
Verifying Learning-Based
Robotic Navigation Systems

Guy Amir1,∗(B), Davide Corsi2,∗, Raz Yerushalmi1,3, Luca Marzari2,
David Harel3, Alessandro Farinelli2, and Guy Katz1

1 The Hebrew University of Jerusalem, Jerusalem, Israel
{guyam,guykatz}@cs.huji.ac.il

2 University of Verona, Verona, Italy
{davide.corsi,luca.marzari,alessandro.farinelli}@univr.it

3 The Weizmann Institute of Science, Rehovot, Israel
{raz.yerushalmi,david.harel}@weizmann.ac.il

Abstract. Deep reinforcement learning (DRL) has become a dominant
deep-learning paradigm for tasks where complex policies are learned
within reactive systems. Unfortunately, these policies are known to be
susceptible to bugs. Despite significant progress in DNN verification,
there has been little work demonstrating the use of modern verification
tools on real-world, DRL-controlled systems. In this case study, we at-
tempt to begin bridging this gap, and focus on the important task of
mapless robotic navigation — a classic robotics problem, in which a
robot, usually controlled by a DRL agent, needs to efficiently and safely
navigate through an unknown arena towards a target. We demonstrate
how modern verification engines can be used for effective model selection,
i.e., selecting the best available policy for the robot in question from a
pool of candidate policies. Specifically, we use verification to detect and
rule out policies that may demonstrate suboptimal behavior, such as col-
lisions and infinite loops. We also apply verification to identify models
with overly conservative behavior, thus allowing users to choose supe-
rior policies, which might be better at finding shorter paths to a target.
To validate our work, we conducted extensive experiments on an ac-
tual robot, and confirmed that the suboptimal policies detected by our
method were indeed flawed. We also demonstrate the superiority of our
verification-driven approach over state-of-the-art, gradient attacks. Our
work is the first to establish the usefulness of DNN verification in iden-
tifying and filtering out suboptimal DRL policies in real-world robots,
and we believe that the methods presented here are applicable to a wide
range of systems that incorporate deep-learning-based agents.

1 Introduction

In recent years, deep neural networks (DNN) have become extremely popular,
due to achieving state-of-the-art results in a variety of fields — such as natural

[*] Both authors contributed equally.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13993, pp.
https://doi.org/10.1007/978-3-031-30823-9 31

607–627, 2023.

https://doi.org/10.1007/978-3-031-30823-9_31
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30823-9_31&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


608 G. Amir et al.

language processing [16], image recognition [51], autonomous driving [11], and
more. The immense success of these DNN models is owed in part to their ability
to train on a fixed set of training samples drawn from some distribution, and then
generalize, i.e., correctly handle inputs that they had not encountered previously.
Notably, deep reinforcement learning (DRL) [37] has recently become a dominant
paradigm for training DNNs that implement control policies for complex systems
that operate within rich environments. One domain in which DRL controllers
have been especially successful is robotics, and specifically — robotic navigation,
i.e., the complex task of efficiently navigating a robot through an arena, in order
to safely reach a target [63,68].

Unfortunately, despite the immense success of DNNs, they have been shown
to suffer from various safety issues [31, 57]. For example, small perturbations
to their inputs, which are either intentional or the result of noise, may cause
DNNs to react in unexpected ways [45]. These inherent weaknesses, and others,
are observed in almost every kind of neural network, and indicate a need for
techniques that can supply formal guarantees regarding the safety of the DNN
in question. These weaknesses have also been observed in DRL systems [6,21,34],
showing that even state-of-the-art DRL models may err miserably.

To mitigate such safety issues, the verification community has recently de-
veloped a plethora of techniques and tools [8,10,19,24,28,29,31,35,39,40,64,66]
for formally verifying that a DNN model is safe to deploy. Given a DNN, these
methods usually check whether the DNN: (i) behaves according to a prescribed
requirement for all possible inputs of interest; or (ii) violates the requirement,
in which case the verification tool also provides a counterexample.

To date, despite the abundance of both DRL systems and DNN verification
techniques, little work has been published on demonstrating the applicability
and usefulness of verification techniques to real-world DRL systems. In this case
study, we showcase the capabilities of DNN verification tools for analyzing DRL-
based systems in the robotics domain — specifically, robotic navigation systems.
To the best of our knowledge, this is the first attempt to demonstrate how off-
the-shelf verification engines can be used to identify both unsafe and subopti-
mal DRL robotic controllers, that cannot be detected otherwise using existing,
incomplete methods. Our approach leverages existing DNN verifiers that can
reason about single and multiple invocations of DRL controllers, and this allows
us to conduct a verification-based model selection process — through which we
filter out models that could render the system unsafe.

In addition to model selection, we demonstrate how verification methods al-
low gaining better insights into the DRL training process, by comparing the
outcomes of different training methods and assessing how the models improve
over additional training iterations. We also compare our approach to gradient-
based methods, and demonstrate the advantages of verification-based tools in
this setting. We regard this as another step towards increasing the reliability
and safety of DRL systems, which is one of the key challenges in modern ma-
chine learning [27]; and also as a step toward a more wholesome integration of
verification techniques into the DRL development cycle.



Verifying Learning-Based Robotic Navigation Systems 609

In order to validate our experiments, we conducted an extensive evaluation
on a real-world, physical robot. Our results demonstrate that policies classified
as suboptimal by our approach indeed exhibited unwanted behavior. This eval-
uation highlights the practical nature of our work; and is summarized in a short
video clip [4], which we strongly encourage the reader to watch. In addition, our
code and benchmarks are available online [3].

The rest of the paper is organized as follows. Section 2 contains background
on DNNs, DRLs, and robotic controlling systems. In Section 3 we present our
DRL robotic controller case study, and then elaborate on the various properties
that we considered in Section 4. In Section 5 we present our experimental results,
and use them to compare our approach with competing methods. Related work
appears in Section 6, and we conclude in Section 7.

2 Background

Deep Neural Networks. Deep neural networks (DNNs) [25] are computa-
tional, directed, graphs consisting of multiple layers. By assigning values to the
first layer of the graph and propagating them through the subsequent layers,
the network computes either a label prediction (for a classification DNN) or a
value (for a regression DNN), which is returned to the user. The values com-
puted in each layer depend on values computed in previous layers, and also on
the current layer’s type. Common layer types include the weighted sum layer, in
which each neuron is an affine transformation of the neurons from the preceding
layer; as well as the popular rectified linear unit (ReLU ) layer, where each node
y computes the value y = ReLU(x) = max(0, x), based on a single node x from
the preceding layer to which it is connected. The DRL systems that are the sub-
ject matter of this case study consist solely of weighted sum and ReLU layers,
although the techniques mentioned are suitable for DNNs with additional layer
types, as we discuss later.

v11

v21

v12

v22

v13

v23

v14

2

−4

5

1

ReLU

ReLU

2

−1

+1

−2

Weighted
sum

ReLUInput Output

Fig. 1: A toy DNN.

Fig. 1 depicts a small example of a
DNN. For input V1 = [2, 3]T , the sec-
ond (weighted sum) layer computes
the values V2 = [20,−7]T . In the third
layer, the ReLU functions are applied,
and the result is V3 = [20, 0]T . Finally,
the network’s single output is com-
puted as a weighted sum: V4 = [40].

Deep Reinforcement Learning. Deep reinforcement learning (DRL) [37] is a
particular paradigm and setting for training DNNs. In DRL, an agent is trained
to learn a policy π, which maps each possible environment state s (i.e., the
current observation of the agent) to an action a. The policy can have different
interpretations among various learning algorithms. For example, in some cases,
π represents a probability distribution over the action space, while in others it
encodes a function that estimates a desirability score over all the future actions
from a state s.



610 G. Amir et al.

During training, at each discrete time-step t ∈ {0, 1, 2, . . .}, a reward rt is
presented to the agent, based on the action at it performed at time-step t. Dif-
ferent DRL training algorithms leverage the reward in different ways, in order to
optimize the DNN-agent’s parameters during training. The general DNN archi-
tecture described above also characterizes DRL-trained DNNs; the uniqueness
of the DRL paradigm lies in the training process, which is aimed at generat-
ing a DNN that computes a mapping π that maximizes the expected cumulative
discounted reward Rt = E

[∑
t γ

t · rt
]
. The discount factor, γ ∈

[
0, 1

]
, is a hy-

perparameter that controls the influence that past decisions have on the total
expected reward.

DRL training algorithms are typically divided into three categories [55]:

1. Value-Based Algorithms. These algorithms attempt to learn a value func-
tion (called the Q-function) that assigns a value to each ⟨state,action⟩ pair.
This iterative process relies on the Bellman equation [44] to update the
function: Qπ(st, at) = r+γmaxat+1

Qπ(st+1, at+1). Double Deep Q-Network
(DDQN) is an optimized implementation of this algorithm [60].

2. Policy-Gradient Algorithms. This class contains algorithms that attempt
to directly learn the optimal policy, instead of assessing the value func-
tion. The algorithms in this class are typically based on the policy gradi-
ent theorem [56]. A common implementation is the Reinforce algorithm [67],
which aims to directly optimize the following objective function, over the
parameters θ of the DNN, through a gradient ascent process: ∇θJ(πθ) =

E[
∑T

t ∇θ log πθ(at|st) · rt]. For additional details, see [67].
3. Actor-Critic Algorithms. This family of hybrid algorithms combines the

two previous approaches. The key idea is to use two different neural networks:
a critic, which learns the value function from the data, and an actor, which
iteratively improves the policy by maximizing the value function learned by
the critic. A state-of-the-art implementation of this approach is the Proximal
Policy Optimization (PPO) algorithm [50].

All of these approaches are commonly used in modern DRL; and each has its
advantages and disadvantages. For example, the value-based methods typically
require only small sets of examples to learn from, but are unable to learn policies
for continuous spaces of ⟨state,action⟩ pairs. In contrast, the policy-gradient
methods can learn continuous policies, but suffer from a low sample efficiency
and large memory requirements. Actor-Critic algorithms attempt to combine
the benefits of value-based and policy-gradient methods, but suffer from high
instability, particularly in the early stages of training, when the value function
learned by the critic is unreliable.

DNN Verification and DRL Verification. A DNN verification algorithm
receives as input [31]: (i) a trained DNN N ; (ii) a precondition P on the DNN’s
inputs, which limits their possible assignments to inputs of interest; and (iii) a
postcondition Q on N ’s output, which usually encodes the negation of the be-
havior we would like N to exhibit on inputs that satisfy P . The verification
algorithm then searches for a concrete input x0 that satisfies P (x0)∧Q(N(x0)),



Verifying Learning-Based Robotic Navigation Systems 611

and returns one of the following outputs: (i) SAT, along with a concrete input
x0 that satisfies the given constraints; or (ii) UNSAT, indicating that no such x0

exists. When Q encodes the negation of the required property, a SAT result in-
dicates that the property is violated (and the returned input x0 triggers a bug),
while an UNSAT result indicates that the property holds.

For example, suppose we wish to verify that the DNN in Fig. 1 always outputs
a value strictly smaller than 7; i.e., that for any input x = ⟨v11 , v21⟩, it holds that
N(x) = v14 < 7. This is encoded as a verification query by choosing a precondition
that does not restrict the input, i.e., P = (true), and by setting Q = (v14 ≥ 7),
which is the negation of our desired property. For this verification query, a sound
verifier will return SAT, alongside a feasible counterexample such as x = ⟨0, 2⟩,
which produces v14 = 22 ≥ 7. Hence, the property does not hold for this DNN.

To date, the DNN verification community has focused primarily on DNNs
used for a single, non-reactive, invocation [24,28,31,40,64]. Some work has been
carried out on verifying DRL networks, which pose greater challenges: beyond
the general scalability challenges of DNN verification, in DRL verification we
must also take into account that agents typically interact with a reactive envi-
ronment [6,9,15,21,30]. In particular, these agents are implemented with neural
networks that are invoked multiple times, and the inputs of each invocation are
usually affected by the outputs of the previous invocations. This fact aggre-
gates the scalability limitations (because multiple invocations must be encoded
in each query), and also makes the task of defining P and Q significantly more
complex [6].

3 Case Study: Robotic Mapless Navigation

Robotis Turtlebot 3. In our case study, we focus on the Robotis Turtlebot 3
robot (Turtlebot, for short), depicted in Fig. 2. Given its relatively low cost and
efficient sensor configuration, this robot is widely used in robotics research [7,46].
In particular, this robotic platform has the actuators required for moving and
turning, as well as multiple lidar sensors for detecting obstacles. These sensors
use laser beams to approximate the distance to the nearest object in their direc-
tion [65]. In our experiments, we used a configuration with seven lidar sensors,
each with a maximal range of one meter. Each pair of sensors are 30◦ apart,
thus allowing coverage of 180◦. The images in Fig. 3 depict a simulation of the
Turtlebot navigating through an arena, and highlight the lidar beams. See the
full version of this paper [5] for additional details.

The Mapless Navigation Problem. Robotic navigation is the task of navi-
gating a robot (in our case, the Turtlebot) through an arena. The robot’s goal
is to reach a target destination while adhering to predefined restrictions; e.g.,
selecting as short a path as possible, avoiding obstacles, or optimizing energy
consumption. In recent years, robotic navigation tasks have received a great deal
of attention [63,68], primarily due to their applicability to autonomous vehicles.



612 G. Amir et al.

Fig. 2: The Robotis Turtlebot 3 platform, navigating in an arena. The image on
the left depicts a static robot, and the image on the right depicts the robot
moving towards the destination (the yellow square), while avoiding two wooden
obstacles in its route.

We study here the popular mapless variant of the robotic navigation problem,
where the robot can rely only on local observations (i.e., its sensors), without
any information about the arena’s structure or additional data from external
sources. In this setting, which has been studied extensively [58], the robot has
access to the relative location of the target, but does not have a complete map of
the arena. This makes mapless navigation a partially observable problem, and
among the most challenging tasks to solve in the robotics domain [13,58,70].

DRL-Controlled Mapless Navigation. State-of-the-art solutions to map-
less navigation suggest training a DRL policy to control the robot. Such DRL-
based solutions have obtained outstanding results from a performance point of
view [47]. For example, recent work by Marchesini et al. [43] has demonstrated
how DRL-based agents can be applied to control the Turtlebot in a mapless
navigation setting, by training a DNN with a simple architecture, including two
hidden layers. Following this recent work, in our case study we used the following
topology for DRL policies:

– An input layer with nine neurons. These include seven neurons representing
the Turtlebot’s lidar readings. The additional, non-lidar inputs include one
neuron representing the relative angle between the robot and the target, and
one neuron representing the robot’s distance from the target. A scheme of
the inputs appears in Fig. 4a.

– Two subsequent fully-connected layers, each consisting of 16 neurons, and
followed by a ReLU activation layer.

– An output layer with three neurons, each corresponding to a different (dis-
crete) action that the agent can choose to execute in the following step: move
FORWARD, turn LEFT, or turn RIGHT.1

1 It has been shown that discrete controllers achieve excellent performance in robotic
navigation, often outperforming continuous controllers in a large variety of tasks [43].



Verifying Learning-Based Robotic Navigation Systems 613

Fig. 3: An example of a simulated Turtlebot entering a 2-step loop. The white
and red dashed lines represent the lidar beams (white indicates “clear”, and red
indicates that an obstacle is detected). The yellow square represents the target
position; and the blue arrows indicate rotation. In the first row, from left to
right, the Turtlebot is stuck in an infinite loop, alternating between right and
left turns. Given the deterministic nature of the system, the agent will continue
to select these same actions, ad infinitum. In the second row, from left to right,
we present an almost identical configuration, but with an obstacle located 30◦

to the robot’s left (circled in blue). The presence of the obstacle changes the
input to the DNN, and allows the Turtlebot to avoid entering the infinite loop;
instead, it successfully navigates to the target.

While the aforementioned DRL topology has been shown to be efficient for
robotic navigation tasks, finding the optimal training algorithm and reward func-
tion is still an open problem. As part of our work, we trained multiple deter-
ministic policies using the DRL algorithms presented in Section 2: DDQN [60],
Reinforce [67], and PPO [50]. For the reward function, we used the following
formulation:

Rt = (dt−1 − dt) · α− β,

where dt is the distance from the target at time-step t; α is a normalization factor
used to guarantee the stability of the gradient; and β is a fixed value, decreased
at each time-step, and resulting in a total penalty proportional to the length
of the path (by minimizing this penalty, the agent is encouraged to reach the
target quickly). In our evaluation, we empirically selected α = 3 and β = 0.001.
Additionally, we added a final reward of +1 when the robot reached the target,
or −1 in case it collided with an obstacle. For additional information regarding
the training phase, see the full version of this paper [5].

DRL Training and Results. Using the training algorithms mentioned in Sec-
tion 2, we trained a collection of DRL agents to solve the Turtlebot mapless
navigation problem. We ran a stochastic training process, and thus obtained
varied agents; of these, we only kept those that achieved a success rate of at
least 96% during training. A total of 780 models were selected, consisting of
260 models per each of the three training algorithms. More specifically, for each



614 G. Amir et al.

(a) The DRL controller (b) Average success rates

Fig. 4: (a) The DRL controller used for the robot in our case study. The DRL
has nine input neurons: seven lidar sensor readings (blue), one input indicating
the relative angle (orange) between the robot and the target, and one input
indicating the distance (green) between the robot and the target. (b) The average
success rates of models trained by each of the three DRL training algorithms,
per training episode.

algorithm, all 260 models were generated from 52 random seeds. Each seed gave
rise to a family of 5 models, where the individual family members differ in the
number of training episodes used for training them. Fig. 4b shows the trained
models’ average success rate, for each algorithm used. We note that PPO was
generally the fastest to achieve high accuracy. However, all three training algo-
rithms successfully produced highly accurate agents.

4 Using Verification for Model Selection

All of our trained models achieved very high success rates, and so, at face value,
there was no reason to favor one over the other. However, as we show next, a
verification-based approach can expose multiple subtle differences between them.
As our evaluation criteria, we define two properties of interest that are derived
from the main goals of the robotic controller: (i) reaching the target; and (ii)
avoiding collision with obstacles. Employing verification, we use these criteria to
identify models that may fail to fulfill their goals, e.g., because they collide with
various obstacles, are overly conservative, or may enter infinite loops without
reaching the target. We now define the properties that we used, and the results
of their verification are discussed in Section 5. Additional details regarding the
precise encoding of our queries appear the full version of this paper [5].

Collision Avoidance. Collision avoidance is a fundamental and ubiquitous
safety property [14] for navigation agents. In the context of Turtlebot, our goal
is to check whether there exists a setting in which the robot is facing an obstacle,
and chooses to move forward — even though it has at least one other viable
option, in the form of a direction in which it is not blocked. In such situations,
it is clearly preferable to choose to turn LEFT or RIGHT instead of choosing to
move FORWARD and collide. See Fig. 5 for an illustration.



Verifying Learning-Based Robotic Navigation Systems 615

Fig. 5: Example of a single-step collision. The robot is not blocked on its right
and can avoid the obstacle by turning (panel A), but it still chooses to move
forward — and collides (panel B).

Given that turning LEFT or RIGHT produces an in-place rotation (i.e., the
robot does not change its position), the only action that can cause a collision
is FORWARD. In particular, a collision can happen when an obstacle is directly in
front of the robot, or is slightly off to one side (just outside the front lidar’s field
of detection). More formally, we consider the safety property “the robot does not
collide at the next step”, with three different types of collisions:

– FORWARD COLLISION: the robot detects an obstacle straight ahead, but nev-
ertheless makes a step forward and collides with the obstacle.

– LEFT COLLISION: the robot detects an obstacle ahead and slightly shifted
to the left (using the lidar beam that is 30◦ to the left of the one point-
ing straight ahead), but makes a single step forward and collides with the
obstacle. The shape of the robot is such that in this setting, a collision is
unavoidable.

– RIGHT COLLISION: the robot detects an obstacle ahead and slightly shifted
to the right, but makes a single step forward and collides with the obstacle.

Recall that in mapless navigation, all observations are local — the robot has
no sense of the global map, and can encounter any possible obstacle configu-
ration (i.e., any possible sensor reading). Thus, in encoding these properties,
we considered a single invocation of the DRL agent’s DNN, with the following
constraints:

1. All the sensors that are not in the direction of the obstacle receive a lidar
input indicating that the robot can move either LEFT or RIGHT without risk
of collision. This is encoded by lower-bounding these inputs.

2. The single input in the direction of the obstacle is upper-bounded by a value
matching the representation of an obstacle, close enough to the robot so that
it will collide if it makes a move FORWARD.

3. The input representing the distance to the target is lower-bounded, indicat-
ing that the target has not yet been reached (encouraging the agent to make
a move).



616 G. Amir et al.

The exact encoding of these properties is based on the physical characteristics
of the robot and the lidar sensors, as explained in the full version of this paper [5].

Infinite Loops. Whereas collision avoidance is the natural safety property to
verify in mapless navigation controllers, checking that progress is eventually
made towards the target is the natural liveness property. Unfortunately, this
property is difficult to formulate due to the absence of a complete map. Instead,
we settle for a weaker property, and focus on verifying that the robot does not
enter infinite loops (which would prevent it from ever reaching the target).

Unlike the case of collision avoidance, where a single step of the DRL agent
could constitute a violation, here we need to reason about multiple consecutive
invocations of the DRL controller, in order to identify infinite loops. This, again,
is difficult to encode due to the absence of a global map, and so we focus on
in-place loops: infinite sequences of steps in which the robot turns LEFT and
RIGHT, but without ever moving FORWARD, thus maintaining its current location
ad infinitum.

Our queries for identifying in-place loops encode that: (i) the robot does
not reach the target in the first step; (ii) in the following k steps, the robot
never moves FORWARD, i.e., it only performs turns; and (iii) the robot returns
to an already-visited configuration, guaranteeing that the same behavior will be
repeated by our deterministic agents. The various queries differ in the choice of
k, as well as in the sequence of turns performed by the robot. Specifically, we
encode queries for identifying the following kinds of loops:

– ALTERNATING LOOP: a loop where the robot performs an infinite sequence of
⟨LEFT, RIGHT, LEFT, RIGHT, LEFT...⟩ moves. A query for identifying this loop
encodes k = 2 consecutive invocations of the DRL agent, after which the
robot’s sensors will again report the exact same reading, leading to an infinite
loop. An example appears in Fig. 3. The encoding uses the “sliding window”
principle, on which we elaborate later.

– LEFT CYCLE, RIGHT CYCLE: loops in which the robot performs an infinite
sequence of ⟨LEFT, LEFT, LEFT, . . .⟩ or ⟨RIGHT, RIGHT, RIGHT, . . .⟩ operations
accordingly. Because the Turtlebot turns at a 30◦ angle, this loop is encoded
as a sequence of k = 360◦/30◦ = 12 consecutive invocations of the DRL
agent’s DNN, all of which produce the same turning action (either LEFT or
RIGHT). Using the sliding window principle guarantees that the robot returns
to the same exact configuration after performing this loop, indicating that
it will never perform any other action.

We also note that all the loop-identification queries include a condition for
ensuring that the robot is not blocked from all directions. Consequently, any
loops that are discovered demonstrate a clearly suboptimal behavior.

Specific Behavior Profiles. In our experiments, we noticed that the safe poli-
cies, i.e., the ones that do not cause the robot to collide, displayed a wide spec-
trum of different behaviors when navigating to the target. These differences
occurred not only between policies that were trained by different algorithms,
but also between policies trained by the same reward strategy — indicating that



Verifying Learning-Based Robotic Navigation Systems 617

these differences are, at least partially, due to the stochastic realization of the
DRL training process.

Fig. 6: Comparing paths selected by
policies with different bravery levels.
Path A takes the Turtlebot close to the
obstacle (red area), and is the short-
est. Path B maintains a greater dis-
tance from the obstacle (light red area),
and is consequently longer. Finally, path
C maintains such a significant distance
from the obstacle (white area) that it is
unable to reach the target.

Specifically, we noticed high vari-
ability in the length of the routes se-
lected by the DRL policy in order
to reach the given target: while some
policies demonstrated short, efficient,
paths that passed very close to ob-
stacles, other policies demonstrated a
much more conservative behavior, by
selecting longer paths, and avoiding
getting close to obstacles (an example
appears in Fig. 6).

Thus, we used our verification-
driven approach to quantify how con-
servative the learned DRL agent is
in the mapless navigation setting. In-
tuitively, a highly conservative pol-
icy will keep a significant safety mar-
gin from obstacles (possibly taking a
longer route to reach its destination),
whereas a “braver” and less conser-
vative controller would risk venturing
closer to obstacles. In the case of Turtlebot, the preferable DRL policies are the
ones that guarantee the robot’s safety (with respect to collision avoidance), and
demonstrate a high level of bravery — as these policies tend to take shorter, op-
timized paths (see path A in Fig. 6), which lead to reduced energy consumption
over the entire trail.

Bravery assessment is performed by encoding verification queries that identify
situations in which the Turtlebot can move forward, but its control policy chooses
not to. Specifically, we encode single invocations of the DRL model, in which we
bound the lidar inputs to indicate that the Turtlebot is sufficiently distant from
any obstacle and can safely move forward. We then use the verifier to determine
whether, in this setting, a FORWARD output is possible. By altering and adjusting
the bounds on the central lidar sensor, we can control how far away the robot
perceives the obstacle to be. If we limit this distance to large values and the
policy will still not move FORWARD, it is considered conservative; otherwise, it is
considered brave. By conducting a binary search over these bounds [6], we can
identify the shortest distance from an obstacle for which the policy safely orders
the robot to move FORWARD. This value’s inverse then serves as a bravery score
for that policy.

Design-for-Verification: Sliding Windows. A significant challenge that we
faced in encoding our verification properties, especially those that pertain to
multiple consecutive invocations of the DRL policy, had to do with the local
nature of the sensor readings that serve as input to the DNN. Specifically, if

GOAL

OBSTACLE

A

B

C



618 G. Amir et al.

the robot is in some initial configuration that leads to a sensor input x, and
then chooses to move forward and reaches a successor configuration in which the
sensor input is x′, some connection between x and x′ must be expressed as part
of the verification query (i.e., nearby obstacles that exist in x cannot suddenly
vanish in x′). In the absence of a global map, this is difficult to enforce.

In order to circumvent this difficulty, we used the sliding window princi-
ple, which has proven quite useful in similar settings [6, 21]. Intuitively, the
idea is to focus on scenarios where the connections between x and x′ are par-
ticularly straightforward to encode — in fact, most of the sensor information
that appeared in x also appears in x′. This approach allows us to encode mul-
tistep queries, and is also beneficial in terms of performance: typically, adding
sliding-window constraints reduces the search space explored by the verifier, and
expedites solving the query.

In the Turtlebot setting, this is achieved by selecting a robot configuration in
which the angle between two neighboring lidar sensors is identical to the turning
angle of the robot (in our case, 30◦). This guarantees, for example, that if the
central lidar sensor observes an obstacle at distance d and the robot chooses to
turn RIGHT, then at the next step, the lidar sensor just to the left of the central
sensor must detect the same obstacle, at the same distance d. More generally,
if at time-step t the 7 lidar readings (from left to right) are ⟨l1, . . . , l7⟩ and the
robot turns RIGHT, then at time-step t + 1 the 7 readings are ⟨l2, l3, . . . , l7, l8⟩,
where only l8 is a new reading. The case for a LEFT turn is symmetrical. By
placing these constraints on consecutive states encountered by the robot, we
were able to encode complex properties that involve multiple time-steps, e.g., as
in the aforementioned infinite loops. An illustration appears in Fig. 3.

5 Experimental Evaluation

Next, we ran verification queries with the aforementioned properties, in order to
assess the quality of our trained DRL policies. The results are reported below.
In many cases, we discovered configurations in which the policies would cause
the robot to collide or enter infinite loops; and we later validated the correctness
of these results using a physical robot. We strongly encourage the reader to
watch a short video clip that demonstrates some of these results [4]. Our code
and benchmarks are also available online [3]. In our experiments, We used the
Marabou verification engine [33] as our backend, although other engines could
be used as well. For additional details regarding the experiments, we refer the
reader to the full version of this paper [5].

Model Selection. In this set of experiments, we used verification to assess
our trained models. Specifically, we used each of the three training algorithms
(DDQN, Reinforce, PPO) to train 260 models, creating a total of 780 models.
For each of these, we verified six properties of interest: three collision proper-
ties (FORWARD COLLISION, LEFT COLLISION, RIGHT COLLISION), and three loop
properties (ALTERNATING LOOP, LEFT CYCLE, RIGHT CYCLE), as described in Sec-
tion 4. This gives a total of 4680 verification queries. We ran all queries with a



Verifying Learning-Based Robotic Navigation Systems 619

LEFT COLLISION FORWARD COLLISION RIGHT COLLISION

Algorithm SAT UNSAT SAT UNSAT SAT UNSAT

DDQN 259 1 248 12 258 2

Reinforce 255 5 254 6 252 8

PPO 196 64 197 63 207 53

ALTERNATING LOOP LEFT CYCLE RIGHT CYCLE INSTABILITY

Algorithm SAT UNSAT SAT UNSAT SAT UNSAT # alternations

DDQN 260 0 56 77 56 61 21

Reinforce 145 115 5 185 120 97 10

PPO 214 45 26 198 30 198 1

Table 1: Results of the policy verification queries. We verified six properties over
each of the 260 models trained per algorithm; SAT indicates that the property
was violated, whereas UNSAT indicates that it held (to reduce clutter, we omit
TIMEOUT and FAIL results). The rightmost column reports the stability values of
the various training methods. For the full results see [3].

TIMEOUT value of 12 hours and a MEMOUT limit of 2G; the results are summarized
in Table 1. The single-step collision queries usually terminated within seconds,
and the 2-step queries encoding an ALTERNATING LOOP usually terminated within
minutes. The 12-step cycle queries, which are more complex, usually ran for a
few hours. 9.6% of all queries hit the TIMEOUT limit (all from the 12-step cycle
category), and none of the queries hit the MEMOUT limit.2

Our results exposed various differences between the trained models. Specif-
ically, of the 780 models checked, 752 (over 96%) violated at least one of the
single-step collision properties. These 752 collision-prone models include all 260
DDQN-trained models, 256 Reinforce models, and 236 PPO models. Further-
more, when we conducted a model filtering process based on all six properties
(three collisions and three infinite loops), we discovered that 778 models out
of the total of 780 (over 99.7%!) violated at least one property. The only two
models that passed our filtering process were trained by the PPO algorithm.

Further analyzing the results, we observed that PPO models tended to be
safer to use than those trained by other algorithms: they usually had the fewest
violations per property. However, there are cases in which PPO proved less suc-
cessful. For example, our results indicate that PPO-trained models are more
prone to enter an ALTERNATING LOOP than those trained by Reinforce. Specif-
ically, 214 (82.3%) of the PPO models have entered this undesired state, com-
pared to 145 (55.8%) of the Reinforce models. We also point out that, similarly
to the case with collision properties, all DDQN models violated this property.

Finally, when considering 12-step cycles (either LEFT CYCLE or RIGHT CYCLE),
44.8% of the DDQN models entered such cycles, compared to 30.7% of the Rein-
force models, and just 12.4% of the PPO models. In computing these results, we

2 We note that two queries failed due to internal errors in Marabou.



620 G. Amir et al.

computed the fraction of violations (SAT queries) out of the number of queries
that did not time out or fail, and aggregated SAT results for both cycle directions.

Interestingly, in some cases, we observed a bias toward violating a certain
subcase of various properties. For example, in the case of entering full cycles —
although 125 (out of 520) queries indicated that Reinforce-trained agents may
enter a cycle in either direction, in 96% of these violations, the agent entered a
RIGHT CYCLE. This bias is not present in models trained by the other algorithms,
where the violations are roughly evenly divided between cycles in both directions.

We find that our results demonstrate that different “black-box” algorithms
generalize very differently with respect to various properties. In our setting, PPO
produces the safest models, while DDQN tends to produce models with a higher
number of violations. We note that this does not necessarily indicate that PPO-
trained models perform better, but rather that they are more robust to corner
cases. Using our filtering mechanism, it is possible to select the safest models
among the available, seemingly equivalent candidates.

Next, we used verification to compute the bravery score of the various models.
Using a binary search, we computed for each model the minimal distance a dead-
ahead obstacle needs to have for the robot to safely move forward. The search
range was [0.18, 1] meters, and the optimal values were computed up to a 0.01
precision (see the full version of this paper [5] for additional details). Almost all
binary searches terminated within minutes, and none hit the TIMEOUT threshold.

By first filtering the models based on their safe behavior, and then by their
bravery scores, we are able to find the few models that are both safe (do not col-
lide), and not overly conservative. These models tend to take efficient paths, and
may come close to an obstacle, but without colliding with it. We also point out
that over-conservativeness may significantly reduce the success rate in specific
scenarios, such as cases in which the obstacle is close to the target. Specifically,
of the only two models that survived the first filtering stage, one is considerably
more conservative than the other — requiring the obstacle to be twice as distant
as the other, braver, model requires it to be, before moving forward.

Algorithm Stability Analysis. As part of our experiments, we used our
method to assess the three training algorithms — DDQN, PPO, and Reinforce.
Recall that we used each algorithm to train 52 families of 5 models each, in which
the models from the same family are generated from the same random seed, but
with a different number of training iterations. While all models obtained a high
success rate, we wanted to check how often it occurred that a model success-
fully learned to satisfy a desirable property after some training iterations, only
to forget it after additional iterations. Specifically, we focused on the 12-step
full-cycle properties (LEFT CYCLE and RIGHT CYCLE), and for each family of 5
models checked whether some models satisfied the property while others did not.

We define a family of models to be unstable in the case where a property holds
in the family, but ceases to hold for another model from the same family with
a higher number of training iterations. Intuitively, this means that the model
“forgot” a desirable property as training progressed. The instability value of
each algorithm type is defined to be the number of unstable 5-member families.



Verifying Learning-Based Robotic Navigation Systems 621

Although all three algorithms produced highly accurate models, they dis-
played significant differences in the stability of their produced policies, as can
be seen in the rightmost column of Table 1. Recall that we trained 52 families
of models using each algorithm, and then tested their stability with respect to
two properties (corresponding to the two full cycle types). Of these, the DDQN
models display 21 unstable alternations — more than twice the number of al-
terations demonstrated by Reinforce models (10), and significantly higher than
the number of alternations observed among the PPO models (1).

These results shed light on the nature of these training algorithms — indi-
cating that DDQN is a significantly less stable training algorithm, compared to
PPO and Reinforce. This is in line with previous observations in non-verification-
related research [50], and is not surprising, as the primary objective of PPO is to
limit the changes the optimizer performs between consecutive training iterations.

Gradient-Based Methods. We also conducted a thorough comparison be-
tween our verification-based approach and competing gradient-based methods.
Although gradient-based attacks are extremely scalable, our results (summarized
in [5]) show that they may miss many of the violations found by our complete,
verification-based procedure. For example, when searching for collisions, our ap-
proach discovered a total of 2126 SAT results, while the gradient-based method
discovered only 1421 SAT results — a 33% decrease (!). In addition, given that
gradient-based methods are unable to return UNSAT, they are also incapable
of proving that a property always holds, and hence cannot formally guarantee
the safety of a policy in question. Thus, performing model selection based on
gradient-based methods could lead to skewed results. We refer the reader to the
full version of this paper [5], in which we elaborate on gradient attacks and the
experiments we ran, demonstrating the advantages of our approach for model
selection, when compared to gradient-based methods.

6 Related Work

Due to the increasing popularity of DNNs, the formal methods community has
put forward a plethora of tools and approaches for verifying DNN correctness
[20,24,26,28,31–33,36,39,52,59]. Recently, the verification of systems involving
multiple DNN invocations, as well as hybrid systems with DNN components,
has been receiving significant attention [6,9,17,18,22,34,54,61]. Our work here
is another step toward applying DNN verification techniques to additional, real-
world systems and properties of interest.

In the robotics domain, multiple approaches exist for increasing the reliability
of learning-based systems [48,62,69]; however, these methods are mostly heuristic
in nature [1,23,42]. To date, existing techniques rely mostly on Lagrangian mul-
tipliers [38,49,53], and do not provide formal safety guarantees; rather, they op-
timize the training in an attempt to learn the required policies [12]. Other, more
formal approaches focus solely on the systems’ input-output relations [15,41],
without considering multiple invocations of the agent and its interactions with



622 G. Amir et al.

the environment. Thus, existing methods are not able to provide rigorous guar-
antees regarding the correctness of multistep robotic systems, and do not take
into account sequential decision making — which renders them insufficient for
detecting various safety and liveness violations.

Our approach is orthogonal and complementary to many existing safe DRL
techniques. Reward reshaping and shielding techniques (e.g., [2]) improve safety
by altering the training loop, but typically afford no formal guarantees. Our
approach can be used to complement them, by selecting the most suitable policy
from a pool of candidates, post-training. Guard rules and runtime shields are
beneficial for preventing undesirable behavior of a DNN agent, but are sometimes
less suited for specifying the desired actions it should take instead. In contrast,
our approach allows selecting the optimal policy from a pool of candidates,
without altering its decision-making.

7 Conclusion

Through the case study described in this paper, we demonstrate that current
verification technology is applicable to real-world systems. We show this by ap-
plying verification techniques for improving the navigation of DRL-based robotic
systems. We demonstrate how off-the-shelf verification engines can be used to
conduct effective model selection, as well as gain insights into the stability of
state-of-the-art training algorithms. As far as we are aware, ours is the first work
to demonstrate the use of formal verification techniques on multistep properties
of actual, real-world robotic navigation platforms. We also believe the techniques
developed here will allow the use of verification to improve additional multistep
systems (autonomous vehicles, surgery-aiding robots, etc.), in which we can im-
pose a transition function between subsequent steps. However, our approach is
limited by DNN-verification technology, which we use as a black-box backend. As
that technology becomes more scalable, so will our approach. Moving forward,
we plan to generalize our work to richer environments — such as cases where
a memory-enhanced agent interacts with moving objects, or even with multiple
agents in the same arena, as well as running additional experiments with deeper
networks, and more complex DRL systems. In addition, we see probabilistic
verification of stochastic policies as interesting future work.

Acknowledgements. The work of Amir, Yerushalmi and Katz was partially
supported by the Israel Science Foundation (grant number 683/18). The work of
Amir was supported by a scholarship from the Clore Israel Foundation. The work
of Corsi, Marzari, and Farinelli was partially supported by the “Dipartimenti di
Eccellenza 2018-2022” project, funded by the Italian Ministry of Education, Uni-
versities, and Research (MIUR). The work of Yerushalmi and Harel was partially
supported by a research grant from the Estate of Harry Levine, the Estate of
Avraham Rothstein, Brenda Gruss and Daniel Hirsch, the One8 Foundation,
Rina Mayer, Maurice Levy, and the Estate of Bernice Bernath, grant 3698/21
from the ISF-NSFC (joint to the Israel Science Foundation and the National



Verifying Learning-Based Robotic Navigation Systems 623

Science Foundation of China), and a grant from the Minerva foundation. We
thank Idan Refaeli for his contribution to this project.

References

1. J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained Policy Optimization.
In Proc. 34th Int. Conf. on Machine Learning (ICML), pages 22–31, 2017.

2. M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe
Reinforcement Learning via Shielding. In Proc. 32th AAAI Conf. on Artificial
Intelligence (AAAI), pages 2669–2678, 2018.

3. G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli, and G. Katz.
Supplementary Artifact, 2022. https://doi.org/10.5281/zenodo.7496352.

4. G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli, and G. Katz.
Supplementary Video, 2022. https://youtu.be/QIZqOgxLkAE.

5. G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli, and G. Katz.
Verifying Learning-Based Robotic Navigation Systems, 2023. Technical Report.
https://arxiv.org/abs/2205.13536.

6. G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification of Deep Re-
inforcement Learning. In Proc. 21st Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD), pages 193–203, 2021.

7. R. Amsters and P. Slaets. Turtlebot 3 as a Robotics Education Platform. In Proc.
10th Int. Conf. on Robotics in Education (RiE), pages 170–181, 2019.

8. G. Avni, R. Bloem, K. Chatterjee, T. Henzinger, B. Konighofer, and S. Pranger.
Run-Time Optimization for Learned Controllers through Quantitative Games. In
Proc. 31st Int. Conf. on Computer Aided Verification (CAV), pages 630–649, 2019.

9. E. Bacci, M. Giacobbe, and D. Parker. Verifying Reinforcement Learning Up to
Infinity. In Proc. 30th Int. Joint Conf. on Artificial Intelligence (IJCAI), 2021.

10. T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative Verification
of Neural Networks and its Security Applications. In Proc. ACM SIGSAC Conf.
on Computer and Communications Security (CCS), pages 1249–1264, 2019.

11. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba.
End to End Learning for Self-Driving Cars, 2016. Technical Report. http:

//arxiv.org/abs/1604.07316.

12. L. Brunke, M. Greeff, A. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. Schoellig.
Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement
Learning. Annual Review of Control, Robotics, and Autonomous Systems, 5, 2021.

13. H. Chiang, A. Faust, M. Fiser, and A. Francis. Learning Navigation Behaviors
End-to-End with AutoRL. IEEE Robotics and Automation Letters (RA-L/ICRA),
4(2):2007–2014, 2019.

14. E. Clarke, T. Henzinger, H. Veith, and R. Bloem. Handbook of Model Checking,
volume 10. Springer, 2018.

15. D. Corsi, E. Marchesini, and A. Farinelli. Formal Verification of Neural Networks
for Safety-Critical Tasks in Deep Reinforcement Learning. In Proc. 37th Conf. on
Uncertainty in Artificial Intelligence (UAI), pages 333–343, 2021.

16. L. Deng and Y. Liu. Deep Learning in Natural Language Processing. Springer,
2018.

https://doi.org/10.5281/zenodo.7496352
https://youtu.be/QIZqOgxLkAE
https://arxiv.org/abs/2205.13536
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316


624 G. Amir et al.

17. S. Dutta, X. Chen, and S. Sankaranarayanan. Reachability Analysis for Neural
Feedback Systems using Regressive Polynomial Rule Inference. In Proc. 22nd ACM
Int. Conf. on Hybrid Systems: Computation and Control (HSCC), pages 157–168,
2019.

18. S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. Learning and Verifica-
tion of Feedback Control Systems using Feedforward Neural Networks. IFAC-
PapersOnLine, 51(16):151–156, 2018.

19. S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. Output Range Analysis
for Deep Feedforward Neural Networks. In Proc. 10th NASA Formal Methods
Symposium (NFM), pages 121–138, 2018.

20. R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Net-
works. In Proc. 15th Int. Symp. on Automated Technology for Verification and
Analysis (ATVA), pages 269–286, 2017.

21. T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-Augmented
Systems. In Proc. Conf. of the ACM Special Interest Group on Data Communica-
tion on the Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), pages 305–318, 2021.

22. N. Fulton and A. Platzer. Safe Reinforcement Learning via Formal Methods:
Toward Safe Control through Proof and Learning. In Proc. 32nd AAAI Conf. on
Artificial Intelligence (AAAI), 2018.

23. J. Garcıa and F. Fernández. A Comprehensive Survey on Safe Reinforcement
Learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.

24. T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and
M. Vechev. AI2: Safety and Robustness Certification of Neural Networks with
Abstract Interpretation. In Proc. 39th IEEE Symposium on Security and Privacy
(S&P), 2018.

25. I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
26. D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A Data-driven

Approach for Assessing Robustness of Neural Networks. In Proc. 16th. Int. Sympo-
sium on Automated Technology for Verification and Analysis (ATVA), pages 3–19,
2018.

27. D. Gunning. Explainable Artificial Intelligence (XAI), 2017. Defense Advanced
Research Projects Agency (DARPA) Project.

28. X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep
Neural Networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV),
pages 3–29, 2017.

29. R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee. Verifying the
Safety of Autonomous Systems with Neural Network Controllers. ACM Transac-
tions on Embedded Computing Systems (TECS), 20(1):1–26, 2020.

30. P. Jin, J. Tian, D. Zhi, X. Wen, and M. Zhang. Trainify: A CEGAR-Driven
Training and Verification Framework for Safe Deep Reinforcement Learning. In
Proc. 34th Int. Conf. on Computer Aided Verification (CAV), pages 193–218, 2022.

31. G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In Proc. 29th Int. Conf. on
Computer Aided Verification (CAV), pages 97–117, 2017.

32. G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a Calculus
for Reasoning about Deep Neural Networks. Formal Methods in System Design
(FMSD), 2021.

33. G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor,
H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett. The Marabou Frame-



Verifying Learning-Based Robotic Navigation Systems 625

work for Verification and Analysis of Deep Neural Networks. In Proc. 31st Int.
Conf. on Computer Aided Verification (CAV), pages 443–452, 2019.

34. Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-Driven Sys-
tems. In Proc. 1st ACM SIGCOMM Workshop on Network Meets AI & ML (Ne-
tAI), pages 83–89, 2019.

35. B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis for Rein-
forcement Learning. In Proc. Int. Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), pages 290–306, 2020.

36. L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochenderfer.
Toward Scalable Verification for Safety-Critical Deep Networks, 2018. Technical
Report. https://arxiv.org/abs/1801.05950.

37. Y. Li. Deep Reinforcement Learning: An Overview, 2017. Technical Report. http:
//arxiv.org/abs/1701.07274.

38. Y. Liu, J. Ding, and X. Liu. Ipo: Interior-Point Policy Optimization under Con-
straints. In Proc. 34th AAAI Conf. on Artificial Intelligence (AAAI), pages 4940–
4947, 2020.

39. A. Lomuscio and L. Maganti. An Approach to Reachability Analysis for Feed-
Forward ReLU Neural Networks, 2017. Technical Report. http://arxiv.org/

abs/1706.07351.
40. Z. Lyu, C. Y. Ko, Z. Kong, N. Wong, D. Lin, and L. Daniel. Fastened Crown:

Tightened Neural Network Robustness Certificates. In Proc. 34th AAAI Conf. on
Artificial Intelligence (AAAI), pages 5037–5044, 2020.

41. E. Marchesini, D. Corsi, and A. Farinelli. Benchmarking Safe Deep Reinforcement
Learning in Aquatic Navigation. In Proc. IEEE/RSJ Int. Conf on Intelligent
Robots and Systems (IROS), 2021.

42. E. Marchesini, D. Corsi, and A. Farinelli. Exploring Safer Behaviors for Deep Rein-
forcement Learning. In Proc. 35th AAAI Conf. on Artificial Intelligence (AAAI),
2021.

43. E. Marchesini and A. Farinelli. Discrete Deep Reinforcement Learning for Mapless
Navigation. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), pages
10688–10694, 2020.

44. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing Atari with Deep Reinforcement Learning, 2013. Technical
Report. https://arxiv.org/abs/1312.5602.

45. S. M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal Adver-
sarial Perturbations. In Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 1765–1773, 2017.

46. C. Nandkumar, P. Shukla, and V. Varma. Simulation of Indoor Localization and
Navigation of Turtlebot 3 using Real Time Object Detection. In Proc. Int. Conf. on
Disruptive Technologies for Multi-Disciplinary Research and Applications (CENT-
CON), 2021.

47. M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart, and
J. Nieto. Reinforced Imitation: Sample Efficient Deep Reinforcement Learning
for Mapless Navigation by Leveraging Prior Demonstrations. IEEE Robotics and
Automation Letters, 3(4):4423–4430, 2018.

48. A. Ray, J. Achiam, and D. Amodei. Benchmarking Safe Exploration in Deep
Reinforcement Learning, 2019. Technical Report. https://cdn.openai.com/

safexp-short.pdf.
49. J. Roy, R. Girgis, J. Romoff, P. Bacon, and C. Pal. Direct Behavior Specification

via Constrained Reinforcement Learning, 2021. Technical Report. https://arxiv.
org/abs/2112.12228.

https://arxiv.org/abs/1801.05950
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
https://arxiv.org/abs/1312.5602
https://cdn.openai.com/safexp-short.pdf
https://cdn.openai.com/safexp-short.pdf
https://arxiv.org/abs/2112.12228
https://arxiv.org/abs/2112.12228


626 G. Amir et al.

50. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy
Optimization Algorithms, 2017. Technical Report. http://arxiv.org/abs/1707.
06347.

51. K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition, 2014. Technical Report. http://arxiv.org/abs/1409.1556.

52. G. Singh, T. Gehr, M. Puschel, and M. Vechev. An Abstract Domain for Certifying
Neural Networks. In Proc. 46th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL), 2019.

53. A. Stooke, J. Achiam, and P. Abbeel. Responsive Safety in Reinforcement Learn-
ing by Pid Lagrangian Methods. In Proc. 37th Int. Conf. on Machine Learning
(ICML), pages 9133–9143, 2020.

54. X. Sun, H. Khedr, and Y. Shoukry. Formal Verification of Neural Network Con-
trolled Autonomous Systems. In Proc. 22nd ACM Int. Conf. on Hybrid Systems:
Computation and Control (HSCC), 2019.

55. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT press,
2018.

56. R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy Gradient Methods
for Reinforcement Learning with Function Approximation. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), 1999.

57. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing Properties of Neural Networks, 2013. Technical Report.
http://arxiv.org/abs/1312.6199.

58. L. Tai, G. Paolo, and M. Liu. Virtual-to-Real Deep Reinforcement Learning: Con-
tinuous Control of Mobile Robots for Mapless Navigation. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), pages 31–36, 2017.

59. V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural Networks
with Mixed Integer Programming, 2017. Technical Report. http://arxiv.org/
abs/1711.07356.

60. H. Van Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with Double
Q-Learning. In Proc. 30th AAAI Conf. on Artificial Intelligence (AAAI), 2016.

61. M. Vasić, A. Petrović, K. Wang, M. Nikolić, R. Singh, and S. Khurshid. MoËT:
Mixture of Expert Trees and its Application to Verifiable Reinforcement Learning.
Neural Networks, 151:34–47, 2022.

62. A. Wachi and Y. Sui. Safe Reinforcement Learning in Constrained Markov Decision
Processes. In Proc. 37th Int. Conf. on Machine Learning (ICML), pages 9797–9806,
2020.

63. A. Wahid, A. Toshev, M. Fiser, and T. Lee. Long Range Neural Navigation Policies
for the Real World. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 82–89, 2019.

64. S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security Analysis
of Neural Networks using Symbolic Intervals. In Proc. 27th USENIX Security
Symposium, pages 1599–1614, 2018.

65. K. Yoneda, H. Tehrani, T. Ogawa, N. Hukuyama, and S. Mita. Lidar Scan Feature
for Localization with Highly Precise 3-D Map. In Proc. IEEE Intelligent Vehicles
Symposium (IV), pages 1345–1350, 2014.

66. H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska. Verification
of Recurrent Neural Networks for Cognitive Tasks via Reachability Analysis. In
Proc. 24th European Conf. on Artificial Intelligence (ECAI), pages 1690–1697,
2020.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356


Verifying Learning-Based Robotic Navigation Systems 627

67. J. Zhang, J. Kim, B. O’Donoghue, and S. Boyd. Sample Efficient Reinforcement
Learning with REINFORCE, 2020. Technical Report. https://arxiv.org/abs/
2010.11364.

68. J. Zhang, J. Springenberg, J. Boedecker, and W. Burgard. Deep Reinforcement
Learning with Successor Features for Navigation across Similar Environments. In
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2017.

69. L. Zhang, R. Zhang, T. Wu, R. Weng, M. Han, and Y. Zhao. Safe Reinforcement
Learning with Stability Guarantee for Motion Planning of Autonomous Vehicles.
IEEE Transactions on Neural Networks and Learning Systems, 32(12):5435–5444,
2021.

70. O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard. Curiosity-Driven Explo-
ration for Mapless Navigation with Deep Reinforcement Learning, 2018. Technical
Report. https://arxiv.org/abs/1804.00456.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2010.11364
https://arxiv.org/abs/2010.11364
https://arxiv.org/abs/1804.00456
http://creativecommons.org/licenses/by/4.0/



