11: for each f ′ ∈ RemainingFeatures do
12: if Verify(Explanation∖{f ′} = C,N,Q¬c) is SAT then
13: LocalSingletons ← LocalSingletons ∪ {f ′}
14: end if
15: end for
16: RemainingFeatures ← RemainingFeatures ∖ LocalSingletons
17: end if
18: end for

5 Minimal Bundle Explanations

Fig. 6: Partition
input’s features
into bundles.

So far, we presented methods for generating explanations
within a given approximation ratio of the minimum expla-
nation (Sec. 3), and for expediting the computation of these
explanations (Sec. 4) — in order to improve the scalability of
our explanation generation mechanism. Next, we seek to tackle
the second challenge from Sec. 1, namely that these explana-
tions may be too low-level for many users. To address this chal-
lenge, we focus on bundles, which is a topic well covered in the
ML [63] and heuristic XAI literature [50,55] (commonly known
as “super-pixels” for computer-vision tasks). Intuitively, bun-
dles are a partitioning of the features into disjoint sets (an
illustration appears in Fig. 6). The idea, which we later validate empirically, is
that providing explanations in terms of bundles is often easier for humans to
comprehend. As an added bonus, using bundles also curtails the search space
that the verifier must traverse, expediting the process even further.
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Given a feature space F = {1, ...,m}, a bundle b is just a subset b ⊆ F . When
dealing with the set of all bundles B = {b1, b2, ...bn}, we require that they form
a partitioning of F , namely F = ⊍bi. We define a bundle explanation EB for a
classification instance (v, c) as a subset of bundles, EB ⊆ B, such that:

∀(x ∈ F).[∧i∈∪EB
(xi = vi)→ (N(x) = c)] (5)

The following theorem then connects bundle explanations and explicit, non-
bundle explanations:

Theorem 1. The union of features in a bundle explanation is an explanation.

The proof directly follows from Eqs. 1 and 5. We note that this definition of
bundles implies that features that are not part of the bundle explanation (i.e.
features contained in “free” bundles) are “free” to be set to any possible value.
Another possible alternative for defining bundles could be to allow features in
“free” bundles to only change in the same, coordinated manner. We focus here
on the former definition, and leave the alternative definition for future work.

Many of the aforementioned results and definitions for explanations can be
extended to bundle explanations. In a similar manner to Eq. 5, we can define the
notions of minimal and minimum bundle explanations, a contrastive bundle sin-
gleton, and contrastive bundle pairs (see Sec. D of the appendix of the full version
of this paper [11]). Theorems 1 and 2 can be extended to bundle explanations in
a straightforward manner. It then follows that all bundle explanations contain
all contrastive singleton bundles, and that all bundle explanations contain at
least one bundle of any contrastive bundle pair.

Our method from Secs. 3 and 4 can be similarly performed on bundles rather
than on features, and TUB would then be used for calculating a minimal bundle
explanation, rather than a minimal explanation. Regarding the aforementioned
approximation ratio, we discuss and evaluate two different methods for obtaining
it. The first, natural approach is to apply our techniques from Sec. 3 on bundle
explanations, thus obtaining a provable approximation for a minimum bundle
explanation. The upper bound is trivially derived by the size of the bundle ex-
planation found by TUB, whereas the lower bound calculation requires assigning
a cost to each bundle, representing the number of features it contains. This is
done via a known notion of minimum hitting sets of bundles (MHSB) [6] and
using minimum weighted vertex cover for the approximation of contrastive bun-
dle pairs. This method, which is almost identical to the one mentioned in Sec. 3,
is formalized in Sec. D of the appendix of the full version of this paper [11].

The second approach is to calculate an approximation ratio with respect to
a regular, non-bundle minimum explanation. The minimal bundle explanation
found by TUB is an upper bound on the minimum non-bundle explanation follow-
ing theorem 5. For computing a lower bound, we can analyze contrastive bundle
examples; extract from them contrastive non-bundle examples; and then use the
duality property, compute an MHS of these contrastive examples, and derive
lower bounds for the size of the minimum explanation. We formalize techniques
for performing this calculation in Sec. E of the appendix of the full version of
this paper [11].
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6 Evaluation

Implementation and Setup. For evaluation purposes, we created a proof-
of-concept implementation of our approach as a Python framework. Currently,
the framework uses the Marabou verification engine [41] as a backend, although
other engines may be used. Marabou is a Simplex-based DNN verification frame-
work that is sound and complete [5,39–41,68,69], and which includes support for
proof production [35], abstraction [15, 16, 52, 60, 67, 72], and optimization [62];
and has been used in various settings, such as ensemble selection [3], simpli-
fication [22, 43] repair [23, 53], and verification of reinforcement-learning based
systems [2,4,17]. For sorting features by their relevance, we used the popular XAI
method LIME [55]; although again, other heuristics could be used. The MVC
was calculated using the classic 2-approximating greedy algorithm. All experi-
ments reported were conducted on x86-64 Gnu/Linux-based machines, using a
single Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz core, with a 1-hour timeout.

Benchmarks. As benchmarks, we used DNNs trained over the MNIST dataset
for handwritten digit recognition [45]. These networks classify 28 × 28 grayscale
images into the digits 0, . . . , 9. Additionally, we used DNNs trained over the
Fashion-MNIST dataset [71], which classify 28 × 28 grayscale images into 10
clothing categories (“Dress”, “Coat”, etc.) For each of these datasets we trained
a DNN with the following architecture: (i) an input layer (which corresponds
to the image) of size 784; (ii) a fully connected hidden layer with 30 neurons;
(iii) another fully connected hidden layer, with 10 neurons; and (iv) a final,
softmax layer with 10 neurons, corresponding to the 10 possible output classes.
The accuracy of the MNIST DNN was 96.6%, whereas that of the Fashion-
MNIST DNN was 87.6%. (We note that we configured LIME to ignore the
external border pixels of each input, as these are not part of the actual image.)

In selecting the classification instances to be explained for these networks,
we targeted input points where the network was not confident — i.e., where
the winning label did not win by a large margin. The motivation for this choice
is that explanations are most useful and relevant in cases where the network’s
decision is unclear, which is reflected in lower confidence scores. Additionally,
explanations of instances with lower confidence tend to be larger, facilitating
the process of extensive experimentation. We thus selected the 100 inputs from
the MNIST and the Fashion-MNIST datasets where the networks demonstrated
the lowest confidence scores — i.e., where the difference between the winning
output score and the runner-up class score was minimal.

Experiments. Our first goal was to compare our approach to that of Ignatiev et
al. [31], which is the current state of the art in verification-based explainability of
DNNs. Other approaches consider other ML types, such as decision trees [33,36],
or focus on alternative definitions for abductive explanations [42, 70] and are
thus not comparable. Because the implementation used in [31] is unavailable, we
implemented their approach, using Marabou as the underlying verifier for a fair
comparison. In addition, we used the same heuristic model, LIME, for sorting
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(a) Average portion of features veri-
fied to participate in the explanation.

(b) Average explanation size.

Fig. 7: Our full and ablation-based results, compared to the state of the art for
finding minimal explanations on the MNIST dataset.

the input features’ relevance. Fig. 7 depicts a comparison of the two approaches,
over the MNIST benchmarks. The Fashion-MNIST results were similar, but since
the Fashion-MNIST network had lower accuracy it tended to produce larger
explanations with lower run-times, resulting in less meaningful evaluations (due
to space limitations, these results appear in Fig. 12 in the appendix of the full
version of this paper [11]). We compared the approaches according to two criteria:
the portion of input features whose participation in the explanation was verified,
over time (part (a) of Fig. 7), and the average size of the presently obtained
explanation over time, also presented as a fraction of the total number of input
features (part (b)). The results indicate that our method significantly improves
over the state of the art, verifying the participation of 40.4% additional features,
on average, and producing explanations that are 9.7% smaller, on average, at
the end of the 1-hour time limit. Furthermore, our method timed out on 10%
fewer benchmarks. We regard this as compelling evidence of the potential of our
approach to produce more efficient verification-based XAI.

We also looked into comparing our approach to heuristic, non-verification-
based approaches, such as LIME itself; but these comparisons did not prove
to be meaningful, as the heuristic approaches typically solved benchmarks very
quickly, but very often produced incorrect explanations. This matches the find-
ings reported in previous work [14,32].

Next, we set out to evaluate the contribution of each of the components
implemented within our framework to overall performance, using an ablation
study. Specifically, we ran our framework with each of the components men-
tioned in Sec. 4, i.e. (i) information exchange between TUB and TLB; (ii) the
binary search in TUB; and (iii) local-singleton search, turned off. The results on
the MNIST benchmarks appear in Fig. 7; see Fig. 12 in the appendix of the
full version of this paper [11] for the Fashion-MNIST results. Our experiments
revealed that each of the methods mentioned in Sec. 4 had a favorable impact
on both the average portion of features verified, and the average size of the dis-
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covered explanation, over time. Fig 7a indicates that the local-singleton search
method, used for efficiently proving that features are bound to be included in
the explanation, was the most significant in reducing the number of features
remained for verifying, thus substantially increasing the portion of verified fea-
tures. Moreover, Fig. 7b indicates that the binary search method, which is used
for grouping UNSAT queries and proving the exclusion of features from the ex-
planation, was the most significant for more efficiently obtaining smaller-sized
explanations, over time.

Fig. 8: Average approximation
of minimum explanation over
time.

Our second goal was to evaluate the qual-
ity of the minimum explanation approxima-
tion of our method (using the lower/upper
bounds) over time. Results are averaged over
all benchmarks of the MNIST dataset and are
presented in Fig. 8 (similar results on Fashion-
MNIST appear in Fig. 13 in the appendix of
the full version of this paper [11]). The upper
bound represents the average size of the expla-
nation discovered by TUB over time, whereas
the lower bound represents the average lower
bound discovered by TLB over time. It can be
seen that initially, there is a steep increase in
the size of the lower bound, as TLB discovered many contrastive singletons. Later,
as we begin iterating over contrastive pairs, the verification queries take longer
to solve, and progress becomes slower. The average approximation ratio achieved
after an hour was 1.61 for MNIST and 1.19 for Fashion-MNIST.

For our third experiment, we set out to assess the improvements afforded by
bundles. We repeated the aforementioned experiments, this time using sets of
features representing bundles instead of the features themselves. The segmenta-
tion into bundles was performed using the quickshift method [65], with LIME
again used for assigning relevance to each bundle [55]. We approximate the sizes
of the bundle explanations in terms of both the minimum bundle explanation as
well as the minimum (non-bundle) explanation (as mentioned in Sec. 5 and in
Sec. E of the appendix of the full version of this paper [11]). The bundle con-
figuration showed drastic efficiency improvements, with none of the experiments
timing out within the 1-hour time limit, thus improving the portion of timeouts
on the MNIST dataset by 84%. The efficiency improvement was obtained at the
expense of explanation size, resulting in a decrease of 352% in the approxima-
tion ratios obtained for MNIST and 39% for Fashion-MNIST. Nevertheless, when
calculating the approximation in terms of the minimum bundle explanation, an
increase of 12% and 8% was obtained for MNIST and Fashion-MNIST (results
are summarized in Table 1 in the appendix of the full version of this paper [11]).
For a visual evaluation, we performed the same set of experiments for both bun-
dle and non-bundle implementations, using instances with high confidence rates
to obtain smaller-sized explanations that could be more easily interpreted. A
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(a) Original Image (b) Explanation (c) Bundle explanation

Fig. 9: Minimal explanations and bundle explanations found by our method on
the Fashion-MNIST dataset. White pixels are not part of the explanation.

sample of these results is presented in Fig. 9. Empirically, we observe that the
bundle-produced explanations are less complex and more comprehensible.

Overall, we regard our results as compelling evidence that verification-based
XAI can soundly produce meaningful explanations, and that our improvements
can indeed significantly improve its runtime.

7 Related Work

Our work is another step in the ongoing quest for formal explainability of DNNs,
using verification [19, 27, 31, 58]. Related approaches have applied enumeration
of contrastive examples [30, 31], which is also an ingredient of our approach.
Other approaches focus on producing abductive explanations around an epsilon
environment [42, 70]. Similar work has been carried out for decision sets [33],
lists [28] and trees [36], where the problem appears to be simpler to solve [36].
Our work here tackles DNNs, which are known to be more difficult to verify [39].

Prior work has also sought to produce approximate explanations, e.g., by us-
ing δ-relevant sets [37,66]. This line of work has focused on probabilistic methods
for generating explanations, which jeopardizes soundness. There has also been
extensive work in heuristic XAI [50, 55, 56, 61], but here, too, the produced ex-
planations are not guaranteed to be correct.

8 Conclusion

Although DNNs are becoming crucial components of safety-critical systems, they
remain “black-boxes”, and cannot be interpreted by humans. Our work seeks to
mitigate this concern, by providing formally correct explanations for the choices
that a DNN makes. Since discovering the minimum explanations is difficult, we
focus on approximate explanations, and suggest multiple techniques for expedit-
ing our approach — thus significantly improving over the current state of the art.
In addition, we propose to use bundles to efficiently produce more meaningful
explanations. Moving forward, we plan to leverage lightweight DNN verification
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techniques for improving the scalability of our approach [49], as well as extend
it to support additional DNN architectures.
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