
Scaling-Up Behavioral Programming: Steps from Basic
Principles to Application Architectures

David Harel
Weizmann Institute of Science

Rehovot, Israel
david.harel@weizmann.ac.il

Guy Katz
Weizmann Institute of Science

Rehovot, Israel
guy.katz@weizmann.ac.il

ABSTRACT
Behavioral programming (BP) is a decentralized scenario-
based paradigm for the programming of reactive software,
geared towards incremental and intuitive development. In
this work we apply the principles of BP to a large, real-
world case-study: a web-server. We discuss the conclusions
learned from our attempt and propose several extension id-
ioms to BP, aimed at improving the framework’s scalability.
Specifically, we propose extending BP with a timeout id-
iom for handling various time constraints, program-specific
execution strategies, dynamic thread creation for efficiently
allocating system resources, and support for parameterized
events to handle inputs with infinite domains. Our exten-
sions and case-study are implemented in a new framework
for behavioral programming in C++.

Keywords
Behavioral programming, reactive systems, time constraints,
TCP, HTTP, C++.

1. INTRODUCTION
Scenario-based programming [21] is a recently proposed

approach to the development of decentralized reactive sys-
tems. At its core is the notion of programming through
the specification of scenarios, each of which corresponds to
a certain aspect of the system’s behavior, not necessarily
restricted to a particular component. When composed to-
gether according to a certain set of rules, the scenarios yield
cohesive system behavior.

One of the main difficulties in this type of design is to
ensure that the large variety of scenarios, each with their
own unique characteristics and viewpoints, inter-operate
correctly [28]. In particular, race conditions and unpredicted
interweaving of scenarios can result in incorrect system be-
havior. Thus, it is desirable to define inter-scenario inter-
faces that are sufficiently simple to minimize these effects,
but which are still powerful and expressive enough to be of
practical use.

In this work, we focus on behavioral programming

(BP) [24] — a particular form of scenario-based program-
ming that originated from live sequence charts (LSCs) [12,
21]. Behavioral programs consist of a collection of special
behavior threads, each describing a certain facet of the sys-
tem’s behavior. When run in parallel, the threads repeatedly
synchronize with each other at predetermined points. Each
synchronization point is then resolved by an event selection
mechanism (ESM) that selects an event for triggering based
on information gathered from all the threads. Thus, all com-
ponents are consulted in choosing the global course of action,
yielding the desired composite behavior.

The specific structure of behavioral programs, and in par-
ticular the simple yet strict thread interaction rules, has
beneficial effects: programs can be written in a “natural”
way, i.e., with modules that are aligned with the specifica-
tion [14, 24]; it greatly reduces the amount of (unexpected)
interleaving, hopefully making race conditions more scarce;
it renders the program more amenable to incremental devel-
opment; and it facilitates the application of program anal-
ysis methods to behavioral systems [20] (for more details,
see Section 2). Consequently, it has been conjectured that
behavioral programming is suitable for the development of
large systems. However, to the best of our knowledge, this
hypothesis has not yet been put to the test. Here we set out
to do just that, by attempting to implement a real-world sys-
tem in BP. Apart from checking the feasibility of the task,
we were interested in assessing whether the aforementioned
traits of BP, such as incremental development and the align-
ment of code with the specification, could indeed scale-up in
a large system.

For our case-study we chose to implement protocol stacks
of two common and elaborate protocols, TCP and HTTP.
TCP (Transmission Control Protocol) is a connection-
oriented protocol, used mainly for the transfer of data across
the internet. The principal feature of TCP is its reliability:
it guarantees that data arrives without errors and in the or-
der in which it was sent. HTTP (Hypertext Transfer Proto-
col) is a request-response protocol, aimed at allowing clients
to retrieve information from remote hosts. We have imple-
mented and combined these two protocol stacks, creating a
working web-server.

Our motivation in choosing this particular project was
its volume, and also our desire to test BP’s effectiveness in
handling the large variety of coding situations the project
entails: handling timeouts, string manipulation, file access,
checksum calculations, handling multiple inputs, mandatory
and forbidden user behaviors, etc.

As we began constructing the system we noticed that the

existing, “traditional” idioms of BP were inadequate for deal-
ing conveniently with certain programming tasks. Some of
these tasks could be performed by BP but required em-
ploying ad-hoc solutions that bypassed the built-in infras-
tructure, whereas others (e.g., those related to time) were
downright inexpressible using traditional BP, and required
incorporating external mechanisms into the program [25] —
in both cases, defeating the purpose of BP’s simple and in-
tuitive interfaces.

As the development of our case-study progressed, we were
able to classify the difficulties we faced, placing them in four
categories. For each of these, we were able to come up with
an extension idiom to BP that allowed convenient program-
ming solutions. In defining these new idioms, we attempted
to retain as much of the simplicity and intuitiveness of the
original framework as possible.

The first and foremost difficulty we encountered was the
issue of time: traditional BP assumes all transitions in the
systems take “zero time” (as per the synchrony hypothe-
sis [10]), and does not provide a mechanism for bounding
the flow of time between events. The TCP protocol makes
abundant use of timers and timeouts, and it was unclear to
us how to implement it in BP. To overcome this difficulty we
extended BP with the notion of timeouts which, as demon-
strated later in the paper, allowed us to express the required
time constraints for our program.

The second problem we faced was the need for program-
specific strategies in BP. The BP infrastructure dictates that
at every synchronization point of the execution the program
may have to choose between several legal execution paths,
but it does not specify which should be chosen. Various
schemes have been suggested in the past, which allow the
user to partially prioritize between these paths, each scheme
with its unique advantages and disadvantages. In the later
stages of the development of our case-study, when the sys-
tem contained numerous modules running in parallel, we
observed that several requirements — especially those per-
taining to prioritization between the modules — could be
naturally enforced through a more intelligent path selection
method. Unfortunately, the existing mechanisms were too
restrictive. We consequently extended the framework to al-
low programmers to supply their own path selection strate-
gies, per program, in a way that provided sufficient flexibility
for our needs.

The third type of difficulty we encountered was that of
dynamic thread creation. We wanted our web-server to be
able to handle different volumes of activity: that is, to al-
locate more resources when traffic was high and to release
them when it was low. A natural approach was to employ
dynamic creation and destruction of threads, which is not
allowed in the traditional BP semantics. In [20,23] a limited
variant of this concept was proposed, in order to regulate
external input to a behavioral program. We opted to gener-
alize and formalize this idea, allowing it to be used anywhere
within the program, and we then used it in our implemen-
tation to dynamically allocate more threads according to
traffic.

Finally, the last issue we encountered was that of pa-
rameterized inputs and events. Previous work on scenrio-
based programming and BP revolved around programs with
a small bounded pool of inputs, whereas the input domain
of a web-server is practically infinite. In order to implement
our example, we thus generalized traditional BP to support

parameterized inputs.
Having added these idioms to the BP framework, we were

able to accomplish our implementation goals. We imple-
mented our case-study in a new framework for behavioral
programming in C++, termed BPC, which we present here,
and which supports the extensions described above. The
framework and code for the case-study are available on-
line [2].

Returning to our original question of whether or not BP
is suitable for the development of large systems, we believe
that our case-study answers this affirmatively — provided
that the above idioms, or similar ones, are made available.
As for our secondary goal, namely to check whether BP’s
naturalness and incrementally would scale-up in a large sys-
tem: while these properties are inherently difficult to quan-
tify, the conclusions from our case-study seem to support an
affirmative answer here, as well. We discuss this matter in
later sections.

The remainder of the paper is organized as follows. We
begin by describing the traditional semantics of BP in Sec-
tion 2. In the succeeding sections, we discuss the difficul-
ties we encountered in our case-study, one by one, and the
new idioms used to overcome them. Each of the sections in-
cludes a small illustrative example and a discussion of where
the difficulty occurred in the web-server application: time
constraints are discussed in Section 3, customizable strate-
gies in Section 4, dynamic thread creation in Section 5 and
parametrized events in Section 6.

Sections 7 and 8 are dedicated to the BPC framework and
the details of the implementation of our case-study, respec-
tively. Related work appears in Section 9, and we conclude
in Section 10.

The rigorous semantics of our extended variant of BP is
available as supplementary material in [3].

2. BEHAVIORAL PROGRAMMING

2.1 Overview
In this section we describe the existing principles and id-

ioms of behavioral programming, which, in the following sec-
tions, we refer to as “traditional BP”.

A behavioral program consists of modules, each repre-
senting a different facet of behavior in the system. These
modules, termed behavior threads (abbr. b-threads), are in-
terwoven at run time: they all synchronize at certain points
throughout the execution, and together steer the course of
the system. Threads may also perform local computation
between synchronization points.

At every synchronization point, each b-thread declares
sets of events to be considered for triggering (requested
events) and events whose triggering it forbids (blocked
events), and then pauses. When all threads have submit-
ted their declarations, an event selection mechanism (abbr.
ESM), resolves the synchronization point: it computes the
set of enabled events — events that are requested by at
least one thread and blocked by none — and selects one
of them for triggering. As soon as this event is selected, all
threads that requested it are notified and are allowed to re-
sume their execution. Threads may also react to triggered
events that they did not request, in which case they are said
to be waiting-for those events. The model disallows inter
b-thread communication that does not occur through the
synchronization mechanism.

Scenario-based programming in general, and BP in par-
ticular, share many traits with the actor model [5]: behav-
ioral threads, like actors, are intended to be small pieces of
code, aware only of their specific interests and goals. In-
deed, we regard BP as complementary to the actor-oriented
and agent-oriented paradigms. The main motivation behind
BP, however, is that through its strict and simple synchro-
nization mechanism — all threads repeatedly synchronize,
and interact only indirectly, through requested and blocked
events — it facilitates incremental, non-intrusive develop-
ment, by writing threads that are aligned with the specifi-
cation [24]. This is demonstrated in the example of Fig. 1,
borrowed from [17]. Further, studies indicate that BP is nat-
ural in the sense that it is easy to learn, and that it fosters
abstract programming [6,14].

wait for
waterLevelLow

request addHot

request addHot

request addHot

WhenLowAddHot

wait for
waterLevelLow

request addCold

request addCold

request addCold

WhenLowAddCold

wait for addHot

while blocking
addCold

wait for
addCold while

blocking addHot

Stability

· · ·
waterLevelLow

addHot

addCold

addHot

addCold

addHot

addCold

· · ·

Event Log

Figure 1: (From [17]) An example of the incremental devel-

opment of a system for controlling water level in a tank with

hot and cold water sources. At first, b-thread WhenLowAddHot

is created; it repeatedly waits for waterLevelLow events and re-

quests three times the event addHot. It is then discovered that

adding just three water quantities for every sensor reading is

insufficient, and b-thread WhenLowAddCold is added. It per-

forms a similar action to that of WhenLowAddHot, but with

event addCold. Then, when WhenLowAddHot and WhenLowAdd-

Cold are executed simultaneously, the run may include three

consecutive addHot events followed by three addCold events. A

new requirement is thus introduced, to the effect that water

temperature should be kept stable. We incrementally add the

b-thread Stability to enforce the interleaving of addHot and ad-

dCold events, without modifying existing code.

Behavioral programming can be regarded as a kind of
“grand” design pattern, and thus can be implemented on
top of high-level programming languages; examples include
Java, Erlang and Google Blockly, among others. See [24]
and references therein, and also the behavioral programming
webpage [34].

Behavioral programming has been successfully used to de-
velop various small applications. In [23], for instance, the
incremental development of an application for playing Tic-
Tac-Toe is described. The threads in that application are
perfectly aligned with the specification of the game: turn
alternation is enforced by a thread that repeatedly waits
for all X moves while blocking O moves, and then waits
for all O moves while blocking X moves; for each square
there is a dedicated thread that waits for that square to be
marked, and then prevents further markings; other threads
detect wins by either of the players; etc. See [23] for fur-
ther details. Other examples include, e.g., a maze solving
robot [23], a rocket-landing game [32] and a quadrotor flight
simulator [25].

2.2 Semantics
As inter-thread communication is allowed only through

the event selection mechanism, we can regard a thread as
being “in state” only when it is at a synchronization point.
Given a global set of events E, we define a thread BT to be
the tuple BT = 〈Q, q0, δ, R,B〉 where Q is the set of states
(i.e., synchronization points), q0 is the initial state, δ ⊆ Q×
E × Q is a transition relation, R : Q → 2E is a labeling
function that maps a state to the set of events requested in
that state, and B : Q→ 2E is a labeling function that maps
a state to the set of events blocked in the state. Observe
that there is no labeling function for waited-for events: the
notion of waiting is expressed via the transitions between
states. We use δ(q, e) to denote the states reachable from
state q by event e, i.e., δ(q, e) = {q̃ | 〈q, e, q̃〉 ∈ δ}.

A behavioral program P is a collection of threads
{BT 1, . . . , BTn}, where BT i = 〈Qi, qi0, δ

i, Ri, Bi〉. A con-
figuration γ of the program is a tuple 〈q1, q2, . . . , qn〉 where
qi ∈ Qi; the initial configuration is γ0 = 〈q10 , q20 , . . . , qn0 〉. A
configuration γ̃ = 〈q̃1, . . . , q̃n〉 is the successor of configura-

tion γ with respect to event e ∈ E, denoted γ
e−→ γ̃, if and

only if conditions 1 and 2 hold:

e ∈
n⋃

i=1

Ri(qi)−
n⋃

i=1

Bi(qi) (1)

∀1≤i≤n,

{
δi(qi, e) 6= ∅ =⇒ 〈qi, e, q̃i〉 ∈ δi

δi(qi, e) = ∅ =⇒ q̃i = qi
(2)

That is, event e is enabled (i.e., requested and not blocked) in
configuration γ, and all threads react to event e as defined
by their respective transitions rules: if an edge for event
e exists, then such an edge is traversed. Otherwise, the
threads stay in the same state. Intuitively, the existence of
an edge implies that the thread waited for event e.

An execution ρ of P is a sequence of consecutive configura-

tions starting at the initial configuration, ρ = γ0
e0−→ γ1

e1−→
. . .. The execution can be infinite, or finite if it ends in a ter-
minal configuration — a configuration with no successors.
The run of ρ is the event sequence e0, e1, . . .; and the set of
runs of all valid executions of P is called the language of P ,
and is denoted L(P).

2.3 Handling Input
The synchronous nature of BP dictates that the system

may only progress when all threads have synchronized. Con-
sequently, a thread that is performing some blocking read
operation would render the rest of the system unable to
process any events. This makes it difficult to design sen-
sor threads — threads that wait for user input and then
request events to notify other threads of this input. A naive
way to design such a thread appears in Fig. 2.

In order to overcome this difficulty we use the solution
proposed in [16], denoted eager execution. The idea is that
if a thread that has not yet synchronized is known to never
block an event, and that event is enabled with respect to the
other threads, then it may be immediately triggered with-
out waiting for the delayed thread. Events triggered this way
are then stored in a dedicated queue, and when the delayed
thread finally catches up it processes them. As a particu-
lar case, sensor threads can always be declared to block no
events, allowing the rest of the system to operate normally.
See [16] for more details.

while(true) {
waitForButtonClick (); // Returns only on click
bSync({buttonClicked}, ∅, ∅);

}

Figure 2: Pseudocode for a naive implementation of a sen-

sor thread. The thread runs in an infinite loop, in each itera-

tion waiting for input via the blocking call waitForButtonClick

and then requesting a buttonClicked event. The bSync call is the

synchronization API method: its first parameter (marked in

blue) is the set of requested events, the second (green) is

the set of waited-for events, and the third (red) is the set of

blocked events. bSync only returns when an event that was

requested or waited-for has been triggered. In particular,

this enforces the convention that a thread implicitly waits

for every event that it requests — though it may also wait

for additional events, that it did not request. Here, the only

requested event is buttonClicked, and the other two event sets

are empty. When waiting for a button click, this thread pre-

vents the entire system from triggering any events.

3. SUPPORT FOR TIME CONSTRAINTS
The traditional BP semantics suffices when the system in

question is time oblivious — i.e., when its response to exter-
nal inputs takes negligible time and there are no constraints
on the instance in time in which events may be triggered.
But what happens when that is not the case? Consider, for
instance, a behavioral program for a railway crossing. Sup-
pose that a sensor thread signals the approach of a train by
generating a lowerGate event. Also, say the gate is to remain
down for 30 seconds, after which another thread is to request
a raiseGate event. The simplest approach is to encode this
thread as depicted in Fig. 3.

while(true) {
bSync(∅, {lowerGate}, ∅);
sleep (30);
bSync({raiseGate}, ∅, ∅);

}

Figure 3: A thread that waits for lowerGate, sleeps for 30

seconds, and then requests a raiseGate event.

Unfortunately, this thread pauses the execution of the en-
tire system during its sleeping periods.

One way to tackle this difficulty is to delegate timing re-
sponsibilities to a non-behavioral component, and have the
system communicate with it using external events [25]. How-
ever, this solution requires that the programmer goes beyond
the scope of BP.

Another approach is to use the eager execution mecha-
nism, as was the case with sensor threads. However, eager
execution has limited applicability: consider, for instance,
the stronger variant in which the programmer wishes to
block the raiseGate event for the 30 seconds following a lower-
Gate event, to negate any accidental requests made by other
threads. This stronger requirement is difficult to accommo-
date using the eager synchronization mechanism, as there is
no way to readily inform the blocking thread that 30 seconds
have passed.

Programming tasks in which time plays a role appeared
frequently in our TCP stack implementation. The TCP pro-
tocol guarantees that data arrives without errors and in the

order in which it was sent. To accomplish this, the end par-
ties acknowledge the reception of each TCP segment using
a scheme of agreed-upon sequence numbers; segments that
are lost or arrive corrupt are not acknowledged, and are then
retransmitted. Thus, a TCP stack needs to keep track of the
time passed since sending each outgoing TCP segment, and
retransmit it unless an acknowledgment is received within a
certain time window.

To support these requirements, we extended BP with a
timeout idiom. This idiom allows each thread to declare,
at every synchronization point, a timeout value — in addi-
tion to the requested, waited-for and blocked events. The
timeout value indicates the maximal number of seconds the
thread is willing to wait, in synchronized state, for a re-
quested or waited-for event to be triggered, after which it
“withdraws” its synchronization and associated event dec-
larations. In practice, this means that the synchronization
call returns and the thread resumes. The programmer can
check if the call returned due to a triggered event or because
of a timeout.

Using the timeout parameter, the thread depicted in Fig. 4
guarantees that the railway crossing system does not gener-
ate an early raiseGate event.

while(true) {
bSync(∅, {lowerGate}, ∅, ∞);
bSync(∅, ∅, {raiseGate}, 30);

}

Figure 4: An implementation using the timeout parameter.

Event raiseGate is blocked for 30 seconds.

The thread waits for a lowerGate event, and then spends
the successive 30 seconds blocking raiseGate events. Count-
ing these 30 seconds begins the instant the thread synchro-
nizes, and does not depend on other threads. Since the
thread neither requests nor waits for any events, the block-
ing is guaranteed to continue for the full 30 seconds, after
which the call returns, and the thread waits for additional
lowerGate events. The special∞ symbol passed as the time-
out parameter implies that the thread is willing to wait in-
definitely; in fact, using this value produces the same result
as the traditional synchronization interface.

The timeout idiom can also be used to implement a TCP
retransmission scheme, as shown in Fig. 5. The thread trans-
mits the packet, and then waits for an acknowledgment for 2
seconds. If the acknowledgment is not received, the second
synchronization call returns due to a timeout, and the pro-
cess repeats. We describe our implemented retransmission
mechanism in greater detail in Section 8.

do {
bSync({sendSegment}, ∅, ∅, ∞);
bSync(∅, {acknowledgment}, ∅, 2);

} while (timeoutInLastSync ())

Figure 5: A retransmission scheme. The thread waits for

an acknowledgment for 2 seconds, and if it fails to arrive —

retransmits the segment.

The proposed idiom appears to be natural and intuitive,
and thus compatible with the rest of BP’s idioms. Indeed,
one of our goals was to stick to simple and intuitive idioms

whenever possible. The timing idiom is also quite expressive,
allowing a variety of behaviors that were previously beyond
the direct scope of BP, such as “block for x seconds” (as
in the railway example), “request for x seconds and then
default”, or just “sleep for x seconds” without delaying the
system.

In our view, a call to bSync that returns due to a timeout is
not considered an error — rather, it is just another possible
outcome of the synchronization attempt. Thus, timeouts are
not regarded as exceptions, but as a mechanism for coping
with thread transitions that are not immediate: if a thread is
delayed in reaching its synchronization point, other threads
may react (when their timeouts expire) and change their
event declarations.

In [20], the authors present a model-checker for behavioral
programs, capable of handling safety and liveness properties.
An interesting aspect of this model-checker is that it receives
the property in question in the form of a b-thread: a thread
that waits for unwanted event sequences and marks states as
bad (safety), or a thread that waits for good event sequences
and marks states as good (liveness). We observe that the
addition of timeouts allows us to express, e.g., time-related
safety properties. For instance, consider a system in which
every e1 event is always followed by an e2 event, and suppose
that we wish to verify that at most 2 seconds pass between
every e1 and e2 pair. This property can be expressed by the
b-thread depicted in Fig. 6.

while(true) {
bSync(∅, {e1}, ∅, ∞);
bSync(∅, {e2}, ∅, 2);
if (timeoutInLastSync ())

bSync({error}, ∅, ∅, ∞);
}

Figure 6: A thread that requests an error event if event e2

is not triggered within 2 seconds of event e1.

This sort of constraint can be useful for model-checking
(by extending the tool of [20] to support timeouts); and it
can also give rise to a lookahead mechanism that influences
the choice of triggered events so as to satisfy the constraint,
similarly to the smart play-out mechanism of [18, 19]. Both
directions are left for future work.

Technically, thread timeouts are triggered by the event
selection mechanism, similarly to the way regular events are
handled. Further details appear in Section 7.2 and as sup-
plementary material in [3].

4. CUSTOMIZABLE EVENT SELECTION
BP’s traditional semantics dictates that in every synchro-

nization cycle one event that is requested and not blocked is
triggered. However, if there is more than one viable event for
triggering, it is unspecified which of those will be selected.

In practice, however, it is often useful to have events se-
lected using a certain strategy. For instance, consider the
following system that manages a smart door lock. When a
person approaches, he/she must place the appropriate iden-
tification card on a reader, and a behavioral program decides
whether or not to let the person through. A simple design
for the program is to have a dedicated thread handle the
lock; and whenever an id card is scanned, have it request
an open event, which is translated by an actuator thread to

opening the actual lock.
Next, suppose some people should be denied passage —

e.g., if they do not appear in the white list, if they appear in
the black list, or if their access card has expired. We assume
that the open event has an id parameter, that identifies the
person, and that other parts of the system may block open
events for certain ids. However, as the lock thread does not
know in advance which events are blocked, it cannot just
request the open event, or the system could get stuck if that
event is blocked. One possible solution appears in Fig. 7: the
thread requests, along with an open event, also an idle event.
If the open event is blocked, the idle event is processed, and
the thread can continue processing future requests.

while (true) { // Door thread
bSync(∅, {request}, ∅, ∞);
bSync({open(lastEvent().id), idle}, ∅, ∅, ∞);

}

while (true) { // Blocker Thread
bSync(∅, ∅, {open | open.id is in black list}, ∞);

}

Figure 7: A sketch of the lock program. The door thread

waits for requests, and tries to grant them. Other threads

may block the open(id) event for certain values of the id pa-

rameter. As the door thread has no way of knowing whether

a specific event is blocked or not, it also requests an idle event,

to allow itself to ignore the request and move on to process

future requests.

In order for this scheme to work properly and not deny
entrance to authorized ids, we need to be certain that any
open event will take precedence over the idle event. Thus,
we need a way to enact a certain strategy for how enabled
events are to be selected for triggering.

On several occasions we encountered similar, though more
complex, situations in our case-study. In one case, during
tests with multiple simultaneous connections, we observed
that some clients would get starved. Hence, we wanted
to enforce the requirement that higher priority be given
to requests from starving connections. In another case,
we wanted to ensure that segment-sending requests always
received a higher priority than connection-termination re-
quests, so that segments were never sent on closed connec-
tions.

Previous work discussed several event selection strategies,
such as thread-based priority, round robin, random and arbi-
trary selection [23]. The BPJ framework, for instance, uses
the thread-based priority scheme. Through our case-study
and the specific requirements that it entailed regarding event
selection, we came to recognize that no one strategy fitted
all programs, and that it was useful to allow programmers
to supply their own program-specific strategy.

Consequently, we extend BP’s event selection in the fol-
lowing way. Let Γ denote the set of possible system config-
urations. In its most general form, an event selection strat-
egy is a function fes : Γ∗ × Γ → E, which takes as input
the history of previous system configurations and the cur-
rent configuration, and chooses an event for triggering from
among the enabled events. The selection function is supplied
by the programmer and is considered part of the behavioral
program rather than of the BP framework. Apart from sub-
suming the above mentioned mechanisms, this approach also

allows event selection strategies that change over time, such
as learning [13] or look-ahead algorithms.

Technically, the BPC framework allows the programmer
to provide a callback object to manage event selection. In
particular, modifying the selection strategy does not entail
recompiling the framework. For more details on the specific
strategy used in our case-study and its implementation, see
Section 8.

5. DYNAMIC THREAD CREATION
A reactive application may, throughout the course of its

run, have to deal with varying volumes of activity. It is
desirable to have applications that adjust — that is, dedicate
more computational resources — when activity is high, and
free them when they are no longer needed. This goal may
be difficult to achieve with traditional BP.

Consider, for instance, a mail client application, which
takes as input an email address and the body of a message
and then sends it. Further suppose that the application
waits for an acknowledgment message for every email sent.
It must thus keep track of previous mails that have yet to
be acknowledged.

One possible design for such an application is to direct
all requests and acknowledgments to a single thread, which
can then keep track of traffic, using an internal database.
A cleaner solution, however, is to have multiple threads,
each in charge of sending a single message and tracking its
acknowledgment. The resulting threads are simpler and do
not require a database, and are thus less prone to error.

The question then arises of how many of these threads
we should instantiate. Statically determining this number
would raise the risk of not having enough resources when
many requests are performed simultaneously, and the risk
of wasting computational resources when traffic is low.

To resolve this issue, we propose to allow threads to
dynamically spawn other threads, and similarly, to allow
threads to terminate during execution. That way, new
threads can be instantiated when needed, and can be ter-
minated when they are no longer needed, freeing system
resources. An implementation of the above program using
dynamic thread spawning appears in Fig. 8.

while (true) { // Dispatcher thread
bSync(∅, {mail}, ∅, ∞);
new Sender(lastEvent (). address , lastEvent (). text);

}

do { // Sender thread
bSync({send(address, text)}, ∅, ∅, ∞);
bSync(∅, {ack(address)}, ∅, 10);

} while(timeoutInLastSync ());

Figure 8: The Dispatcher thread waits for incoming mail

requests. For every such request, it dynamically creates a

new Sender thread and passes to it as parameters the address

and text fields of the request. Each Sender instance deals with

just one mail, which was passed to it during construction.

Immediately upon its instantiation, the thread sends the mail

and awaits an acknowledgment. If no such acknowledgment is

received within 10 seconds, the mail is resent. As soon as the

acknowledgment has been received, the thread terminates.

We faced similar situations in our case-study. In particu-
lar, the TCP message acknowledgment scheme is very sim-

ilar to the above example, and indeed we implemented it
by spawning dedicated threads that wait for message ac-
knowledgment. Further, each active connection in the pro-
tocol stack requires some bookkeeping (e.g., the state of the
connection, last received incoming sequence number, and
last used outgoing sequence number), and we explored im-
plementation variants, in which these bookkeeping threads
were spawned per connection, in order to improve efficiency.
More details appear in Section 8.

The reader may notice that, assuming that the address
and text parameters in Fig. 8 are unbounded, there are in-
finitely many versions of thread Sender that may be created
throughout the run. Indeed, the traditional definition of
behavioral programs as a set of threads that exist through
the program’s run no longer applies in the face of dynamic
thread creation. Instead, we associate a behavioral program
with a set of thread templates — copies of which may be
instantiated at different times throughout the run. See the
supplementary material in [3] for a rigorous definition.

We point out that the concept of dynamic thread creation
was already introduced in [23], where the authors used dy-
namically created sensor threads. These threads could only
be spawned by non-behavioral components, and were only
used to signal user input. In contrast, we allow the dynamic
creation of general threads by other threads throughout the
program (and use the mechanism of [16] to manage system
input).

Dynamic thread creation is a useful feature, but it also
has its tolls: in our BPC implementation, each behavioral
thread is presently implemented as a POSIX thread, and so
the creation of a large number of thread incurs a overhead.
We plan to mitigate this problem by implementing of a more
efficient, lightweight threading mechanism, similar to the
one used, e.g., in Erlang [8].

6. PARAMETERIZED INPUT
In this section we examine another issue that may arise

in applying the BP principles to a large system: the need to
handle a pool of (practically) infinitely many possible inputs.
This requirement is quite common; in particular, it arose in
our case-study, where the system had to handle incoming
TCP segments, i.e., byte sequences of unknown length.

For illustration, consider a simple program that takes as
input a number x and checks whether it is a multiple of 3
and also ends with the digit 5. One approach to writing
such a program would be to have a sensor thread wait for
inputs, and then broadcast them to the rest of the system.
One checker thread would then check whether x is divisible
by 3, and another would check whether x ends with 5. Using
event blocking, the two checker threads could then reach a
combined decision on the final answer.

The input parameter x is unbounded, and as the BP
framework dictates that threads only exchange information
through the synchronization mechanism, this implies that
the event set E of the program must be infinite. A con-
venient way to facilitate handling infinite event sets is to
extend the definitions of traditional BP, and allow events
with unbounded parameters. This is a generalization of
an approach that appeared in examples described in [20];
there, the authors used events with bounded parameters to
facilitate waiting-for or blocking finite sets of events. Pseu-
docode for the program described above, using parameter-
ized events, appears in Fig. 9.

while (true) { // Sensor thread
int x = readInput ();
bSync({check(x)}, ∅, ∅, ∞);

}

while (true) { // First checker thread
bSync(∅, {check}, ∅, ∞);
if ((lastEvent ().x % 3) == 0)

bSync({good}, {bad}, {check}, ∞);
else bSync({bad}, ∅, {good, check}, ∞);

}

while (true) { // Second checker thread
bSync(∅, {check}, ∅, ∞);
if ((lastEvent ().x % 10) == 5)

bSync({good}, {bad}, {check}, ∞);
else bSync({bad}, ∅, {good, check}, ∞);

}

Figure 9: A program that takes as input a number x, and

decides whether it is a multiple of 3 that ends with 5. The

Sensor thread waits for exterior inputs, and translates them

into a parameterized event check. This event is waited for

by the two checker threads, each of which checks one of the

two conditions. Both threads then proceed symmetrically:

if the condition holds, they request event good; otherwise,

they request event bad and block event good. Thus, event

good is triggered if and only if both conditions hold for x. If

either thread discovers that its respective condition does not

hold, event good becomes blocked and cannot be triggered,

resulting in the triggering of bad. Observe that when handling

a previous request both threads block new check events, to

delay new inputs until they can be processed.

Using this idiom in our case-study, we employed a sensor
thread to read incoming segments, and for each segment
to request a tcpSegmentReceived event — with the segment
as its parameter. The segment could then be processed by
other threads. Other parts of the system also made use of
parameterized events; for instance, events associated with
incoming HTTP requests carried ip and port parameters,
indicating the address to which a response to the request
needed to be sent. For additional details, see Section 8 of
the paper.

We observe that in many cases, dealing with unbounded
parameterized events calls for threads with infinitely many
states — states that may depend on the parameters. For
instance, consider the sensor thread in Fig 9. A “state” of
the thread is a synchronization point with fixed requested,
waited-for and blocked events. For any input x, the thread
requests different events; and hence, it must have as many
states as there are x’s. Therefore, this extension calls for
allowing infinite state sets in the rigorous semantics of BP;
See supplementary material in [3].

Finally, once we allow unbounded parameterized events
we should consider that threads may wish to wait-for or
block infinitely many events (as in the example of Fig. 9).
More complex cases include waiting-for or blocking events
depending on their parameters. In BPC, we follow the ex-
ample of the BPJ framework [23] for BP in Java, and al-
low parameter-dependent blocking or waiting-for events via
event predicates — functions that take events and answer
true or false. When a thread uses a predicate to indicate its
waited-for events, it is notified of a triggered event if that
event causes the predicate to evaluate to true, and similarly,
if it uses a predicate to indicate its blocked events, an event
can be triggered only if the predicate returns false for that

event. As in BPJ, we require that the requested events be
explicitly declared, so that set must be finite. This is re-
quired for the event selection process in the ESM.

7. THE BPC FRAMEWORK
In this section we present the BPC framework for behav-

ioral programming in C++, which implements the exten-
sions discussed in previous sections. It is available online
at [1]. The framework is designed to allow the user to con-
veniently define and write behavior threads while using the
full power of the C++ programming language. The synchro-
nization and coordination mechanism is implemented as part
of the framework, and is concealed from the user.

7.1 User Interface
Behavior threads are implemented as classes that in-

herit from the BThread class. They are customized to
carry out particular behavior by overriding the entryPoint

method, which the framework invokes when the thread
starts. The interface provided by the parent class includes
the bSync method to perform thread synchronization and
the lastEvent method to retrieve the result of the last syn-
chronization point — be it an event or a timeout. The bSync
method pauses the thread until a requested or waited-for
event is triggered, or until a timeout occurs.

Events in the system are instances of class Event. All
events have a type (an integer), and additional parameters
can be added by supplying classes that inherit from Event.

In order to run the application, the user instantiates the
initial threads inside the main method of the program and
calls a special start method provided by the framework.

Parts of the application that corresponds to the example
in Fig. 1 appear in Fig. 10. Additional features of BPC, such
as dynamic thread creation and customized event selection
strategies, appear as parts of the case-study, described in
Section 8. In later code snippets we sometimes omit parts
of the C++ syntax and focus on the body of the threads.

enum { waterLevelLow , addHot , addCold };

class WhenLowAddHot : public BThread {
void entryPoint () {

while(true) {
Vector <Event > requested, waited, blocked;
waited.append(waterLevelLow);
bSync(requested, waited, blocked, NO_TIMEOUT);

waited.clear (); requested.append(addHot);
for(unsigned i = 0; i < 3; ++i)

bSync(requested, waited, blocked, NO_TIMEOUT);
}}};

Figure 10: The events in the program have a type field with

possible values waterLevelLow, addHot and addCold, and no pa-

rameters. The WhenLowAddHot class inherits from BThread,

with the entryPoint method customized to carry out the spe-

cific thread behavior. The thread runs in an infinite loop,

and in each iteration it waits-for event waterLevelLow and then

requests event addHot three times. The bSync method takes

three event vectors and a timeout parameter (here, set to

the special value NO TIMEOUT).

In order to facilitate the migration of existing behavioral
code, BPC supports programs where the extension idioms
that we propose in this work are not used. For instance,

synchronization calls may contain just the first 3 parame-
ters, ignoring the timeout parameter; the effect is the same
as passing the NO TIMEOUT value, which has the same se-
mantics as a synchronization call in traditional BP. If no
customized event selection strategy is defined, BPC uses a
default, arbitrary selection scheme. Naturally, events with-
out parameters and programs with just statically created
threads are also allowed.

7.2 The Underlying Mechanism
Communication between threads and the event selection

mechanism is performed using standard client-server sock-
ets. Throughout the run, the ESM maintains a server
socket which awaits new threads that might connect. For
each currently active thread, the ESM maintains an active
socket connection on which synchronization data and trig-
gered event information are exchanged. Whenever a thread
synchronizes with the ESM, the latter checks if the thread
declared a timeout at this synchronization point; if so, it sets
a timer to expire accordingly. If an event that the thread re-
quested or waited-for is triggered before the timeout expires,
the timer is reset. The pseudocode for the ESM appears in
Alg. 1.

Algorithm 1 Event Selection Mechanism

1: ActiveThreads← ∅, Synchronized← ∅
2: while true do
3: wait for new threads, synchronizations and timeouts
4: if new thread bt connected then
5: ActiveThreads← ActiveThreads ∪ {bt}
6: else if timeout for thread bt expired then
7: Synchronized← Synchronized− {bt}
8: inform bt of a timeout
9: else if thread bt synchronized then

10: set the timeout timer for bt
11: if ActiveThreads = Synchronized then
12: if exists event e enabled for triggering then
13: for every thread bt′ that requested/waited-for e

do
14: send e to bt′

15: Synchronized← Synchronized− {bt′}
16: reset timeout timer for bt′

Line 12 of the algorithm does not specify which event e
to choose in case there are multiple enabled events. The
default option in BPC is arbitrary event selection. If the
programmer has customized the event selection mechanism,
he/she has provided an object that can take the list of en-
abled events and return the next choice, in which case that
object is then invoked. The object may also store infor-
mation from previous iterations and use it in the present
selection iteration. An example appears in Section 8.

Another variant of BP that may be useful in a distributed
setting includes a distributed version ESM [16]. In this vari-
ant, which is also supported in BPC, the threads are parti-
tioned into sets — each of which is managed by a different
ESM agent. The agents exchange information among them-
selves when needed. Distributing the ESM can be useful,
e.g., when threads run on multiple machines, and communi-
cation between these machines is slow or costly.

8. CASE-STUDY: A WEB-SERVER
In this section we survey the architecture of our web-server

case-study, dwelling in particular on the implementation of

the examples discussed in Sections 3-5. Most of the threads
and inter-thread interactions described in this section are
displayed in Fig. 11. Apart from giving the technical details,
throughout this section we also try to convey to the reader
a sense of the interaction between the behavioral code and
native C++ code in our implementation, and also of the in-
cremental development process of a behavioral application.

8.1 The Implementation’s Layout
Our application consists of two distinct sets of threads,

one for the TCP layer and one for the HTTP layer. The
two layers interact with each other via behavioral events,
and each also has an additional source of input: the TCP
layer reads TCP segments off a “raw socket”, and the HTTP
layer reads files from a given directory. These additional
inputs are obtained by threads containing non-trivial native
C++ code, and are then translated into behavioral events
in order to be passed to other threads.

Internally, each layer is designed using a dispatcher archi-
tecture: a dispatcher thread handles each incoming segment,
classifies it according to its attributes, and then passes it to
specific handler threads via behavioral events. These han-
dler threads can then request additional events in order to
issue a reply and/or update other threads of the contents of
the segment. Handlers typically perform local computation
using native C++ code — e.g., calculating TCP checksums
or reading files from the directory. Incoming TCP segments
containing HTTP requests are passed between the layers,
and the same happens to HTTP replies on their way to the
client.

To exemplify the server’s operation we describe in more
detail the handling of TCP connection establishment re-
quests (SYN segments). Initially, the RawSocketReceiver
sensor thread reads the incoming segment from the socket.
When it is received, the thread requests a tcpSegmentRe-
ceived event — with the segment as its parameter — in order
to pass the segment to the TcpDispatcher thread.

The TcpDispatcher uses native C++ code to classify in-
coming TCP segments according to their attributes, and
requests additional events accordingly. SYN requests, for
example, are identified by reading the SYN flag from the
TCP header of the segment. The thread then requests a
tcpSynRequest event in order to notify TcpSynHandler —
the specific handler for SYN requests.

The TcpSynHandler thread responds to each request by
generating a tcpOutgoingSegment event, with a SYN-ACK
segment as its parameter. Finally, this event then gets trans-
lated into a tcpSendSegment event — handled by the Raw-
SocketSender sender thread, which actually sends the seg-
ment to the client.

We note that in order to construct the SYN-ACK seg-
ment, the TcpSynHandler thread must first acquire a fresh
sequence number. This is performed by sending a request
to, and receiving a response from, the SequenceNumberAl-
locator thread — the thread in charge of managing the se-
quence numbers of every TCP connection. SequenceNum-
berAllocator may handle simultaneous requests for sequence
numbers (for the same connection) from multiple threads,
and here the BP event selection mechanism guarantees that
each outgoing segment has a fresh sequence number: Sequen-
ceNumberAllocator handles requests (represented by events)
sequentially, and thus race conditions are avoided.

Apart from dispatcher and handler threads, additional

HTTP Layer TCP Layer

Raw SocketSYN Handler

TCP Dispatcher

Raw Socket
Receiver

Sequence Number
Allocator

Segment Sorter

Ensure Active
Connection

Retransmitter

Outgoing Segment
Handler

Raw Socket
Sender

HTTP Dispatcher

GET Handler

CGI Runner

HTTP Reply
Sender

Directory

Figure 11: A overview of the web-server’s architecture. For clarity, many details have been omitted; the full code is available

online [2]. Rounded rectangles represent threads, and edges represent the logical interactions described throughout Section 8.

The threads are partitioned into a TCP layer and a HTTP layer; the layers interact with each other and with additional sources

of input (“Raw Socket” and “Directory”). Threads marked in orange were incrementally added on top of an already working

basis: (1) the Retransmitter mechanism that waits for outgoing segments and re-feeds them to Outgoing Segment Handler if they

are not acknowledged, and (2) the Ensure Active Connection mechanism that waits for connection activation/termination events,

and blocks HTTP segments on inactive connections from reaching Segment Sorter.

“standalone”threads exist in the system: for instance, the re-
quirement that TCP segments be sent only on active connec-
tions is enforced by the TcpEnsureActiveConnection thread.
This thread uses blocking to ensure that a tcpSynRequest is
triggered before other TCP events — such as those signalling
PUSH or ACK segments — are triggered. Likewise, once a
FIN segment is triggered, the thread blocks any additional
TCP events for that connection.

8.1.1 Segment Reordering
TCP segments that contain data for the HTTP layer are

not guaranteed to arrive in the order in which they were
sent. Hence, the TCP layer needs to reorder them before
passing them on.

During data transfer, TCP segments with data for the
HTTP layer cause the triggering of dataToHttp events. Each
of these events carries the received segment’s sequence num-
ber as a parameter. The TCP stack knows the expected
sequence number of the next data segment: the initial se-
quence number is stated by the client at the time of connec-
tion establishment, and is subsequently incremented for each
segment. Whenever an incoming sequence number is greater
than the one expected, the stack realizes that a segment
is missing; and when this segment later arrives, reorder-
ing takes place. Pseudocode for the SegmentSorter thread,
which is in charge of this reordering, appears in Fig. 12.

8.1.2 Segment Retransmission
As mentioned in Section 3, when sending out a segment,

the TCP stack must wait for an acknowledgment message
— and if one does not arrive, the segment needs to be re-
sent. There exist several sophisticated retransmission poli-
cies, aimed at reducing traffic congestion, which have ad-
justable retransmission periods. For our case-study we opted
for the simplest scheme — retransmission after a fixed wait-
ing period. Implementing additional schemes is left for fu-
ture work.

In our implementation, segments leaving the TCP stack
on their way to be sent to the client via the raw socket

while(true) { // SegmentSorter thread
Vector <Event > requested, waited, blocked;
waited.append(tcpSynRequest , dataToHttp);
bSync(requested, waited, blocked, NO_TIMEOUT);

if (lastEvent (). type() == tcpSynRequest)
storeSeqNumber(lastEvent (). seqNumber ());

else
if (lastEvent (). seqNumber () != expectedNumber ())

storeData(lastEvent (). data());
else sendReorderedSegments(lastEvent (). data());

};

Figure 12: The SegmentSorter thread waits for tcpSynRequest

and dataToHttp events. When a tcpSynRequest event occurs, the

thread extracts the sequence number for later use. When a

data segment is received, its sequence number is compared

to the expected number. If it does not match, the segment

is stored. If it does match, the segment is passed on to the

HTTP layer, along with any consecutive segments previously

stored, and the expected sequence number is updated.

always pass as tcpOutgoingSegment events. Our retransmis-
sion mechanism waits for these events and stores the outgo-
ing segments. Then, if they are not acknowledged withing
a fixed period of time, it retransmits them — until an ac-
knowledgment is received. Pseudocode appears in Fig. 131

8.1.3 Customized Event Selection
As mentioned in Section 4, we occasionally found cus-

tomizing the event selection strategy a straightforward
method in order to enforce certain requirements. For exam-
ple, in one case we wanted to ensure that all outgoing seg-
ments finish sending prior to sending the segment indicating
the connection being closed (a FIN segment) — a property

1The depicted solution spawns a thread for each outgoing
segment, which incurs overhead (as discussed in Section 5).
In practice, we found that it was more efficient to spawn one
Retransmitter thread per connection, and have it handle all
of that connection’s segments. Nevertheless, we feel Fig. 13
better illustrates the principles described in Section 5.

class Retransmitter : public BThread {
void entryPoint () {

Vector <Event > requested, waited, blocked;
waited.append(tcpOutgoingSegment);
while (true) {

bSync(requested, waited, blocked, NO_TIMEOUT);
new PeriodicSender(lastEvent ());

}}};

class PeriodicSender : public BThread {
PeriodicSender(Event tcpOutgoingSegment) {

storedSegment = tcpOutgoingSegment;
}

void entryPoint () {
bool done = false;
while (!done) {

Vector <Event > requested, waited, blocked;
waited.append(ackForStoredSegment ());

bSync(requested, waited, blocked, 2);
if (timeoutOnlastSync ()) {

waited.clear ();
requested.append(storedSegment);
bSync(requested, waited, blocked, NO_TIMEOUT);

}
else done = true;

}}};

Figure 13: Pseudocode for the segment retransmission

mechanism. The Retransmitter thread waits-for tcpOutgoingSeg-

ment events — events that indicate a TCP segment about

to be sent — and for each such event it spawns an instance

of the PeriodicSender thread. The PeriodicSender instance re-

ceives through its constructor the segment that it is supposed

to monitor. It then waits for an acknowledgment of that seg-

ment for 2 seconds. If an acknowledgment message fails to

arrive, the thread retransmits the segment, and the process

repeats. When an acknowledgment is received, the thread

terminates. Note that the ackForStoredSegment method (code

omitted) is a predicate — it evaluates to true only for tcpAck-

Received events with the proper acknowledgment information.

Also, a bookkeeping mechanisms (also omitted) is required

to prevent the creation of additional PeriodicSender threads

for a segment that is being retransmitted.

that was not trivially upheld by the TCP stack. Another
example was giving priority to starving connections, namely
connections whose events have not been triggered in a while,
in order to avoid retransmission of segments and the conges-
tion incurred by it.

Pseudocode for a customized event selection function that
addresses these two issues appears in Fig. 14.

8.2 Features and Evaluation
Our implemented TCP stack supports connection estab-

lishment and termination, data sending and acknowledg-
ments, keep-alive messages, segment reordering and seg-
ment retransmission. Simultaneous connections are also
supported, whereas dealing with flow and congestion con-
trol is still work in progress. The HTTP stack supports
GET requests, error and redirection messages, and the ex-
ecution of CGI scripts. The project contains over 20k lines
of code, and is available online [2].

We constructed our case-study as a proof of concept, and,
in our experiments, it provided “smooth” surfing of web-
sites. Nonetheless, it cannot presently compete with indus-
trial web-servers performance-wise, e.g. in throughput rate.
We thus focused our evaluation on proper adherence to the

Event choose(Vector <Event > enabledEvents) {
Vector <Event > candidates =

eventsOfStarvedConnection(enabledEvents);

if (candidates.has(sendTcpFin) &&
candidates.hasOtherThan(sendTcpFin))

return candidates.otherThan(sendTcpFin);
else return candidates [0];

};

Figure 14: Pseudocode for the customized event selection

strategy. At every synchronization point, this function is in-

voked with the set of enabled events, of which it must select

one for triggering. Information from previous iterations may

be stored. Our specific implementation gives precedence to

previously “starved” connections: that is, it favors the con-

nection that has waited the longest for an event to be trig-

gered. This part is abstracted away in the method eventsOfS-

tarvedConnection. Once a connection is selected, its associated

events are the candidates for triggering; among these, we prefer

events that are not sendTcpFin, so that pending data transmis-

sion requests are addressed before the connection is closed.

Otherwise, an arbitrary event is selected.

TCP/HTTP protocols.
We tested the system with two widespread browsers, Fire-

fox and Google Chrome. In both of these, the server prop-
erly displayed non-trivial sites, with both static and dynamic
(e.g., PHP, CGI) pages. In particular, we ran a copy of the
BP website [34] on the behaviorally-programmed server.

To test the more advanced features of the server, such
as segment retransmission and segment reordering, we con-
ducted tests in which the client connected to the server
through a proxy — a third piece of software, which we con-
trolled. We then simulated unreliable networks by having
the proxy delay or drop segments, or deliver them out of
order. All webpages were nevertheless properly displayed.

Finally, for stress testing we ran ten clients that were si-
multaneously trying to upload a 10 megabyte file each to
the server. The proxy was set to maximal interference —
that is, not a single segment was delivered to the server in
the correct order. All files were successfully received and
reassembled by the server.

8.3 Discussion: Incremental Development
An important feature previously attributed to scenario-

based programming (and hence BP too) is that it facili-
tates incremental development [23, 24]. One of our goals
was to check whether this would still hold for large pro-
grams. While this property is difficult to quantify and may
depend on coding habits, the experience we gained when
developing our case-study indicates an affirmative answer.

We built our web-server iteratively, repeatedly translating
parts of the specification into threads, and with only a vague
“big picture” in mind. For instance, we first programmed the
connection establishment and data exchange parts of the
TCP stack, but without considering segment retransmission
or ignoring segments on closed connections. Later, we found
that adding these features incurred no changes to existing
code (see also Fig. 11). Naturally, in some cases — e.g.,
adding the reordering of TCP segments — some code was
changed, but the changes were usually local and contained.

One could argue that the incremental development of our
case-study was made possible because of the dispatcher-

handler design pattern that we used. This was indeed par-
tially the case, but we feel that two remarks are in order:
(i) BP promoted the use of a dispatcher-handler pattern
in the first place; and (ii) in some cases, as in the case of
segment retransmission, incremental development was made
possible because communication between threads was per-
formed strictly through the triggering of events. Hence, we
could easily “hook” onto these events when needed.

9. RELATED WORK
Our proposed extensions to BP are common programming

idioms, and exist, in various forms, in numerous high-level
languages. Thus, comparisons in this section focus mainly
on popular programming formalisms that, similarly to BP,
are geared towards discrete event systems.

The principal extension to BP that we proposed is the
timeout idiom. This is a step in moving away from the
synchrony hypothesis, according to which local computation
takes negligible time. The synchrony hypothesis is used
in popular languages for programming event-driven reactive
systems, such as Esterel [10], Lustre [15] and Signal [30], and
also in the non-object oriented version of Statecharts [26].
Formally allowing non-negligible computation time broad-
ens the scope of problems to which BP can be applied.

Other parallel programming languages support various id-
ioms for manipulating time. UML Sequence Diagrams [4]
support constructs that impose a required delay between
the send and receive events of a message [11]. Message Se-
quence Charts (MSC s) support timers [7,29] that can be set,
reset and checked for timeouts, and delay intervals [7,33] to
specify maximal or minimal delay between actions. We have
demonstrated that similar constraints can be applied using
our timeout mechanism. Of particular interest is the live
sequence charts (LSCs) language [12, 21], the precursor to
and main motivation for behavioral programming. In this
context, the ongoing evolution of BP is, perhaps unsurpris-
ingly, similar to the one LSCs underwent with the addition
of time-aware charts [22], allowing one to bound the flow of
time between consecutive events. Similar concepts appear
also in component based programming languages, such as
BIP [9]. In BIP, components may contain timed variables,
and may use them transition guards. These variables are
globally incremented when no higher priority action is en-
abled.

The second extension that we proposed was customizable
event selection strategies. Scenario-based programs typi-
cally have to choose between several enabled events, and
several selection strategies have been previously proposed.
Among these are arbitrary selection, look-ahead algorithms
(smart play-out) [18,19] and planning-based approaches [27].
Selection can also be interactive, which is useful, for in-
stance, in the context of debugging unrealizable behavioral
specifications [31]. By allowing general user-specified event
selection strategies, these approaches could be more readily
integrated into BP.

Another extension that proposed was to consider threads
as templates of which multiple copies may be instantiated.
This technique bears resemblance to the situation in LSCs,
where multiple instances of the same chart may run simul-
taneously. There, additional copies are spawned based on
preconditions defined in each chart, instead of actively by
other threads as in our case, although the two approaches
seem equivalent. The direct spawning of modules by other

modules is also supported in Esterel and Signal.
Finally, we proposed to extend BP with parameterized

events. Parameterized message passing between modules
is quite fundamental in concurrent programming. It ex-
ists, e.g., in Esterel, UML sequence diagrams, LSCs and,
for bounded parameters, also in earlier work on BP [20].

10. CONCLUSION AND FUTURE WORK
In this paper we set out to study the applicability of the

BP paradigm to real-world systems. Through our work on
a large case-study, we were able to identify several common
programming tasks for which BP’s traditional idioms pro-
vide only partial solutions, and proposed additional idioms
to overcome these difficulties while — trying to maintain
BP’s simple and intuitive interfaces. The new idioms include
time-aware threads, a customizable event selection mecha-
nism, the dynamic creation of threads, and parameterized
events. By integrating these idioms into our development
environment we were able to complete our implementation,
thus providing what we feel is significant evidence that BP
does indeed scale-up to real-world problems.

In choosing our proposed extension to BP, we took care
to only add idioms that allowed us to accomplish program-
ming tasks that were previously beyond the scope, or at least
very difficult to accomplish, in BP. Thus, we hope we were
able to avoid clutter, and retain most of the simplicity that
characterizes the traditional BP framework.

Our proposed extensions were driven by the needs that
arose during the development of our specific case-study; and
hence it is possible that, through the development of ad-
ditional behavioral projects, BP may need to be extended
with additional idioms. However, due to the large variety of
programming tasks entailed by the web-server project (e.g.,
handling timeouts, string manipulation, file access, check-
sum calculations, etc), we believe that our proposed exten-
sions are robust, and could prove sufficient for a variety of
programming tasks. We regard our extensions, and also fu-
ture extensions to BP, a part of the typical evolution of
programming languages.

In the future, we plan to enhance our case-study by adding
features like flow control, congestion control, selective ac-
knowledgments and smart retransmission schemes to our
protocol stacks. These extra features may reveal additional
idioms worth adding to BP. Further, we plan to work on
improving the efficiency of our case-study, in order to gain a
better understanding of the overhead the BP infrastructure
might incur in large systems.

Another direction we hope to pursue regards the analy-
sis of behavioral programs. Previous work has shown that
BP’s structure makes it amenable to program verification
and analysis techniques, such as model-checking [20], pro-
gram repair [17] and eager execution [16]. We plan to work
on extending these techniques to support the newly proposed
idioms, and in particular the concept of timeouts.

11. ACKNOWLEDGMENTS
We thank Assaf Marron and Gera Weiss for their help-

ful comments on this work. This work was supported by
an Advanced Research Grant to DH from the European Re-
search Council (ERC) under the European Community’s 7th
Framework Programme (FP7/2007-2013), and by an Israel
Science Foundation grant.

12. REFERENCES
[1] BPC: Behavioral Programming in C + +. http:

//www.wisdom.weizmann.ac.il/~bprogram/bpc/.

[2] Case-study: a BPC web-server. http://www.wisdom.
weizmann.ac.il/~bprogram/bpc/webserver.zip.

[3] Supplementary material.
https://sites.google.com/site/guykatzhomepage/

AGERE2014_Supplementary.pdf.

[4] The UML Standard. http://www.uml.org/.

[5] G. A. Agha. Actors: a Model of Concurrent
Computation in Distributed Systems. The MIT Press,
1986.

[6] G. Alexandron, M. Armoni, M. Gordon, and
D. Hagen. Scenario-Based Programming: Reducing
the Cognitive Load, Fostering Abstract Thinking. In
Proc. 36th Int. Conf. on Software Engineering (ICSE),
pages 311–320, 2014.

[7] R. Alur, G. Holzmann, and D. Peled. An Analyzer for
Message Sequence Charts. Software Concepts and
Tools, 17(2):70–77, 1996.

[8] J. Armstrong, R. Virding, C. Wikström, and
M. Williams. Concurrent Programming in ERLANG.
Prentice Hall, 1993.

[9] A. Basu, M. Bozga, and J. Sifakis. Modeling
Heterogeneous Real-time Systems in BIP. In Proc. 4th
IEEE Int. Conf. on Software Engineering and Formal
Methods (SEFM), pages 3–12, 2006.

[10] G. Berry and G. Gonthier. The Esterel synchronous
programming language: design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, 1992.

[11] G. Booch, J. Rumbaugh, and I. Jacobson. Unified
Modeling Language for Object-Oriented Development
(Version 0.91 Addendum). RATIONAL Software
Corporation, 1996.

[12] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design, 19(1):45–80, 2001.

[13] N. Eitan and D. Harel. Adaptive behavioral
programming. In 23rd IEEE Int. Conf. on Tools with
Artificial Intelligence (ICTAI), pages 685–692, 2011.

[14] M. Gordon, A. Marron, and O. Meerbaum-Salant.
Spaghetti for the Main Course? Observations on the
Naturalness of Scenario-Based Programming. In Proc.
17th Conf. on Innovation and Technology in Computer
Science Education (ITICSE), pages 198–203, 2012.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The Synchronous Data-Flow Programming Language
LUSTRE. Proc. of the IEEE, 79(9):1305–1320, 1991.

[16] D. Harel, A. Kantor, and G. Katz. Relaxing
Synchronization Constraints in Behavioral Programs.
In Proc. 19th Int. Conf. on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR), pages
355–372, 2013.

[17] D. Harel, G. Katz, A. Marron, and G. Weiss.
Non-Intrusive Repair of Reactive Programs. In Proc.
17th IEEE Int. Conf. on Engineering of Complex
Computer Systems (ICECCS), pages 3–12, 2012.

[18] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart
Play-Out of Behavioral Requirements. In Proc. 4th
Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD), pages 378–398, 2002.

[19] D. Harel, H. Kugler, and A. Pnueli. Smart Play-Out
Extended: Time and Forbidden Elements. In Proc. 4th
Int. Conf. on Quality Software (QSIC), pages 2–10,
2004.

[20] D. Harel, R. Lampert, A. Marron, and G. Weiss.
Model-Checking Behavioral Programs. In Proc. 11th
Int. Conf. on Embedded Software (EMSOFT), pages
279–288, 2011.

[21] D. Harel and R. Marelly. Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer, 2003.

[22] D. Harel and R. Marelly. Playing with Time: On the
Specification and Execution of Time-Enriched LSCs.
In Proc. 10th IEEE/ACM Int. Symp. on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2006.

[23] D. Harel, A. Marron, and G. Weiss. Programming
Coordinated Scenarios in Java. In Proc. 24th European
Conf. on Object-Oriented Programming (ECOOP),
pages 250–274, 2010.

[24] D. Harel, A. Marron, and G. Weiss. Behavioral
Programming. Communications of the ACM,
55(7):90–100, 2012.

[25] D. Harel, A. Marron, G. Weiss, and G. Wiener.
Behavioral Programming, Decentralized Control, and
Multiple Time Scales. In Proc. 1st SPLASH Workshop
on Programming Systems, Languages, and
Applications based on Agents, Actors, and
Decentralized Control (AGERE!), pages 171–182, 2011.

[26] D. Harel and M. Politi. Modeling Reactive Systems
with Statecharts: The STATEMATE Approach.
McGraw-Hill, 1998.

[27] D. Harel and I. Segall. Planned and Traversable
Play-Out: A Flexible Method for Executing
Scenario-Based Programs. In Proc. 13th Int. Conf. on
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 485–499, 2007.

[28] T. Henzinger and J. Sifakis. The Embedded Systems
Design Challenge. In Proc. 14th Int. Symp. on Formal
Methods (FM), pages 1–15, 2006.

[29] ITU. ITU-TS Recommendation Z.120: Message
Sequence Chart (MSC), 1996.

[30] P. Le Guernic, T. Gautier, M. Le Borgne, and
C. Le Maire. Programming Real-Time Applications
with Signal. Proceedings of the IEEE,
79(9):1321–1336, 1991.

[31] S. Maoz and Y. Sa’ar. Counter Play-Out: Executing
Unrealizable Scenario-Based Specifications. In Proc.
35th Int. Conf. on Software Engineering (ICSE),
pages 242–251, 2013.

[32] A. Marron, G. Weiss, and G. Wiener. A Decentralized
Approach for Programming Interactive Applications
with JavaScript and Blockly. In Proc. 2nd SPLASH
Workshop on Programming Systems, Languages, and
Applications based on Agents, Actors, and
Decentralized Control (AGERE!), pages 59–70, 2012.

[33] N. Meng-Siew. Reasoning with Timing Constraints in
Message Sequence Charts. Master’s thesis, University
of Stirling, 1993.

[34] The Behavioral Programming Webpage.
http://www.b-prog.org/.

