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Abstract. Deep neural networks are revolutionizing the way complex
systems are developed. However, these automatically-generated networks
are opaque to humans, making it difficult to reason about them and guar-
antee their correctness. Here, we propose a novel approach for verifying
properties of a widespread variant of neural networks, called recurrent
neural networks. Recurrent neural networks play a key role in, e.g., speech
recognition, and their verification is crucial for guaranteeing the reliabil-
ity of many critical systems. Our approach is based on the inference of
invariants, which allow us to reduce the complex problem of verifying
recurrent networks into simpler, non-recurrent problems. Experiments
with a proof-of-concept implementation of our approach demonstrate
that it performs orders-of-magnitude better than the state of the art.

1 Introduction

The use of recurrent neural networks (RNN s) [13] is on the rise. RNNs are
a particular kind of deep neural networks (DNNs), with the useful ability to
store information from previous evaluations in constructs called memory units.
This differentiates them from feed-forward neural networks (FFNNs), where each
evaluation of the network is performed independently of past evaluations. The
presence of memory units renders RNNs particularly suited for tasks that involve
context, such as machine translation [7], health applications [25], speaker recog-
nition [34], and many other tasks where the network’s output might be affected
by previously processed inputs.

Part of the success of RNNs (and of DNNs in general) is attributed to their
very attractive generalization properties: after being trained on a finite set of
examples, they generalize well to inputs they have not encountered before [13].
Unfortunately, it is known that RNNs may react in highly undesirable ways to
certain inputs. For instance, it has been observed that many RNNs are vulner-
able to adversarial inputs [6,32], where small, carefully-crafted perturbations
are added to an input in order to fool the network into a classification error.
This example, and others, highlight the need to formally verify the correctness
of RNNs, so that they can reliably be deployed in safety-critical settings. How-
ever, while DNN verification has received significant attention in recent years
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(e.g., [2,4,5,8,10,12,15,19,20,26,27,33,35,36]), almost all of these efforts have
been focused on FFNNs, with very little work done on RNN verification.

To the best of our knowledge, the only existing general approach for RNN
verification is via unrolling [1]: the RNN is duplicated and concatenated onto
itself, creating an equivalent feed-forward network that operates on a sequence
of k inputs simultaneously, as opposed to one at a time. The FFNN can then
be verified using existing verification technology. The main limitation of this
approach is that unrolling increases the network size by a factor of k (which,
in real-world applications, can be in the hundreds [34]). Because the complexity
of FFNN verification is known to be worst-case exponential in the size of the
network [18], this reduction gives rise to FFNNs that are difficult to verify—and
is hence applicable primarily to small RNNs with short input sequences.

Here, we propose a novel approach for RNN verification, which affords far
greater scalability than unrolling. Our approach also reduces the RNN verifica-
tion problem into FFNN verification, but does so in a way that is independent
of the number of inputs that the RNN is to be evaluated on. Specifically, our
approach consists of two main steps: (i) create an FFNN that over-approximates
the RNN, but which is the same size as the RNN; and (ii) verify properties over
this over-approximation using existing techniques for FFNN verification. Thus,
our approach circumvents any duplication of the network or its inputs.

In order to perform step (i), we leverage the well-studied notion of inductive
invariants: our FFNN encodes time-invariant properties of the RNN, which hold
initially and continue to hold after the RNN is evaluated on each additional
input. Automatic inference of meaningful inductive invariants has been studied
extensively (e.g., [28,30,31]), and is known to be highly difficult [29]. We propose
here an approach for generating invariants according to predefined templates. By
instantiating these templates, we automatically generate a candidate invariant
I, and then: (i) use our underlying FFNN verification engine to prove that I
is indeed an invariant; and (ii) use I in creating the FFNN over-approximation
of the RNN, in order to prove the desired property. If either of these steps fail,
we refine I (either strengthening or weakening it, depending on the point of
failure), and repeat the process. The process terminates when the property is
proven correct, when a counter-example is found, or when a certain timeout
value is exceeded.

We evaluate our approach using a proof-of-concept implementation, which
uses the Marabou tool [20] as its FFNN verification back-end. When compared
to the state of the art on a set of benchmarks from the domain of speaker recog-
nition [34], our approach is orders-of-magnitude faster. Our implementation,
together with our benchmarks and experiments, is available online [16].

The rest of this paper is organized as follows. In Sect. 2, we provide a brief
background on DNNs and their verification. In Sect. 3, we describe our approach
for verifying RNNs via reduction to FFNN verification, using invariants. We
describe automated methods for RNN invariant inference in Sect. 4, followed by
an evaluation of our approach in Sect. 5. We then discuss related work in Sect. 6,
and conclude with Sect. 7.
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2 Background

2.1 Feed-Forward Neural Networks and Their Verification

An FFNN N with n layers consists of an input layer, n−2 hidden layers, and an
output layer. We use si to denote the dimension of layer i, which is the number
of neurons in that layer. We use vi,j to refer to the j-th neuron in the i-th layer.
Each hidden layer is associated with a weight matrix Wi and a bias vector bi.
The FFNN input vector is denoted as v1, and the output vector of each hidden
layer 1 < i < n is vi = f (Wivi−1 + bi), where f is some element-wise activation
function (such as ReLU(x) = max (0, x)). The output layer is evaluated similarly,
but without an activation function: vn = Wn−1vn−1 + bn. Given an input vector
v1, the network is evaluated by sequentially calculating vi for i = 2, 3, . . . , n, and
returning vn as the network’s output.

v1,1

v2,1

v2,2

v3,1

1

−1

1

2

Fig. 1. A simple feed-forward
neural network.

A simple example appears in Fig. 1. This
FFNN has a single input neuron v1,1, a single
output neuron v3,1, and two hidden neurons v2,1
and v2,2. All bias values are assumed to be 0, and
we use the common ReLU(x) = max(0, x) func-
tion as our activation function. When the input
neuron is assigned v1,1 = 4, the weighted sum
and activation functions yield v2,1 = ReLU(4) =
4 and v2,2 = ReLU(−4) = 0. Finally, we obtain
the output v3,1 = 4.

FFNN Verification. In FFNN verification we seek inputs that satisfy cer-
tain constraints, such that their corresponding outputs also satisfy certain con-
straints. Looking again at the network from Fig. 1, we might wish to know
whether v1,1 ≤ 5 always entails v3,1 < 20. Negating the output property, we
can use a verification engine to check whether it is possible that v1,1 ≤ 5 and
v3,1 ≥ 20. If this query is unsatisfiable (UNSAT), then the original property holds;
otherwise, if the query is satisfiable (SAT), then the verification engine will pro-
vide us with a counter-example (e.g., v1,1 = −10, v3,1 = 20 in our case).

Formally, we define an FFNN verification query as a triple 〈P,N,Q〉, where
N is an FFNN, P is a predicate over the input variables x, and Q is a predicate
over the output variables y. Solving this query entails deciding whether there
exists a specific input assignment x0 such that P (x0) ∧ Q(N(x0)) holds (where
N(x0) is the output of N for the input x0). It has been shown that even for simple
FFNNs and for predicates P and Q that are conjunctions of linear constraints,
the verification problem is NP-complete [18]: in the worst-case, solving it requires
a number of operations that is exponential in the number of neurons in N .

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are similar to FFNNs, but have an addi-
tional construct called a memory unit. Memory units allow a hidden neuron to
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store its assigned value for a specific evaluation of the network, and have that
value become part of the neuron’s weighted sum computation in the next eval-
uation. Thus, when evaluating the RNN in time step t + 1, e.g. when the RNN
reads the t + 1’th word in a sentence, the results of the t previous evaluations
can affect the current result.

A simple RNN appears in Fig. 2. There, node ṽ2,1 represents node v2,1’s
memory unit (we draw memory units as squares, and mark them using the tilde
sign). When computing the weighted sum for node v2,1, the value of ṽ2,1 is also
added to the sum, according to its listed weight (1, in this case). We then update
ṽ2,1 for the next round, using the vanilla RNN update rule: ṽ2,1 := v2,1. Memory
units are initialized to 0 for the first evaluation, at time step t = 1.

Time Step v1,1 v2,1 ṽ2,1 v3,1

1 0.5 0.5 0 0.5
2 1.5 2 0.5 2
3 -1 1 2 1
4 -3 0 1 0 v1,1

ṽ2,1

v2,1 v3,1
1

1

1

Fig. 2. An illustration of a toy RNN with the ReLU activation function. Each row of
the table represents a single time step, and depicts the value of each neuron for that
step. Using a t superscript to represent time step t, we observe that vt

2,1 is computed
as max (0, ṽt

2,1 + vt
1,1), according to the ReLU function.

The FFNN definitions are extended to RNNs as follows. We use the t super-
script to indicate the timestamp of the RNN’s evaluation: e.g., v4

3,2 indicates
the value that node v3,2 is assigned in the 4’th evaluation of the RNN. We
associate each hidden layer of the RNN with a square matrix Hi of dimen-
sion si, which represents the weights on edges from memory units to neurons.
Observe that each memory unit in layer i can contribute to the weighted sums
of all neurons in layer i, and not just to the neuron whose values it stores.
For time step t > 0, the evaluation of each hidden layer 1 < i < n is now
computed by vt

i = f
(
Wiv

t
i−1 + Hiṽ

t
i + bi

)
, and the output values are given by

vt
n = Wnvt

n−1+Hnvt−1
n +bn. By convention, we initialize memory units to 0 (i.e.

for every memory unit ṽ, ṽ1 = 0). For simplicity, we assume that each hidden
neuron in the network has a memory unit. This definition captures also “regular”
neurons, by setting the appropriate entries of H to 0.

While we focus here on vanilla RNNs, our technique could be extended to,
e.g., LSTMs or GRUs; we leave this for future work.

RNN Verification. We define an RNN verification query as a tuple
〈P,N,Q, Tmax〉, where P is an input property, Q is an output property, N is
an RNN, and Tmax ∈ N is a bound on the time interval for which the property
should hold. P and Q include linear constraints over the network’s inputs and
outputs, and may also use the notion of time.
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As a running example, consider the network from Fig. 2, denoted by N ,
the input predicate P =

∧5
t=1(−3 ≤ vt

1,1 ≤ 3), the output predicate Q =
∨5

t=1(v
t
3,1 ≥ 16), and the time bound Tmax = 5. This query searches for an

evaluation of N with 5 time steps, in which all input values are in the range
[−3, 3], and such that at some time step the output value is at least 16. By the
weights of N , it can be proved that vt

3,1 is at most the sum of the ReLUs of
inputs so far, vt

3,1 ≤ ∑t
i=1 ReLU(vi

1,1) ≤ 3t; and so vt
3,1 ≤ 15 for all 1 ≤ t ≤ 5,

and the query is UNSAT.

2.3 Inductive Invariants

Inductive invariants [29] are a well-established way to reason about software
with loops. Formally, let 〈Q, q0, T 〉 be a transition system, where Q is the set
of states, q0 ∈ Q is an initial state, and T ⊆ Q × Q is a transition relation. An
invariant I is a logical formula defined over the states of Q, with two properties:
(i) I holds for the initial state, i.e. I(q0) holds; and (ii) I is closed under T , i.e.
(I(q) ∧ 〈q, q′〉 ∈ T ) ⇒ I(q′). If it can be proved (in a given proof system) that
formula I is an invariant, we say that I is an inductive invariant.

Invariants are particularly useful when attempting to verify that a given
transition system satisfies a safety property. There, we are given a set of bad
states B, and seek to prove that none of these states is reachable. We can do so
by showing that {q ∈ Q | I(q)}∩B = ∅. Unfortunately, automatically discovering
invariants for which the above holds is typically an undecidable problem [29].
Thus, a common approach is to restrict the search space—i.e., to only search for
invariants with a certain syntactic form.

3 Reducing RNN Verification to FFNN Verification

3.1 Unrolling

To date, the only available general approach for verifying RNNs [1] is to trans-
form the RNN in question into a completely equivalent, feed-forward network,
using unrolling. An example appears in Fig. 3. The idea is to leverage Tmax,
which is an upper bound on the number of times that the RNN will be evalu-
ated. The RNN is duplicated Tmax times, once for each time step in question,
and its memory units are removed. Finally, the nodes in the i’th copy are used
to fill the role of memory units for the i + 1’th copy of the network.

While unrolling gives a sound reduction from RNN verification to FFNN ver-
ification, it unfortunately tends to produce very large networks. When verifying
a property that involves t time steps, an RNN network with n memory units will
be transformed into an FFNN with (t − 1) · n new nodes. Because the FFNN
verification problem becomes exponentially more difficult as the network size
increases [18], this renders the problem infeasible for large values of t. As scal-
ability is a major limitation of existing FFNN verification technology, unrolling
can currently only be applied to small networks that are evaluated for a small
number of time steps.
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v11,1 v21,1 v31,1 v41,1 v51,1

v12,1 v22,1 v32,1 v42,1 v52,1

v13,1 v23,1 v33,1 v43,1 v53,1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

Fig. 3. Unrolling the network from Fig. 2, for Tmax = 5 time steps. The edges in red
fill the role of the memory units of the original RNN. The number of neurons in the
unrolled network is 5 times the number of neurons in the original. (Color figure online)

3.2 Circumventing Unrolling

We propose a novel alternative to unrolling, which can reduce RNN verification
to FFNN verification without the blowup in network size. The idea is to trans-
form a verification query ϕ = 〈P,N,Q, Tmax〉 over an RNN N into a different
verification query ϕ̂ = 〈P̂ , N̂ , Q̂〉 over an FFNN N̂ . ϕ̂ is not equivalent to ϕ, but
rather over-approximates it: it is constructed in a way that guarantees that if
ϕ̂ in UNSAT, then ϕ is also UNSAT. As is often the case, if ϕ̂ is SAT, either the
original property truly does not hold for N , or the over-approximation is too
coarse and needs to be refined; we discuss this case later.

A key point in our approach is that ϕ̂ is created in a way that captures
the notion of time in the FFNN setting, and without increasing the network
size. This is done by incorporating into P̂ an invariant that puts bounds on the
memory units as a function of the time step t. This invariant does not precisely
compute the values of the memory units—instead, it bounds each of them in
an interval. This inaccuracy is what makes ϕ̂ an over-approximation of ϕ. More
specifically, the construction is performed as follows:

1. N̂ is constructed from N by adding a new input neuron, t, to represent time.
In line with standard FFNN definitions, t is treated as a real number.

2. For every node v with memory unit ṽ, in N̂ we replace ṽ with a regular
neuron, vm, which is placed in the input layer. Neuron vm will be connected
to the network’s original neurons with the original weights, just as ṽ was.1

3. We set P̂ = P ∧ (1 ≤ t ≤ Tmax) ∧ I, where I is a formula that bounds the
values of each new vm node as a function of the time step t. The constraints
in I constitute the invariant over the memory units’ values.

4. The output property is unchanged: Q̂ = Q.

We name ϕ̂ and N̂ constructed in this way the snapshot query and the snap-
shot network, respectively, and denote ϕ̂ = S(ϕ) and N̂ = S(N). The intuition
behind this construction is that query ϕ̂ encodes a snapshot (an assignment of t)

1 Note that we slightly abuse the definitions from Sect. 2, by allowing an input neuron
to be connected to neurons in layers other than its preceding layer.
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in which all constraints are satisfied. At this point in time, the vm nodes repre-
sent the values stored in the memory units (whose assignments are bounded by
the invariant I); and the input and output nodes represent the network’s inputs
and outputs at time t. Clearly, a satisfying assignment for ϕ̂ does not necessarily
indicate a counter-example for ϕ; e.g., because the values assigned to vm might
be impossible to obtain at time t in the original network. However, if ϕ̂ is UNSAT
then so is ϕ, because there does not exist a point in time in which the query
might be satisfied. Note that the construction only increases the network size by
1 (the vm neurons replace the memory units, and we add a single neuron t).

Time-Agnostic Properties. In the aforementioned construction of ϕ̂, the
original properties P and Q appear, either fully or as a conjunct, in the new
properties P̂ and Q̂. It is not immediately clear that this is possible, as P and
Q might also involve time. For example, if P is the formula v7

1,2 ≥ 10, it cannot
be directly incorporated into P̂ , because N̂ has no notion of time step 7.

For simplicity, we assume that P and Q are time-agnostic, i.e. are given in
the following form: P =

∧Tmax
t=1 ψ1 and Q =

∨Tmax
t=1 ψ2, where ψ1 and ψ2 contain

linear constraints over the inputs and outputs of N , respectively, at time stamp t.
This formulation can express queries in which the inputs are always in a certain
interval, and a bound violation of the output nodes is sought. Our running
example from Fig. 2 has this structure. When the properties are given in this
form, we set P̂ = ψ1 and Q̂ = ψ2, with the t superscripts omitted for all neurons.
This assumption can be relaxed significantly; see Sect. 8 of the appendix in the
full version of the paper [17].

t

vm2,1

v1,1 v2,1 v3,1

1

1 1

Fig. 4. The feed-forward snap-
shot network N̂ for the RNN
from Fig. 2.

Example. We demonstrate our approach on the
running example from Fig. 2. Recall that P =∧5

t=1(−3 ≤ vt
1,1 ≤ 3), and Q =

∨5
t=1(v

t
3,1 ≥ 16).

First, we build the snapshot network N̂ (Fig. 4)
by replacing the memory unit ṽ2,1 with a regu-
lar neuron, vm

2,1, which is connected to node v2,1
with weight 1 (the same weight previously found
on the edge from ṽ2,1 to v2,1), and adding neu-
ron t to represent time. Next, we set P̂ to be the
conjunction of (i) P , with its internal conjunc-
tion and t superscripts omitted; (ii) the time constraint 1 ≤ t ≤ 5; and (iii) the
invariant that bounds the values of vm

2,1 as a function of time: vm
2,1 ≤ 3(t − 1).

Our new verification query is thus:

〈v1,1 ∈ [−3, 3] ∧ t ∈ [1, 5] ∧ (vm
2,1 ≤ 3(t − 1))

︸ ︷︷ ︸
P̂

, N̂ , v3,1 ≥ 16
︸ ︷︷ ︸

Q̂

〉

This query is, of course, UNSAT, indicating that the original query is also UNSAT.
Note that the new node t is added solely for the purpose of including it in
constraints that appear in P̂ .
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The requirement that I be an invariant over the memory units of N ensures
that our approach is sound. Specifically, it guarantees that I allows any assign-
ment for vm that the original memory unit ṽ might be assigned. This is formu-
lated in the following lemma (whose proof, by induction, is omitted):

Lemma 1. Let ϕ = 〈P,N,Q, Tmax〉 be an RNN verification query, and let ϕ̂ =
〈P̂ , N̂ , Q̂〉 be the snapshot query ϕ̂ = S(ϕ). Specifically, let P̂ = P ∧ (1 ≤ t ≤
Tmax) ∧ I, where I is an invariant that bounds the values of each vm. If ϕ̂ is
UNSAT, then ϕ is also UNSAT.

3.3 Constructing ϕ̂ : Verifying the Invariant

A key assumption in our reduction from RNN to FFNN verification was that we
were supplied some invariant I, which bounds the values of the vm neurons as
a function of the time t. In this section we make our method more robust, by
including a step that verifies that the supplied formula I is indeed an invariant.
This step, too, is performed by creating an FFNN verification query, which can
then be dispatched using the back-end FFNN verification engine. (We treat
I simultaneously as a formula over the nodes of S(N) and those of N ; the
translation is performed by renaming every occurrence of vm to ṽt, or vice versa.)

First, we adjust the definitions of an inductive invariant (Sect. 2.3) to the
RNN setting. The state space Q is comprised of states q = 〈A, t〉, where A
is the current assignment to the nodes of N (including the assignments of the
memory units), and t ∈ N represents time step. For another state q′ = 〈A′, t′〉,
the transition relation T (q, q′) holds if and only if: (i) t′ = t + 1; i.e., the time
step has advanced by one; (ii) for each neuron v and its memory unit ṽ it
holds that A′[ṽ] = A[v]; i.e., the vanilla RNN update rule holds; and (iii) the
assignment A′ of all of the network’s neurons constitutes a proper evaluation of
the RNN according to Sect. 2; i.e., all weighted sums and activation functions
are computed properly. A state q0 is initial if t = 1, ṽ = 0 for every memory unit,
and the assignment of the network’s neurons constitutes a proper evaluation of
the RNN.

Next, let I be a formula over the memory units of N , and suppose we wish
to verify that I is an invariant. Proving that I is in invariant amounts to proving
that I(q0) holds for any initial state q0, and that for every two states q, q′ ∈ Q,
I(q)∧T (q, q′) → I(q′). Checking whether I(q0) holds is trivial. The second check
is more tricky; here, the key point is that because q and q′ are consecutive states,
the memory units of q′ are simply the neurons of q. Thus, we can prove that I
holds for q′ by looking at the snapshot network, assuming that I holds initially,
and proving that I[vm 
→ v, t 
→ t + 1], i.e. the invariant with each memory unit
vm renamed to its corresponding neuron v and the time step advanced by 1, also
holds. The resulting verification query, which we term ϕI , can be verified using
the underlying FFNN verification back-end.

We illustrate this process using the running example from Fig. 2. Let I =
vm
2,1 ≤ 3(t−1). I holds at every initial state q0; this is true because at time t = 1,

vm
2,1 = 0 ≤ 3 · 0. Next, we assume that I holds for state q = 〈A, t〉 and prove
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that it holds for q = 〈A′, t + 1〉. First, we create the snapshot FFNN N̂ , shown
in Fig. 4. We then extend the original input property P =

∧5
t=1(−3 ≤ vt

1,1 ≤ 3)
into a property P ′ that also captures our assumption that the invariant holds at
time t: P ′ = (−3 ≤ v1,1 ≤ 3) ∧ (vm

2,1 ≤ 3(t − 1)). Finally, we prepare an output
property Q′ that asserts that the invariant does not hold for v2,1 at time t + 1,
by renaming vm

2,1 to v2,1 and incrementing t: Q′ = ¬(v2,1 ≤ 3(t + 1 − 1)). When
the FFNN verification engine answers that ϕI = 〈P ′,S(N), Q′〉 is UNSAT, we
conclude that I is indeed an invariant. In cases where the query turns out to be
SAT, I is not an invariant, and needs to be refined.

Given a formula I, the steps described so far allow us to reduce RNN veri-
fication to FFNN verification, in a completely sound and automated way. Next
we discuss how to automate the generation of I, as well.

4 Invariant Inference

4.1 Single Memory Units

In general, automatic invariant inference is undecidable [29]; thus, we employ
here a heuristic approach, that uses linear templates. We first describe the app-
roach on a simple case, in which the network has a single hidden node v with
a memory unit, and then relax this limitation. Note that the running example
depicted in Fig. 2 fits this case. Here, inferring an invariant according to a linear
template means finding values αl and αu, such that αl ·(t−1) ≤ ṽt ≤ αu ·(t−1).
The value of ṽt is thus bounded from below and from above as a function of
time. In our template we use (t − 1), and not t, in order to account for the fact
that ṽt contains the value that node v was assigned at time t− 1. For simplicity,
we focus only on finding the upper bound; the lower bound case is symmetrical.
We have already seen such an upper bound for our running example, which was
sufficiently strong for proving the desired property: ṽt

2,1 ≤ 3(t − 1).
Once candidate α’s are proposed, verifying that the invariant holds is per-

formed using the techniques outlined in Sect. 3. There are two places where
the process might fail: (i) the proposed invariant cannot be proved (ϕI is SAT),
because a counter-example exists. This means that our invariant is too strong,
i.e. the bound is too tight. In this case we can weaken the invariant by increasing
αu; or (ii) the proposed invariant holds, but the FFNN verification problem that
it leads to, ϕ̂, is SAT. In this case, the invariant is too weak : it does not imply
the desired output property. We can strengthen the invariant by decreasing αu.

This search problem leads us to binary search strategy, described in Algo-
rithm 1. The search stops, i.e. an optimal invariant is found, when ub− lb ≤ ε for
a small constant ε. The algorithm fails if the optimal linear invariant is found,
but is insufficient for proving the property in question; this can happen if ϕ is
indeed SAT, or if a more sophisticated invariant is required.

Discussion: Linear Templates. Automated invariant inference has been stud-
ied extensively in program analysis (see Sect. 6). In particular, elaborate tem-
plates have been proposed, which are more expressive than the linear template
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Algorithm 1. Automatic Single Memory Unit Verification(P,N,Q, Tmax)
1: lb ← −M , ub ← M � M is a large constant
2: while ub − lb ≥ ε do
3: αu ← ub+lb

2
, I ← vm

2,1 ≤ αu · (t − 1)
4: if ϕI is UNSAT then
5: Construct ϕ̂ using invariant I
6: if ϕ̂ is UNSAT then
7: return True
8: ub ← αu � Invariant too weak
9: else

10: lb ← αu � Invariant too strong

11: return False

that we use. The approach we presented in Sect. 3 is general, and is compatible
with many of these templates. Our main motivation for focusing on linear tem-
plates is that most FFNN verification tools readily support linear constraints,
and can thus verify the ϕI queries that originate from linear invariants. As we
demonstrate in Sect. 5, despite their limited expressiveness, linear invariants are
already sufficient for solving many verification queries. Extending the technique
to work with more expressive invariants is part of our ongoing work.

Multiple Memory Units in Separate Layers. Our approach can be
extended to RNNs with multiple memory units, each in a separate layer, in
an iterative fashion: an invariant is proved separately for each layer, by using
the already-proved invariants of the previous layers. As before, we begin by
constructing the snapshot network in which all memory units are replaced by
regular neurons. Next, we work layer by layer and generate invariants that
over-approximate each memory unit, by leveraging the invariants established
for memory units in the previous layers. Eventually, all memory units are over-
approximated using invariants, and we can attempt to prove the desired property
by solving the snapshot query. An example and the general algorithm for this
case appears in Sect. 9 of the appendix in the full version of the paper [17].

4.2 Layers with Multiple Memory Units

v1,1

ṽ2,1

ṽ2,2

v2,1

v2,2

v3,1

-1

2

1

-1

1

1

1

1

Fig. 5. An RNN where both memory
units affect both neurons of the hidden
layer: vt

2,1 = ReLU(ṽt
2,1 + ṽt

2,2 − vt
1,1);

and vt
2,2 = ReLU(−ṽt

2,1 + ṽt
2,2 +2vt

1,1).

We now extend our approach to support
the most general case: an RNN with layers
that contain multiple memory units. We
again apply an iterative, layer-by-layer
approach. The main difficulty is in infer-
ring invariants for a layer that has multi-
ple memory units, as in Fig. 5: while each
memory unit belongs to a single neuron,
it affects the assignments of all other neu-
rons in that layer. We propose to handle
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this case using separate linear invariants for upper- and lower-bounding each of
the memory units. However, while the invariants have the same linear form as in
the single memory unit case, proving them requires taking the other invariants
of the same layer into account. Consider the example in Fig. 5, and suppose we
have α1

l , α
1
u and α2

l , α
2
u for which we wish to verify that

α1
l · (t − 1) ≤ ṽt

2,1 ≤ α1
u · (t − 1) α2

l · (t − 1) ≤ ṽt
2,2 ≤ α2

u · (t − 1) (1)

In order to prove these bounds we need to dispatch an FFNN verification query
that assumes Eq. 1 holds and uses it to prove the inductive step:

ṽt+1
2,1 = vt

2,1 = ReLU(−ṽt
1,1 + ṽt

2,1 + ṽt
2,2) ≤ α1

u · (t + 1 − 1) (2)

Similar steps must be performed for ṽt+1
2,1 ’s lower bound, and also for ṽt+1

2,2 ’s lower
and upper bounds. The key point is that because Eq. 2 involves ṽt

2,1 and ṽt
2,2,

multiple α terms from Eq. 1 may need to be used in proving it. This interde-
pendency means that later changes to some α value might invalidate previously
acceptable assignments for other α values. This adds a layer of complexity that
did not exist in the cases that we had considered previously.

For example, consider the network in Fig. 5, with P =
∧3

t=1 −3 ≤ vt
1,1 ≤ 3,

and Q =
∨3

t=1 vt
3,1 ≥ 100. Our goal is to find values for α1

l , α
1
u and α2

l , α
2
u that

will satisfy Eq. 1. Let us consider α1
l = 0, α1

u = 8, α2
l = 0 and α2

u = 0. Using
these values, the induction hypothesis (Eq. 1) and the bounds for v1,1, we can
indeed prove the upper bound for ṽt+1

2,1 :

ṽt+1
2,1 = vt

2,1 = ReLU(−ṽt
1,1 + ṽt

2,1 + ṽt
2,2) ≤ ReLU(3 + 8(t − 1) + 0) ≤ 8t

Unfortunately, the bounds 0 ≤ ṽt
2,2 ≤ 0 are inadequate, because ṽt

2,2 can take
on positive values. We are thus required to adjust the α values, for example by
increasing α2

u to 2. However, this change invalidates the upper bound for ṽt+1
2,1 , i.e.

ṽt+1
2,1 ≤ 8t, as that bound relied on the upper bound for ṽt

2,2; Specifically, knowing
only that 1 ≤ t ≤ 3, −3 ≤ vt

1,1 ≤ 3, 0 ≤ ṽt
2,1 ≤ 8(t − 1) and 0 ≤ ṽt

2,2 ≤ 2(t − 1),
it is impossible to show that ṽt+1

2,1 = vt
2,1 ≤ 8t.

The example above demonstrates the intricate dependencies between the α
values, and the complexity that these dependencies add to the search process.
Unlike in the single memory unit case, it is not immediately clear how to find
an initial invariant that simultaneously holds for all memory units, or how to
strengthen this invariant (e.g., which α constant to try and improve).

Finding an Initial Invariant. We propose to encode the problem of find-
ing initial α values as a mixed integer linear program (MILP). The linear and
piecewise-linear constraints that the α values must satisfy (e.g., Eq. 2) can be
precisely encoded in MILP using standard big-M encoding [18]. There are two
main advantages to using MILP here: (i) an MILP solver is guaranteed to return
a valid invariant, or soundly report that no such invariant exists; and (ii) MILP
instances include a cost function to be minimized, which can be used to optimize
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the invariant. For example, by setting the cost function to be
∑

αu − ∑
αl, the

MILP solver will typically generate tight upper and lower bounds.
The main disadvantage to using MILP is that, in order to ensure that the

invariants hold for all time steps 1 ≤ t ≤ Tmax, we must encode all of these steps
in the MILP query. For example, going back to Eq. 2, in order to guarantee that
vt+1
2,1 = ReLU(−vt

1,1 + vt
2,1 + vt

2,2) ≤ α1
u · t, we would need to encode within our

MILP instance the fact that
∧Tmax

t=1

(
ReLU(−vt

1,1 + vt
2,1 + vt

2,2) ≤ α1
u · t

)
. This

might render the MILP instance difficult to solve for large values of Tmax. How-
ever, we stress that this approach is quite different from, and significantly easier
than, unrolling the RNN. The main reason is that these MILP instances are
each generated for a single layer (as opposed to the entire network in unrolling),
which renders them much simpler. Indeed, in our experiments (Sect. 5), solv-
ing these MILP instances was never the bottleneck. Still, should this become a
problem, we propose to encode only a subset of the values of t ∈ {1, . . . , Tmax},
making the problem easier to solve; and should the α assignment fail to produce
an invariant (this will be discovered when ϕI is verified), additional constraints
could be added to guide the MILP solver towards a correct solution. We also
describe an alternative approach, which does not require the use of an MILP
solver, in Sect. 10 of the appendix in the full version of the paper [17].

Strengthening the Invariant. If we are unable to prove that ϕ̂ is UNSAT for
a given I, then the invariant needs to be strengthened. We propose to achieve
this by invoking the MILP solver again, this time adding new linear constraints
for each α, that will force the selection of tighter bounds. For example, if the
current invariant is αl = 3, αu = 7, we add constraints specifying that αl ≥ 3+ ε
and αu ≤ 7 − ε for some small positive ε—leading to stronger invariants.

5 Evaluation

Our proof-of-concept implementation of the approach, called RnnVerify, reads
an RNN in TensorFlow format. The input and output properties, P and Q,
and also Tmax, are supplied in a simple proprietary format, and the tool then
automatically: (i) creates the FFNN snapshot network; (ii) infers a candidate
invariant using the MILP heuristics from Sect. 4; (iii) formally verifies that I is
an invariant; and (iv) uses I to show that ϕ̂, and hence ϕ, are UNSAT. If ϕ̂ is SAT,
our module refines I and repeats the process for a predefined number of steps.

For our evaluation, we focused on neural networks for speaker recognition—a
task for which RNNs are commonly used, because audio signals tend to have
temporal properties and varying lengths. We applied our verification technique
to prove adversarial robustness properties of these networks, as we describe next.

Adversarial Robustness. It has been shown that alarmingly many neural
networks are susceptible to adversarial inputs [32]. These inputs are generated
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by slightly perturbing correctly-classified inputs, in a way that causes the mis-
classification of the perturbed inputs. Formally, given a network N that classifies
inputs into labels l1, . . . , lk, an input x0, and a target label l �= N(x0), an adver-
sarial input is an input x such that N(x) = l and ‖x − x0‖ ≤ δ; i.e., input x is
very close to x0, but is misclassified as label l.

Adversarial robustness is a measure of how difficult it is to find an adversar-
ial example—and specifically, what is the smallest δ for which such an exam-
ple exists. Verification can be used to find adversarial inputs or rule out their
existence for a given δ, and consequently can find the smallest δ for which an
adversarial input exists [3].

Speaker Recognition. A speaker recognition system receives a voice sample
and needs to identify the speaker from a set of candidates. RNNs are often
applied in implementing such systems [34], rendering them vulnerable to adver-
sarial inputs [23]. Because such vulnerabilities in these systems pose a security
concern, it is important to verify that their underlying RNNs afford high adver-
sarial robustness.

Benchmarks. We trained 6 speaker recognition RNNs, based on the VCTK
dataset [37]. Our networks are of modest, varying sizes of approximately 220
neurons: they each contain an input layer of dimension 40, one or two hidden
layers with d ∈ {2, 4, 8} memory units, followed by 5 fully connected, memoryless
layers with 32 nodes each, and an output layer with 20 nodes. The output nodes
represent the possible speakers between which the RNNs were trained to distin-
guish. In addition, in order to enable a comparison to the state of the art [1], we
trained another, smaller network, which consists of a single hidden layer. This
was required to accommodate technical constraints in the implementation of [1].
All networks use ReLUs as their activation functions.

Next, we selected 25 random, fixed input points X = {x1, . . . , x25}, that do
not change over time; i.e. xi ∈ R

40 and x1
i = x2

i = . . . for each xi ∈ X. Then, for
each RNN N and input xi ∈ X, and for each value 2 ≤ Tmax ≤ 20, we computed
the ground-truth label l = N(xi), which is the label that received the highest
score at time step Tmax. We also computed the label that received the second-
highest score, lsh, at time step Tmax. Then, for every combination of N , xi ∈ X,
and value of Tmax, we created the query 〈∧Tmax

t=1 (‖x′t−xt
i‖L∞ ≤ 0.01), N, lsh ≥ l〉.

The allowed perturbation, at most 0.01 in L∞ norm, was selected arbitrarily. The
query is only SAT if there exists an input x′ that is at distance at most 0.01 from
x, but for which label lsh is assigned a higher score than l at time step Tmax. This
formulation resulted in a total of 2850 benchmark queries over our 6 networks.
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Fig. 6. Average running time (in sec-
onds) of RnnVerify and RNSVerify, as
a function of Tmax.

Results. We began by comparing
our technique to the state-of-the-art,
unrolling-based RNSVerify tool [1], using
the small network we had trained. Each
dot in Fig. 6 represents a tool’s aver-
age run time on the 25 input points, for
a specific Tmax. Both methods returned
UNSAT on all queries; however, the run-
times clearly demonstrate that our app-
roach is far less sensitive to large Tmax

values. In a separate experiment, our tool
was able to solve a verification query on
the same network with Tmax = 180 in
2.5 s, whereas RNSVerify timed out after
24 h.

Next, we used RnnVerify on all 2850 benchmark queries on the 6 larger
networks. The results appear in Sect. 11 of the appendix in the full version of
the paper [17], and are summarized as follows: (i) RnnVerify terminated on
all benchmarks, with a median runtime of 5.39 s and an average runtime of
48.67 s. The maximal solving time was 5701 s; (ii) 85% of RnnVerify’s runtime
was spent within the underlying FFNN verification engine, solving ϕI queries.
This indicates that as the underlying FFNN verification technology improves,
our approach will become significantly more scalable; (iii) for 1919 (67%) of
the benchmarks, RnnVerify proved that the RNN was robust around the tested
point. For the remaining 931 benchmarks, the results are inconclusive: we do
not know whether the network is vulnerable, or whether more sophisticated
invariants are needed to prove robustness. This demonstrates that for a majority
of tested benchmarks, the linear template proved useful; and (iv) RnnVerify
could generally prove fewer instances with larger values of Tmax. This is because
the linear bounds afforded by our invariants become more loose as t increases,
whereas the neuron’s values typically do not increase significantly over time.
This highlights the need for more expressive invariants.

6 Related Work

Due to the discovery of undesirable behaviors in many DNNs, multiple
approaches have been proposed for verifying them. These include the use of
SMT solving [15,18,20,24], LP and MILP solving [8,33], symbolic interval prop-
agation [35], abstract interpretation [9,10], and many others (e.g., [2,11,14,21,
26,27]). Our technique focuses on RNN verification, but uses an FFNN verifi-
cation engine as a back-end. Consequently, it could be integrated with many of
the aforementioned tools, and will benefit from any improvement in scalability
of FFNN verification technology.

Whereas FFNN verification has received a great deal of attention, only little
research has been carried out on RNN verification. Akintunde et al. [1] were the
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first to propose such a technique, based on the notion of unrolling the network
into an equivalent FFNN. Ko et al. [22] take a different approach, which aims
at quantifying the robustness of an RNN to adversarial inputs—which can be
regarded as an RNN verification technique tailored for a particular kind of prop-
erties. The scalability of both approaches is highly sensitive to the number of
time steps, Tmax, specified by the property at hand. In this regard, the main
advantage of our approach is that it is far less sensitive to the number of time
steps being considered. This affords great potential for scalability, especially for
long sequences of inputs. A drawback of our approach is that it requires invariant
inference, which is known to be challenging.

In a very recent paper, Zhang et al. [38] propose a verification scheme aimed
at RNNs that perform cognitive tasks. This scheme includes computing polytope
invariants for the neuron layers of an RNN, using abstract interpretation and
fixed-point analysis. We consider this as additional evidence of the usefulness of
invariant generation in the context of RNN verification.

Automated invariant inference is a key problem in program analysis. A
few notable methods for doing so include abstract-interpretation (e.g., [30]);
counterexample-guided approaches (e.g., [28]); and learning-based approaches
(e.g., [31]). It will be interesting to apply these techniques within the context of
our framework, in order to more quickly and effectively discover useful invariants.

7 Conclusion

Neural network verification is becoming increasingly important to industry, regu-
lators, and society as a whole. Research to date has focused primarily on FFNNs.
We propose a novel approach for the verification of recurrent neural networks—a
kind of neural networks that is particularly useful for context-dependent tasks,
such as NLP. The cornerstone of our approach is the reduction of RNN veri-
fication to FFNN verification through the use of inductive invariants. Using a
proof-of-concept implementation, we demonstrated that our approach can tackle
many benchmarks orders-of-magnitude more efficiently than the state of the art.
These experiments indicate the great potential that our approach holds. In the
future, we plan to experiment with more expressive invariants, and also to apply
compositional verification techniques in order to break the RNN into multiple,
smaller networks, for which invariants can more easily be inferred.
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